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Abstract: Ventilation, heating and air conditioning systems are the main energy consumers in 
building sector. Improving the energy consumption of these systems, while satisfying the 
occupants’ comfort, is the major concern of control and automation designers and researchers. 
Model predictive control (MPC) methods have been widely studied in order to reduce the energy 
usage while enhancing the occupants’ comfort. In this paper, a generalized predictive control 
(GPC) algorithm based on controlled auto-regressive integrated moving average is investigated for 
standalone ventilation systems’ control. A building’s ventilation system is first modeled together 
with the GPC and MPC controllers. Simulations have been conducted for validation purposes and 
are structured into two main parts. In the first part, we compare the MPC with two traditional 
controllers, while the second part is dedicated to the comparison of the MPC against the GPC 
controller. Simulation results show the effectiveness of the GPC in reducing the energy 
consumption by about 4.34% while providing significant indoor air quality improvement. 

Keywords: energy efficiency in buildings; indoor air quality comfort; CO2 regulation; ventilation 
systems control; model and generalized predictive control 

 

1. Introduction 

Heating, ventilation and air-conditioning (HVAC) systems represent approximately 50% of the 
global energy consumption in buildings and 36% of all energy-related CO2 emissions worldwide [1,2]. 
Therefore, building’s systems, especially HVAC, have to be efficiently controlled in order to balance 
the tradeoff between the occupants’ comfort and energy efficiency in buildings [3–5]. Four main 
metrics need to be considered, however, which are (i) the thermal comfort, (ii) visual comfort, (iii) 
acoustics comfort and (iv) the indoor air quality. According to a recent standard, integrating those 
metric parameters into the design of HVAC systems could provide a significant improvement of 
energy usage of these systems while ensuring comfortable indoor environmental conditions [6]. In 
brief, comfort metrics are required to assess the energy efficiency in buildings. In particular, indoor 
air quality which has been recognized as one of the most important factors influencing the indoor 
environmental quality of the occupants as well as one of the main sources of energy consumption in 
buildings [4,6], which depends mainly on the ventilation management service. On the other hand, 
ventilation systems in buildings are necessary to maintain a proper and healthy indoor air quality 
(IAQ) aiming to control the indoor environmental requirements, such as CO2 level, humidity and air 
velocity, by providing the required level of fresh air from outside to inside the building. The main 
aim is to reduce the excess of CO2 concentration with the respect of humidity by using an efficient 
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ventilation rate in order to enhance the energy conservation while creating a more comfortable 
healthy environment. Therefore, developing advanced control strategies requires taking into 
consideration these environmental requirements, which are mostly based on international 
standards. For instance, Ashrae standard 62 is one of the important references that defines the 
performance requirements for ventilation to provide acceptable IAQ in buildings [3]. 

Indoor CO2 is considered among the most important parameters for developing intelligent 
control approaches of ventilation systems in order to minimize the overall energy usage while 
ensuring good indoor air quality. Basically, conventional building’s ventilation systems have 
constant or prefixed ventilation rates based on the demand of that building’s space. Typically, the 
fan acts automatically on the behalf of the occupants even when the demand for ventilation 
decreases. This could affect the thermal and indoor air quality comfort due to uncontrollable 
ventilation rate operations, leading to energy wastage. In addition, IAQ is considered among the 
main parameters for occupants’ well-being and occupants’ comfort in schools, libraries and other 
building sectors. In fact, inadequate ventilation systems, which do not supply enough fresh air, can 
cause poor IAQ leading to discomfort, symptoms and health issues. This might also affect the 
occupants’ productivity [7]. In fact, our recent experimental study has shown a strong correlation 
between the CO2 concentration and the SPO2, the O2 level inside the occupants’ blood [8]. The study 
showed also how the increase in CO2 concentration can affect the heart rate and SPO2 of the 
occupants leading to discomfort. 

