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Abstract: Due to the massive congestion in ground transportation in Beijing, underground rail
transit has gradually become the main mode of travel for residents of large urban areas. Because the
average daily traffic of the Beijing subway is over 12 million passengers, ensuring the safety of
underground rail transit is particularly important. Big data shows that more than 4000 passengers
participate in Long-term Stay in the Subway every day. However, the behaviors of these passengers
have not been characterized. This paper proposes a method for identifying the Long-term Staying
in Subway System (LSSS) in the subway based on the shortest path and analyze its travel mode. In
combination with the past research of scholars, we try to quantify the suspected behavior with a
database of assumed suspected behavior records. Finally, we extract the spatial-temporal travel
characteristics of passengers and we propose a SAE-DNN algorithm to identify suspected
anomalies; the accuracy of the training set can reach 95.7%, and the accuracy of the test set can also
reach 93.5%, which provides a reference for the subway operators and the public security system.

Keywords: abnormal passenger; behavior analysis; data mining; LSSS; smart card; spatial-temporal
analysis; travel patterns

1. Introduction

Statistics show that there are approximately 1.2 million people riding the subway every day in
Beijing [1]. With rapid advances in information technology and infrastructure, transactional records
collected by smart cards are now available for understanding passengers’ mobility patterns and
urban dynamics [2]. The rules for the travel patterns of passengers vary by station, time period and
route [3-6]. Although current research is more concerned with normal passenger flow, such as
transfer characteristics, abnormal passengers flow also warrants attention, and detecting abnormal
passengers in the subway system is an important task for public security departments [7,8]. In
addition, we discovered that many passengers travel for a substantially longer period than the
expected time of the ride; we named this occurrence Long-term Staying in Subway System (LSSS).

During the 183 days period from 12 November 2017 to 24 April 2018, a total of 787,283 people
stayed in the Beijing underground rail transit system for a long time with an average of 4302 person-
times per day (Figure 1). The trough in the picture occurred from 14 February to 23 February 2018.
This trough occurs during the Spring Festival holiday. In China, there is a Spring Festival travel
season, also known as ChunYun in Chinese. This is a special period when people who work far away
from home return to their families in celebration of the Chinese Lunar New Year (the Spring Festival)
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[9]. LSSS is also the case, most of them went back home for the Spring Festival. In addition, without
the Spring Festival holiday, the daily number of people who stay in the subway is predominantly
stable. The number of passengers ranges between 4500 and 6000 and occasionally increases to 8000
in a few days, which is related to the traffic congestion caused by weather [10]. Some of the LSSS
passengers are unintentional LSSS passengers (Intentional behavior means passengers do this
deliberately to achieve a certain purpose. On the contrary, unintentional LSSS means that passengers
are unwilling to do that, as for LSSS due to travelers missing a stop or being delayed. We think that
if a passenger has very few LSSS(only one or two times), LSSS can be explained that travelers missing
a stop or being delayed, it is a unintentional behavior; and if a passenger has a lot of LSSS, he must
do it on purpose, it is an intentional behavior. In this paper, LSSS on purpose should be noticed, while
unintentional LSSS should be ignored.) Unintentional LSSSs are normal behaviors, which are not
subjects of our study. For the unintentional LSSS case, the passenger should not have LSSS four times
in a week (the value is determined with subway operators). We cleared up the unintentional LSSS
records.

LSSS daily statistics
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Figure 1. LSSS daily statistics within half a year.

Considering the period 12 November 2017 to 18 November 2017 as an example, 46,347 situations
of LSSS occur in a week, including 27,068 LSSS card numbers. After removing unintentional factors,
approximately 1000 people stayed in the subway for a long time in 1 week.

Several forbidden behaviors exist in the subway system, such as theft, begging and unauthorized
advertisement. We analyzed the harmfulness of the behaviors as follow:

(1) Theft is an illegal and criminal act in any scene, which needs to be strictly prohibited. (2)
Considering humanitarianism, begging behavior is acceptable, but the beggars in the subway are
“professional beggars”. They are organized, large-scale and illegal. This kind of behavior seriously
disturbs the order of passengers. When they are begging on the subway, passengers are not easily
evacuated, which can easily cause a stampede. (3) Like begging, it is legal for unauthorized
advertisement, but it is forbidden in the subway. If not handled properly, it will cause a stampede.