IAQ depends on many building context-awareness parameters, such as the envelope, operation 
sittings of the ventilation systems and the occupants’ number [9]. Actually, most proposed methods 
for controlling IAQ is through the use of standalone ventilation systems by supplying the required 
outdoor air level using appropriate ventilation rates. These approaches will allow maintaining good 
indoor air quality while reducing the energy consumption [10–13]. Most of the deployed approaches 
are based on a fixed ventilation rate in order to minimize the power consumption while keeping a 
comfortable indoor air quality [14,15]. However, these approaches could operate efficiently in a 
static environment with priory known occupancy schedules. Recently, sophisticated control 
approaches have been proposed for environments with dynamic occupancy changes [16–18]. 
Namely, the well known proportional, integral and derivative (PID) control, which seems sufficient 
to cover the dynamic control requirements of these dynamic systems, however, the energy 
consumption remains an important issue [19]. Therefore, most recent studies focused on the 
parameter design of PID controllers in order to improve their performances, mainly in terms of 
precision, robustness and stability [20,21]. In fact, inappropriate setting of P, I and D could affect the 
precision as well as the internal stability and robustness of the system [22]. Moreover, the PID 
controller is unsuitable for managing systems with multiple inputs/outputs with time-varying 
disturbances, such as in HVAC systems. 

Advanced algorithms were recently developed in recent years for HVAC control systems, such 
as the fuzzy logic control, genetic algorithm and model predictive control (MPC) [23,24]. Among 
these control algorithms, predictive control strategies have been introduced as one of the most 
advanced control techniques used in building system control in order to regulate very complex 
related processes, such as in HVAC systems [25,26]—especially for energy and cost savings [27,28], 
robustness to disturbances and changes in operating conditions [29,30], indoor air quality and 
thermal comfort improvement [31,32]. In fact, model-based predictive control has an optimization 
mechanism that allows integrating the process’s constraints and disturbances in its control action. 
The aim is to predict the dynamic behavior of the system, within a prediction horizon. Moreover, the 
MPC mechanism could handle uncertainties and nonlinear processes and their dynamics [33]. 

In our previous work, we have investigated the PID and ON/OFF controllers and validated 
their performance [15,18]. We then proposed a CO2-based strategy using a state feedback for 
controlling ventilation systems, and the results showed that the proposed state-feedback technique 
outperformed the Proportional Integral (PI) and ON/OFF controllers in terms of energy 
consumption while maintaining good indoor air quality. The three controllers have been deployed 
in our University testbed (EEBLab, for Energy Efficient Buildings Laboratory), which is located in 
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Rabat, Morocco. The experiments were conducted in real sitting scenarios and the results showed 
that the CO2-based state feedback (SF) control was able to maintain the CO2 concentration in the 
comfortable zone, while minimizing energy consumption. It is worth noting that the EEBLab 
consists mainly of: (i) RES-Renewable Energy Sources(e.g., wind and solar), (ii) battery devices to 
store the excessive power, and (iii) active/passive systems (e.g., air conditioner, ventilation systems, 
geothermal, pad cooling system). 

The work presented in this paper was conducted under two ongoing R&D projects [34]. The 
aim was to develop predictive approaches and techniques for active/passive system (e.g., 
ventilation, HVAC, pad cooling, geothermal) control, including the integration of renewable energy 
and storage systems [35–37]. A platform that combined IoT and Big data processing technologies for 
real-time control of the building’s systems was also deployed in our EEBLab for real testing [38]. In 
fact, in order to enable predictive control, a holistic platform, which integrates recent IoT 
sensing/actuating and Big data technologies, was developed for data monitoring and processing 
together with real-time machine-learning techniques. Mainly, the data streams we were collecting 
from a variety of sensors, such as CO2, temperature, humidity and motion sensors, will be used for 
predicting occupancy. Occupancy information will be then used to develop context-driven services 
and predictive control, such as controlling window opening and shading, smart HVAC, ventilation, 
and lighting services. Mainly, the aim was to carry out the MAPCAST closed loop (measure, analyze 
and predict the inputs control parameters for forecasting required actions), which enables the 
predictive control of active and passive systems including the control of our micro-grid systems 
[36,38]. 

The aim of the work presented in this paper was towards developing and designing advanced 
controllers of standalone ventilation systems by carrying out the MAPCAST principles. In fact, a 
real-time predictive management approach was then developed, which aimed to autonomously 
measure, analyze actual data, predict future values and forecast ventilation actions. The first part of 
this work was dedicated to ventilation’s system modeling including the design of both generalized 
predictive control (GPC) and MPC controllers. Simulation results are then presented to compare first 
the MPC against the PI and SF control we have developed and compared in our previous work [39]. 
Mainly, in this work, a performance comparison between two predictive controllers, MPC and GPC, 
were performed and analyzed for a building’s ventilation system. The PI and SF controllers were 
only used as baseline references to validate and assess the performance of MPC and GPC. The 
obtained results were analyzed and compared based on three main metrics, the regulation of indoor 
CO2 concentration, the ventilation rate, and the power consumption, both aggregated and 
disaggregated. 

The outline of this article is organized as follows. Section 2 presents the proposed methodology 
followed throughout the article, which mainly describes the ventilation’s control model using the 
MPC and GPC. Simulation parameters and evaluation metrics together with the obtained results are 
reported in Section 3. Section 4 provides the conclusions and perspectives. 

2. System Model and Methods 

This section introduces the model of the ventilation system for the air indoor regulation. The 
design and the models of the MPC and GPC controllers are then presented and discussed. 

2.1. Ventilation System Modeling 

The ventilation system was constituted of two standalone controlled fans, which were 
respectively responsible for supplying the fresh outdoor air into the inside of the building and 
draining the CO2 out of the building. In other words, these two fans were operating instantaneously 
under the same control actions in order to keep a good indoor air quality inside the building. The 
model describing this system was inspired from the CO2 mass balance method, which combines the 
indoor/outdoor CO2 concentration, the controlled air flow rate and the occupancy behavior [40]. This 
model was given by the following equation, where Q  is the ventilation rate operation in (m3/s),N is 
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the number of occupants and t is the time in (s), Vrepresents the space’s volume (m3), q means the 
rate of the generated CO2 concentration per person (L/s), while extC (resp. iC ) represents the 
external CO2 concentration (resp. internal), measured in ppm. The recommended internal CO2 
concentration must be lower than 1000 ppm [41]: 

= − +i
i ext

dC (t)
V Q(t)(C (t) C (t)) qN(t)

dt
 (1) 

This equation has a nonlinear behavior due to the inter-relationship between the CO2 
concentration and the ventilations rates. It could be linearized as follows, where 0Q  is a constant 
initial rate as well as the minimum ventilation rate, ΔQ(t)  is the change necessary to achieve the 
desired indoor CO2 level, 0C  represents the initial indoor concentration of iC (t) , and Δ iC (t)  is 
the concentration increment by applying ΔQ(t) : 

= + Δ0Q(t) Q Q(t)  

= + Δi 0 iC (t) C C (t)  

Equation (1) can therefore be described by Equation (2): 

• −
= Δ + Δ +0 0 ext

i

Q (C C ) qN(t)
x(t) C (t) Q(t)

V V V
 (2) 

Let us consider:  

= 0
c

Q
A

V
; 

−
= 0 ext

c

(C C )
B

V
; = Δ ix C (t) ; = Δu(t) Q(t) ; 

where qN(t)  = F(t)  is supposed as human disturbance, which must be integrated as an input 
parameter to the proposed system. Finally, the state-space model is the following: 

•

= + +c c
F(t)x(t) A x(t) B u(t)
V

 (3) 

2.2. Predictive Controllers Design 

In this sub-section, we introduce the MPC and GPC models. The aim is to show how these 
controllers could maintain the system model based on input/output ventilation rates and carbon 
dioxide concentrations in the building (Equation (3)). 