Public transit passengers can easily become distracted in crowded environments, because their
focus drifts from their belongings, they often become common targets of pickpockets [7,8,11]. Du et
al. [8] described the activity route of the pickpocket (Figure 2). Figures 3 and 4 show some cases of
the forbidden behaviors on Micro-blog. These prove that there are many abnormal passengers in the
subway system. Based on literature and social media reviewing, and communication with rail transit
safety experts, we summarize the characteristics of the three types of suspected abnormal behavior,
as shown in Table 1 [11-15]. The subway stays for a maximum of 4 h for the primary purpose to
forbid the behavior of profit, begging [16]. If the card exceeds the time limit, the card cannot be used
to exit the station. Even if a 4-hour limit is issued, some people engage in acts of profit, begging, and
advertising that endanger the safety and efficiency of rail transit operations. The subway operators
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and government agencies are not aware of the reasons for LSSS, if they stay in the subway for an
extended period and perform some premeditated actions, this situation will not only hinder the
interests of operators but also pose a substantial threat to the public safety.

In this paper, we mine the temporal and spatial characteristics of LSSS and analyze the
possibility of their behavior being abnormal. Then based on an assumed dataset of suspected
abnormal passengers, we try to quantify the abnormal behaviors, and a SAE-DNN model is proposed
to identify suspected abnormal passengers under the hypothesis. Figure 5 provides an overview of
this paper.

Table 1. Feature summary.

Type Description

Frequent rides in a certain period of time
No distinct travel destination
Suspected theft Transfer frequently
Short trip

Short ride time

More fixed subway lines
Suspected begging More stable begging route

Very long ride time
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Figure 2. Movement patterns of different type of passengers [8].
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Figure 3. Example of real events on Micro-blog.
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Figure 4. Example of real events on Micro-blog.
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Figure 5. A framework of passenger travel patterns and suspected behavior analysis.

2. Related Work

With the emergence of the Internet of Things technology in the era of big data, massive data are
generated in urban operation management [2]. An increasing number of scholars have begun to study
traffic data mining with tools such as data mining and machine learning. Pelletier et al. [2] concluded
that the application of smart card data can be used for customer behavior analysis, timetable
planning, and personal travel patterns. This paper focuses on such issues as travel behavior analysis,
pattern mining and traffic anomaly analysis.

2.1. Travel Pattern Mining

Regarding travel behavior analysis and pattern mining, many scholars have investigated these
issues in recent years. Ma et al. [3] (2013) proposed an effective data mining program that simulates
the travel mode of Beijing passengers in Beijing and uses a K-Means ++ clustering algorithm and
rough set theory to analyze travel patterns. Silva et al. [17] (2014) demonstrated that people’s travel
patterns are predominantly spatial-temporal and predictable. Dabiri et al. [18] (2014) proposed a deep
semi-supervised convolution auto encoder (SECA) architecture for travel pattern recognition, which
not only automatically extracts relevant features from GPS segments but also utilizes unlabeled data.
Tao et al. [19] (2014) used smart card data and flow-comap to check the spatial-temporal dynamics of
bus passenger travel behavior; their research results can provide information for local public
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transport policies. Wang et al. [20] (2016) applied the LDA model to cluster the purpose of passenger
travel in special areas; the results show that the model can identify users with different travel
purposes and can determine the regular bus traffic demand and unconventional demand of
commuters. Zhang et al. [21] (2016) proposed a new algorithm to identify the passenger mode by
analyzing the event pattern and extracting the passenger’s transfer time and travel time using spatial-
temporal information. The model was verified; the average estimation error is only approximately
15%. Medina [22] (2018) used discrete selection models to extract features from smart card data,
applied DBSCAN clustering algorithms to these vectors, and estimated the likelihood of activity as
HOME, WORK/STUDY or OTHER. Lu et al. [23] (2019) proposed a graph-based iterative propagation
learning algorithm to identify visitors from public commuters and then designed a tourism
preference analysis model to learn and predict their next trip. The literature [3,17-23] primarily
analyzed the passenger’s travel mode from a spatial and temporal perspective.

2.2. Traffic Anomaly Analysis

Anomaly detection is a problem of finding outliers in the data. Till now, many anomaly detection
techniques have been specifically developed for various applications. The techniques can be
categorized as classification-based, distanced-based, clustered-based, and statistical-based, etc.
Regarding traffic anomaly analysis, Lee et al. [24] proposed a partition and detect framework to detect
outlying sub-trajectories from massive trajectory data. Ge et al. [25] provided an evolving trajectory
outlier detection method by computing the outlying score for each trajectory in an accumulating way.
Bu et al. [26] proposed an outlier detection framework for continuous trajectory streams. Pan et al.
[27] (2013) described detected anomalies by mining representative terms from social media published
by people at the time of the anomalies. Zheng [28] et al. (2014) established a trajectory model that
simulated various group events and identified abnormal events, such as celebrations, marches,
protests, and traffic congestion. Liu et al. [13] (2017) used a localized transportation mode selection
model to identify areas with defective bus lines. Zhao et al. [29] (2017) defined the passenger’s travel
mode from three aspects: spatial, temporal and spatial-temporal. Based on the clustering results,
some marginal passengers were identified. The results were combined with the survey results, and a
reasonable explanation of the abnormal travel characteristics of these passengers was provided.
Public transport passengers are easily distracted in crowded environments, and they often become
targets of pickpockets [7,8]. Du et al. [8] (2019) developed one suspected detection and surveillance
system that identified pickpocket suspects based on their daily transit records.

3. Long-Term Staying in Subway System (LSSS) Recognition Model

Definition 1. A subway card contains the following information:

o troue: Passenger’s route

o twoara: Passenger’s inbound station
o twowd: Passenger’s inbound time

o tsexir: Passenger’s outbound station
o twxit: Passenger’s outbound time

o  tuard: Passenger’s card number

o twera: Passenger’s card type

o teara: Passenger’s card deduction

e tara: Passenger’s card balance

From this information, we can calculate a passenger’s ride distance, ride time and the station
and line that passed.

Definition 2. A passenger’s ride information is a collection of all information in Definition 1:
T=(1,12.., tn)
where t = (tmute, tsboard, ttboard, tsexit, ttexit, tncard, tmeard, tecard, tbcmd)

tneard = 1-3 (ordinary card), 99-1 (Staff card), 99-19 (Student card)
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Notations used throughout the paper are listed as follows and all boldface letters denote the
corresponding vectors.
(1) Indices
i Line index,i=1,2,...]
(2) Parameters

L theoretical time

M the passenger transfer time in the subway

N the actual time

@) the one ride boundary time

D; shortest distance in line i

V; represents technical speed of each line (Average speed of trains on each line)

whether the line i is passed or not, 1 means pass the line, 0 means not pass the line

=

waiting time for each line

Definition 3. The actual time of a passenger’s ride is the difference between the passenger’s outbound time
and the inbound time.

Definition 4. The theoretical time of a passenger’s ride is the time required for the ride based on the shortest
path algorithm with certain assumptions. The following series of assumptions are presented:

Hypothesis 1. The shortest path is selected when the passenger selects the transfer line.
Hypothesis 2. Different subway lines have different speeds, and the speed of a train on each line is a fixed value.
Hypothesis 3. The W; of different lines on the subway differs, and the W; is a fixed value.

Hypothesis 4: The theoretical time (L) of a passenger’s ride is calculated by the following formula:

L= i(Di/Vi)"‘i(J’i xWp) + [i(%) —1]xM @

Hypothesis 5. The passenger’s border travel time O rule is expressed as follows (Table 2).

Table 2. Boundary Time Rule.