2.2.1. MPC Controller Design 

In order to design the MPC, a discrete model form of our system (Equation (3)) is required. In 
fact, the obtained Euler approximation has the following discrete state space equation: 


 + = +

= +



+x(k 1) Ax(k) Bu(k)
y(k 1) Cx(k 1)

 (4) 

The representation of n-step-ahead of Equation (4) is given by the following matrix-based forms 
(i.e., the system’s state, output, and input control increment): 

( )

( )
( )

( )

( )−

    +          = +          + + +        


  

  
 

  

n
n 1

Ax u
B

B 0 0x k 1 u kA
AB

x k
B 0

x k n A u k n 1
A B AB B

 
(4a) 
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( )

( )
( )

( )

( )−

    + +         = +          + + +        


  

  
 

  

n
n 1

Cy u
D

CB 0 0y k 1 u k 1CA
CAB

x k
CB 0

y k n CA u k n 1
CA B CAB CB

 
(4b) 

( )
( )

( )
( )

( )
( )Δ

 Δ        Δ +      = − +      
    +       + +  


  

 
  

  1

2

n

Iu
I

u k

u k1 0 0
u(k) 1

u k 11
u k 1

0
u k n 1

1 1 u k n 1

 

(4c) 

Replacing (4c) in (4a), we obtain the predictive model: ( ) ( ) ( )= + − + Δ1 2x Ax k BI u k 1 BI u k  

Replacing (4c) in (4b), we get the predictive observation model: 

( ) ( ) ( )= + − + Δ1 2y Cx k DI u k 1 DI u k  

The control objective is to find the future incremental action ( )Δu k , which is able to reach the 

desired predicted reference trajectory presented by the following equation: 

( ) ( ) ( ) = + + + ref ref ref refy y k 1 ,y k 2 , ,y k n  

In fact, the error between the set point references and the predicted system’s outputs is: 
= − refE y y . Thus, the predicted control action uΔ that minimizes this error is computed by 

minimizing the following criterion: 

 = + Δ Δ 
 

TT1J EQE uR u
2

 (5) 

2.2.2. GPC Controller Design 

The basic theory of the GPC method, as described in [42], is to compute a sequence of future 
control actions in order to minimize a multistage cost function defined over a prediction horizon. 
The criterion index to be optimized is the expectation of a quadratic function, measuring the distance 
between the predicted system’s outputs and some predicted reference sequence over a prediction 
horizon and a quadratic function measuring the control effort. Due to its correctness and 
effectiveness, the GPC has become the most popular MPC method used in various applications both 
in academia and industrial processes [43,44]. 

The most transferred function model used by the GPC algorithm is called CARIMA (controlled 
auto-regressive integrated moving average) model. This form of plant model is that the uncertainty 
is added into a good representation, so that the slow variation of disturbances could have a non-zero 
steady-state. Moreover, this model is compact and easy to handle: 

( ) ( ) ( ) ( ) ( ) ( )
−

− −= +
Δ

1
1 1

T z
A z y k B z u k d k  (6) 

where u and y  are the control inputs and the system output sequences of the plant, respectively, 
A , B and T  are the polynomial Z-function, Δ  is the variation operator ( ) ( )Δ = − −ku u k u k 1 , 

and ( )d k  represents the disturbance (white noise). Therefore, the main objective is to convert our 

state-space model into CARIMA form as follows: 

( ) ( ) ( ) ( )
( ) ( )

 + = + +
 + = +

x k 1 Ax k Bu k d k
y k 1 Cx k 1

 

By applying the Z-transform representations, we obtain: 
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( ) ( ) ( ) ( )
( ) ( )

− − − − − − −

− −

 = + +


=

1 1 1 1 1 1 1

1 1

x z Az x z Bz u z z d z

y z Cx z
 =>

( ) ( ) ( )
( ) ( )

− −
− − −

− −

− −


= + − −

 =

1 1
1 1 1

1 1

1 1

Bz zx z u z d z
1 Az 1 Az

y z Cx z
, 

Therefore: 

( ) ( ) ( )
− −

− − −
− −

= +
− −

1 1
1 1 1

1 1

CBz Czy z u z d z
1 Az 1 Az

, 

Hence:  

( ) ( ) ( ) ( )
− −

− − − − −
−

−
− = +

−

1 1
1 1 1 1 1

1

Cz 1 z
1 Az y z CBz u z d z

1 z
, 

where:  

( )
( )

( ) ( )

− −

− −

− − −

−

 = −

 =

 = −


Δ = −

1 1

1 1

1 1 1

1

A z 1 Az

B z CBz

T z Cz 1 z

1 z

. 