L (0]
0-30 min 60 min
30-60 min 2 X L min
60-99999 min co min

When the theoretical time of the ride is 0-30 min, the boundary time is 60 min. When the
theoretical time of the ride is 30-60 min, the boundary time is two times the theoretical time. When
the theoretical time of a ride is greater than 60 min, the boundary time is infinite. Due to the
differences in the habits of different passengers, to avoid misjudging the normal passenger flow, we
apply a strict definition of the abnormal duration, which may cause the omission of some LSSS but
does not affect our research results.

Hypothesis 6. LSSS refers to the situation in which the actual time of a passenger exceeds the boundary time,
N> O, N denotes to the actual time.

We determine these parameters based on experience and discussion with rail transit staff.
Because of the lack of assurance, and in order to prevent misjudgment of some normal riders, the
parameters we set are relatively strict. This may lead to some false negative riders, but false positive
results will pose a threat to riders’ privacy, and therefore, the strict parameters are necessary.
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This is an example of calculating riding time for LSSS (Figure 6).
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Figure 6. One example of ride.

As for Figure 6, one ride is from stations A to C, the shortest path is calculated as A—B, and then
B—C. The distance between B—C is D1 and the distance between A—B is D2. That is Duins=D1, Duin,10
=D2; otherwise, Dmin1=0. ys =1 and y;, = 1; otherwise, y; = 0.

D1=25km, D2=55km, Vjpes=0.727 km/min, Vj;ne 10 = 0.755 km/min, T, 5 = 2min,Tjjpe s =
3min,trt = 5min

D1 D2 2.5 5.5

L= +———+ Tyines + Ty +M=—s+——
Vline,s Vline,lo line,5 line,10 0.727 0.755

+2+3+5=2072min  (2)

And then O = 60 min, if the passenger’s N is 65 min, this is an abnormal ride.

Five types of tickets are sold for the Beijing Subway: the outbound ticket, one-way ticket,
ordinary stored value card, staff card, and student card. Each item of OD information has an
identification code.

In this study, three types of noise data need to be eliminated:

1. Inthe fare system, if the passenger does not have an IC card, he could buy a one-way ticket from
station A to station B (assumed a price of 3 yuan). However, if he changes the destination from
B to C during his trip (now his real route is A to C, assuming a price of 5 yuan), then the extra
fee is needed (2 yuan); and an outbound ticket fee means the extra fee. This situation is
inconsistent with the actual situation, which we aim to study in this article.

2. Staff cards are used by staff members. They usually need to do maintenance work in the subway
system and stay in the subway for a long time. Staff members have staff cards with a unique
label, which can be distinguished from regular passengers.

3. “In-Out” in the Same Subway Station refers to passengers entering and leaving at the same
subway station. Passengers do not have spatial displacement, and this special phenomenon
requires special research.

According to the previously discussed assumptions and definitions, the Floyd Shortest Paths
Algorithm is imported. Data preprocessing and data cleaning environment is R language, and the
solution environment is Python 3. This paper calculates the boundary time between the two stations
of Beijing Subway, and the output of the model includes the actual time, theoretical time, passing
line, passing station, and transfer times, as shown in Table 3. The OD data of the rail transit from 12
November 2017 to 24 April 2018 are divided into 22 slices in weekly units, and we separately solve
the LSSS records, the results of the weekly solutions are highly consistent. We discover a total of
787,283 passengers’ actual time beyond the boundary time during 12 November 2017 to 24 April 2018.
The research in the later sections of this paper is based on this result.
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Table 3. LSSS solution results.

start to time  Transfer lines Station Stations
Andelibeiji  Andingm 17 1 [lines'] ’ [Andel/lbeqlfe , Gul?uda}le ,
e en ‘Andingmen’]
Andihbe‘]l An:zaql 4 0 ['line 8] 1 [‘Andelibeijie’, Anhuagiao’]

4. Temporal Model Based on LSSS

Temporal model based on LSSS means that this paper explores the sustainability of LSSS from
three temporal dimensions, and then conducts Clustering Research on different persistent
passengers. The model analyzes the characteristics of LSSS in time dimension, and finally extracts
several typical time groups. Except for some special points caused by the weather, the characteristics
of LSSS show strong consistency in different weeks, this paper considers the actual data of 1 week
from 12 November 2017 to 18 November 2017, as an example and analyzes the data as follows, in
which 46,347 situations of LSSS occur in a week, including 27,068 LSSS card numbers. The dataset of
continuous LSSS Clustering includes 4752 records, and the rest of LSSS records are used in non-
continuous LSSS Clustering.