Thus, the CARIMA form can be described as follows: 

( ) ( ) ( ) ( ) ( ) ( )
−

− − − − −= +
Δ

1
1 1 1 1 1

T z
A z y z B z u z d z . 

We then synthetize from the CARIMA model a one-step-ahead prediction equation, which 
represents a set of simultaneous prediction equations: 

( ) ( ) ( ) ( ) ( ) ( )− − − − − −Δ = Δ +1 1 1 1 1 1A z y z B z u z T z d z , 

( ) ( )( )( ) ( ) ( )− − − − −= − − = + +1 1 1 1 1
1 2A z 1 A z 1 z 1 A z A z , 

Therefore, our model design is: 

( ) ( ) ( ) ( )− − − −= Δ1 1 1 1A z y z b z u z . (7) 

The simultaneous prediction equations after n-steps-ahead can be considered as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 + + + + − =


+ + + + + = +
 + + + + + + = +


 + + + + − + + − = + −



1 2

1 2

1 2

1 2

k 1 : y k 1 A y k A y k 1 CBΔu k

k 2 : y k 2 A y k 1 A y k CBΔu k 1

k 3 : y k 3 A y k 2 A y k 1 CBΔu k 2

k n : y k n A y k n 1 A y k n 2 CBΔu k n 1

 

The idea is to arrange the above equations into a prediction matrix form, which is simple and 
easy to handle as follows: 
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( )
( )
( )

( )

( )
( )
( )

( )

( )
( )
( )

( )

( )
( )
( )

( )

       + −
       

+ + + −       
       + = ++ + + −       
       
       

+ + − + − −              

   

  
F P F
( k ) ( k ) ( k )

A A B B

y y Δu

y k 1 y k Δu k Δu k 1
y k 2 y k 1 Δu k 1 Δu k 2

C H C Hy k 3 y k 2 Δu k 2 Δu k 3

y k n y k n 1 Δu k n 1 Δu k n


P
( k )Δu

 

where F
( k )y , P

( k )y , F
(k)Δu and P

(k)Δu are the unknown prediction output, known past output, future 

input (decision variable) to be calculated, and the known past input, respectively. AC , AH , BC  

BH  are the key matrices of our predictive control: 

 
 
 
 
 =
 
 
 
 
 

  
 
 

   
   


1

2 1
A

2 1

1 0 0
A 1
A A

C
0

0
0 0 A A 1

, 

 
 
 
 =
 
 
 
 




  
   

  

1 2

2

A

A A 0 0
A 0 0 0

H 0 0
0

0 0

, 

 
 
 =  
  
 


 

  


B

CB 0 0
0 CB

C
0

0 0 CB

, 

 
 =  
 
 


  


B

0 0
H

0 0
. 

As follows, the output predictions using the shorthand notation for more compact 
representation: 

+ = +F P F P
A ( k ) A ( k ) B ( k ) B ( k )C y H y C Δu H Δu , − − −= + −  

F 1 F 1 P 1 P
(k) A B (k) A B (k) A A (k)

H P Q

y C C Δu C H Δu C H y  (8) 

Let us now define the criterion to be optimized, which mainly relies in our case on error change, 
between the predicted system output F

( k )y  and the predicted reference sequence 

+ + + +=   F
( k ) k 1 k 2 k 3 k nr r , r , r , r  over the horizon, hence the error is = −F F F

( k ) ( k ) ( k )e r y , and consequently the 

optimal cost criterion is the following: 

( ) ( )= + λ
T TF F F F

(k) (k) (k) (k)J e .e Δu Δu  (9) 

where λ  is the control weighting factor that reduces the magnitude of the control increments in the 
cost function. This criterion is optimized through the calculation of the gradient F

( k )Δu  as follows: 

By replacing the error change = −F F F
( k ) ( k ) ( k )e r y  into (9), we obtain: 
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( )
( ) ( ) ( ) ( )( ) ( )
   = − Δ − Δ − Δ × − Δ − Δ − Δ + λ Δ Δ   
 = Δ Δ − Δ − Δ − Δ + λ Δ Δ  

TTF F P P F F P P F F
(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)

T T TF F F F P P F F
(k) (k) (k) (k) (k) (k) (k) (k)

J r H u P u Q y r H u P u Q y u u

J H u H u 2 H u r P u Q y u u
, 

Then, we applied the mathematical rules: 
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In order to implement this control for real-time simulations, we note that the relation must be 
adapted for the feedback design as follows: 
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Hence, the schema bloc of the controlled system by the GPC-based CARIMA model is described 
in Figure 1: 

 
Figure 1. System’s controller feedback blocs of the generalized predictive control (GPC)-based 

controlled auto-regressive integrated moving average (CARIMA) model. 

3. Results and Discussion 

This section introduces the implementation and performance evaluation of the MPC and GPC 
for the ventilation system’s control. Matlab/Simulink was used as a platform for computing and 
implementing the MPC and GPC models. The controllers’ parameters were obtained by computing 
different testing, taking into consideration the settling time, rise time and the overshoot of the CO2 
concentration, which were chosen by the suitable tuning as illustrated in Table 1. Concerning the PI 
and SF controllers, the tuning process together with their performance evaluation were detailed in 
our previous work [39]. The gain values we used are Kp = −0.3 and Ti = 7.5, for proportional gain and 
integral time, respectively. In addition, numerical simulations were conducted under the same 
conditions as presented in Table 2, which describes the parameters and the building’s ventilation 
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system, respectively. We used the features and characteristics of the ventilation system already 
deployed in our test site (EEBLab). Mainly, the ventilators were operating at a maximum air flow 
rate of about 0.6 m3/s and were supplied by a solar photovoltaic system (24 V, DC). The simulations 
were performed during a time period of about 15,000 s using same parameters and conditions. 

Table 1. Input tuning of the model predictive control (MPC) and GPC algorithms’ parameters. 

Input 
Parameters 

Control 
Horizon ( uN ) 

Prediction 
Horizon ( pN ) 

Sampling 
Time ( sT ) 

Weighting 
Control ( λ ) 

Value 3 15 10s 0.6 

Table 2. Settings of the ventilation system model parameters. 

Parameters Name Parameter Description Value Unit 
V  Simulated space volume 400 m3 
q  CO2 generation rate per person 0.0086 l/s 

0Q  Minimum ventilation rate 1/3600 m3/s 

maxQ  Maximum ventilation rate 0.6 m3/s 

extC  Outdoor CO2 concentration 450 ppm 

0C  Initial indoor CO2 concentration 700 ppm 

setC  Setpoint of CO2 concentration 750 ppm 

maxN  Maximum number of occupants 100 - 

pΔ  Fan inlet/outlet increment total pressure 1500 Pa 
μ  Overall efficiency  0.65 - 

In order to assess the performance of the CO2-based GPC control strategy with the MPC, PI and 
SF control approaches, four main metrics were evaluated: (a) the indoor CO2 regulation, (b) the 
ventilation rate operation of the controlled system in (m3/s), (c) the instantaneous electricity power, 
and (d) the total electricity power consumed by the system in (kW/h), which was calculated using 
the following equation presented in [45]: 

   μ = × Δ × ×   
   

elec i
tPC Q p

3600 1000
 

where elecPC  is the power consumption in (kW/h), iQ  is the ventilation rate in (m3/s), Δ p  is the 
total pressure rise from the fan inlet to the outlet in (Pa), t is the time in (s) and μ  is the overall 
efficiency of the fan. 