4.1. LSSS Persistence Analysis

According to the statistics, LSSS has a substantial difference in the continuity of travel. To study
the persistence of LSSS, this paper starts with the time data of three dimensions, namely, the time of
passengers’ stay, the frequency of passengers’ rides and the inbound time distribution of passengers.

Most ride times in the subway are less than 2 hours. The time does not seem long, but
considering that the travel distance (only three to five stations without transfers), a typical ride is
approximately 20 min. The time duration of the LSSS is far beyond the boundary time defined by the
model, and the phenomenon of these passengers is extremely abnormal. Of all LSSS passengers, most
of the timeouts range from 15-60 min, and most of these passengers have very few LSSS. Therefore,
more than half of the stay behavior may not be attributed to the intentional willingness of the
passenger but may be attributed to a wrong route, missed stop, and temporary change in travel route.
The previously mentioned users are not within the scope of LSSS research. Therefore, this paper
excluded these LSSS records.

We define a user’s intentional LSSS in such a way that the user has four or more occurrences of
LSSS in a week. If this phenomenon occurs during the week, a passenger’s LSSS behavior will be
recorded one time, and then we count the LSSS weeks of each user. The proportion of passengers
who had a single-week LSSS phenomenon and then disappeared exceeds 50%, while the proportion
of users who have LSSS for more than 3 consecutive weeks accounts for only approximately 10%. We
divide intentional LSSS into continuous LSSS (continuous behavior for more than 3 weeks) and non-
continuous LSSS to study passenger preference in temporal mode.

4.2. Continuous LSSS Clustering Analysis

To study the distribution of continuous LSSS in various time periods during the day, we will
divide the distribution into a time period every 3 h. The time periods H1, H2...H7 represent 3:00:00-
6:00:00, 6:00:00-9:00:00 ... 21:00:00-24:00:00 (0:00:00-3:00:00 no subway departure). Unsupervised
clustering algorithms are often used to classify travel patterns [3,14].

Silhouette Coefficient is an evaluation metric of a clustering algorithm. The silhouette coefficient
s; is calculated by s; = b; — a;/max (a;, b;) where a; is the average dissimilarity of the ith passenger
with all other passengers within the same cluster. b; is the lowest average dissimilarity of ith
passenger to any other cluster. The silhouette coefficient is in [-1, 1], where a large value indicates
that the passenger is well matched to the cluster and poorly matched to others. We compare the
silhouette coefficient of k-means, DBSCAN and Hierarchical methods; k-means algorithm is the
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suitable one for this problem. A K-means cluster analysis was performed using the number of
inbound recordings of each passenger in the seven time periods as variables.

As shown in Figure 7a, when K = 6, the Silhouette Coefficient reaches the maximum. We
gathered these passengers into six categories: CTGrpl, CTGrp2, CTGrp3, CTGrp4, CTGrp5, and
CTGrp6. And Figure 7b shows the distribution of classes, because of the limitation of space, we
selected some samples to show in the figure. The cluster center points of these six types of passengers
are shown in Table 4.

Relationship between contour coefficient and K

0.40
|

contour coefficient

de 2
I

(b)

Figure 7. Continuous LSSS clustering analysis. (a) Silhouette Coefficient. dc 1 denotes to the number
of clusters, dc 2 denotes to the Silhouette Coefficient of each K. (b) Distribution of classes. The figures
in different colors denote samples in each class, which shows the distance of two-dimensional plane,
dcl and dc2 denote to the feature vectors after a principal component operation.