An indoor CO2 concentration scenario generated by the occupants was used as the human 
disturbance as well as a forecast input for the MPC and GPC. As illustrated in Figure 2, the 
generated CO2 concentration (ppm) was estimated according to the occupants’ number using the 
transfer function presented in [46]. The occupied building for our case study was considered a 
university lecture room with a maximum occupation of 100 students. The estimated occupancy 
count of the lecture room was drawn from our real-life knowledge of the building usage during the 
time period 15,000 s, which was composed of three periods: a 1 h 40 min lecture, 1 h 10 min break, and 
then another 1 h 40 min lecture. 
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Figure 2. Generated indoor CO2 concentration used as the forecast input for the MPC and GPC. 

The rest of this sub-section presents the obtained results using the aforementioned simulation 
settings. First, the MPC controller is evaluated and compared against the PI and SF, while the second 
focuses on the comparison between the two predictive controllers, the MPC and GPC. 

3.1. MPC vs. PI and SF 

Figure 3 depicts the comparison between the MPC against the PI and SF controllers. Figure 3a 
shows the regulation of the CO2 concentration together with the occupancy number, the 
accumulated CO2 concentration generated by the occupants and the CO2 concentration reference 
(750 ppm). As shown in this figure, the regulation of the indoor CO2 concentration based on the 
MPC method strategy allowed the higher performance compared to the PI and SF control 
techniques. In fact, the MPC controller performed well, as expected, as it was able to reach and 
follow the CO2 reference and to maintain the comfort level despite the disturbance introduced by the 
occupants. On the other hand, the PI and SF showed an acceptable overshoot since the constraint 
range on the indoor CO2 concentration were fixed to ± 10 ppm around the CO2 reference. The MPC 
controller outperformed the PI and SF in terms of settling and rising time, which allowed achieving 
the desired indoor CO2 level limit while satisfying the indoor comfort. 

The performance of the MPC can be explained by its predictive mechanism, which includes the 
comfort cost and energy usage as optimization functions, for predicting the effective ventilation flow 
rate. It achieved 0.13 m3/s (468 m3/h), as depicted in Figure 3b. Compared to 0.135 m3/s and 486 m3/h 
obtained for both the PI and SF, respectively, the MPC flow rate was slightly optimized by 3.71%, 
and this was due to the future prediction of indoor CO2 values. Regarding the power consumption 
of the three controllers, we computed both the instantaneous and accumulated power. Figure 3c 
shows the instantaneous power consumption required by the first standalone fan for supplying the 
fresh outdoor air into the controlled space. The results show that the three controllers required 
almost the same power, but the MPC showed a slight energy reduction. 

The total power consumption for the first fan was estimated to be 598.37 Wh, 611.40 Wh, and 
612.76 Wh for the MPC, SF and PI, respectively, as illustrated in Figure 3d. The total power 
consumption demanded by the three controllers including the second fan, which exhausted the 
indoor air pollutant concentrations to the outside of the building, is reported in Table 3. As expected, 
the energy gain for the MPC strategy, when compared to both the state feedback and PI controllers, 
was slightly smaller. 

Table 3. Energy consumption based on the MPC, PI and the state feedback control approaches. 

Energy (Wh) PI SF MPC 
Total 1225.52 1222.8 1196.74 
Gain 2.35% 2.13% - 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. MPC vs. PI and state feedback (SF): (a) the CO2 regulation, (b) the ventilation air flow rate, 
(c) the instantaneous power consumption, and (d) the accumulated power consumption. 
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3.2. GPC vs. MPC Performance 

This section focuses on the performance evaluation of the GPC against the MPC controller. As 
illustrated in Figure 4a, the GPC showed a great improvement compared to MPC with faster 
settling/rise times to achieve and to maintain the CO2 at the fixed setpoint. The results also showed 
that the designed GPC controller based on the CARIMA model provided better stability and 
robustness than the MPC. In fact, it was able to rapidly reach the established CO2 reference and then 
continue maintaining it in spite of the occupants’ presence variation. This was due, in our case, to the 
rate weighting of the control action uΔ  in the optimized criterion J. Its role was to minimize the 
deviation between the system’s output (measured CO2 concentration) and the CO2 reference trajectory. 
Figure 4b shows the estimated ventilation rate for both the predictive controllers according to the 
indoor CO2 concentration, which was generated by the occupants. As expected, the ventilation based 
on the GPC was able to operate firstly in order to provide the required flow rate as well as to meet the 
desired reference (fixed to 750 ppm), by anticipating the future CO2 concentration. Unlike the MPC, 
the ventilation flow rates provided by the GPC achieved 0.2 m3/s (720 m3/h) and decreased to reach 0 
m3/s according to the occupants’ presence. This explained the ventilation cessation behavior, which 
allowed a significant energy reduction during this period as illustrated in Figure 4c. In fact, the fast 
change in the ventilation rate behavior nicely allowed keeping the CO2 comfort constraint at the 
required level with little increases in energy consumption, compared to the MPC. However, the 
GPC-based CARIMA anticipates well the severity of occupancy changes and acts accordingly. As 
shown in Figure 4c, during unoccupied periods, the ventilators are almost at rest because of the GPC 
anticipation behavior. 

The instantaneous power consumption results for the first fan showed that the GPC allows a 
slight energy saving compared to the MPC, as shown in Figure 4c. Figure 4d shows that the GPC 
consumes about 572.39 Wh and 598.37 Wh for MPC. The total consumption (i.e., two fans) for both 
controllers is reported in Table 4. As expected, the energy gain for the GPC, when compared to the 
MPC, is slightly better. 

Table 4. Total energy consumption based on the predictive controllers. 

Energy (Wh) MPC GPC 
Total 1196.74 1144.78 
Gain 4.34% - 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4. GPC based on CARIMA vs. the MPC: (a) the CO2 regulation, (b) the ventilation air flow 
rate, (c) the instantaneous power consumption, and (d) the accumulated power consumption. 

4. Conclusions and Perspectives 

In this work, a performance comparison between the two predictive controllers were performed 
and analyzed for building ventilation systems. The PI and state feedback controllers were used as 
baseline references to investigate the effectiveness of predictive control approaches. Both MPC and 
GPC control algorithms were designed and successfully implemented. The main objective was to 
evaluate the effectiveness of each predictive approach in terms of the indoor air quality and energy 
efficiency. Mainly four metrics were evaluated: the regulation of the indoor CO2 concentration, the 
ventilation rate, the instantaneous power consumption and the total power consumption. We 
conclude from the simulation results that using the GPC algorithm based on the CARIMA 
input/output model allowed the better performance than the MPC for improving both indoor air 
quality and energy conservation. In fact, compared to the MPC, the GPC provided a better stability 
and robustness against external disturbance introduced by the occupants. This was due to the fast 
mathematical derivation of its prediction parameters between the system’s input/output, using the 
CARIMA model, and to the simplicity of integrating disturbances and constraints in the controller’s 
structure. In terms of energy consumption, the simulation results also showed that controlling the 
proposed system with the GPC enabled a better reduction in the energy consumption compared to 
the MPC, with an overall energy gain equal to 4.34%. This deviation on cumulative energy 
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consumption was mainly related to the occupancy behavior we used together with the other 
parameters, especially, the prediction horizon and the set-point. This will be further investigated 
when deployed and experimented in real-sitting scenarios. In fact, the studied controllers will be 
deployed in our ventilation system, already integrated in our EEBLab. Real-time machine-learning 
algorithms, that we developed for occupancy forecasting, will be used to forecast CO2, which is 
required for the MPC and GPC in order to forecast the ventilation rates. The GPC and MPC will be 
also evaluated for different time horizons together with their performance for both accuracy and 
time processing, especially when deployed in our IoT platform’s edge nodes (e.g., Raspberry PI, 
NVidia Nano). 

Future research will focus on enhancing the controllers’ order by adding the thermal comfort 
equation for further applications in heating, ventilation and air-conditioning system control. Both 
predictive control strategies will be assessed using different criteria in order to balance between the 
occupants’ comfort (i.e., thermal and indoor air quality) and energy consumption. 
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