The inbound times of CTGrp1 passengers are concentrated from 9:00:00-12:00:00; the inbound
times of CTGrp3 passengers are concentrated from 12:00:00-15:00:00; and the inbound times of
CTGrp6 passengers are concentrated from 15:00: 00-18:00:00. In addition, the inbound times of
CTGrp4 passengers and CTGrp5 passengers are concentrated in the morning or evening peaks. These
five categories of passengers have only 1 peak hour of travel, while long-term stable commuter
passengers usually contain round-trip OD pairs. Thus, these five types of passengers are not regular
commuters; they are “special personnel” who work at fixed times. The CTGrp2 passengers do not
have a stable inbound time; they act like people who wander in the subway. With caution, we suspect
that they are suspected of being thieves.



Energies 2020, 13, 2670 10 of 23

Table 4. Continuous LSSS Clustering Center.

Type H1 H2 H3 H4 H5 Hé6 H7 Percent
CTGrpl O 0 29.2 52 0.8 0.4 0.6 10.8%
CTGrp2 5 5.8888 55555 23333 1.8888 2.1111 144444 19.5%
CTGrp3 0 17142 1.1428 29.7142 47142 27142 028571 15.2%
CTGrp4 0  0.625 1.75 2.875 6 2475 2375 17.3%
CTGrp5 0 37375 0375 0.25 0.625 0.125 0 17.3%

CTGrp6 0 1.777 033333 15555 29.444 2333 0.1111 19.5%
H1, H2..H7 represent 3:00:00-6:00:00, 6:00:00-9:00:00 ... 21:00:00-24:00:00 (0:00:00-3:00:00 no subway departure).

The values in Hi columns denote the average passenger numbers of the type CTGrp j in Hi time period. Percent

column denotes the proportion of the type CTGrp j in total samples. And the bold denotes to active point of the

Ppassenger.

4.3. Non-Continuous LSSS Clustering Analysis

The Non-continuous LSSS is the residual LSSS that removes the continuous LSSS, which is
considerably larger in number than the continuous LSSS. These passengers may occasionally have
occurrences of LSSS for 1 to 2 weeks for work or other reasons. They may need to change the card
number to avoid tracking by big data. We perform a passenger cluster analysis based on the inbound
records for the H1-H7 time period. The results are presented as follows:

As shown in Figure 8, when K = 4, the Silhouette Coefficient is the largest. Thus, the non-
continuous LSSS is clustered into four categories: N-CTGrp1, N-CTGrp2, N-CTGrp3, and N-CTGrp4.
And Figure 8b shows the distribution of classes. The cluster center points are shown in Table 5.

The common characteristics of the first three types of passengers are described as follows: the
existence of only 1 inbound peak hour; the inbound stations are concentrated at 15:00:00, 6:00:00, and
9:00:00; and the proportions in the total non-continuous passenger flow are similar; they range
between 10% and 15%. Similar to several types of passengers in continuous LSSS, commuting
behavior does not exist. N-CTGrp4 does not have distinct inbound peaks and includes purposeless
wandering passengers.

By comparing the clustering results of continuous and discontinuous LSSS, we discovered that
the two clustering results are similar to the whole set of results. For example, many types of
passengers represent single inbound peaks; a class of passengers enters the station with chaotic times.

The difference is that the centralized period of continuous LSSS is more dispersed, while the
non-continuous LSSS is only concentrated in three periods. The number of intricate paths in the non-
continuous LSSS is substantially higher than that in the continuous LSSS. A larger number of chaotic
riders tend to hide their travel data, which prevents the tracking of big data.

Table 5. Non-continuous LSSS Clustering Center.

Type HI1 H2 H3 H4 H5 Hé H7 percent
N-CTGrp1 0.034 0401 01282 05811 17.017 15982 0.0940  11.9%
N-CTGrp2 0.133 16.266 0.7733 0.2866 05333  0.1933 0 153%
N-CTGrp 3 0 0171 02808 0.1438 1.8493 13.7671 0.73287  14.9%

N-CTGrp4 0.621 1.808 2.6690 1.9911 1.76106 0.98938 0.52389 57.7%

H1, H2...H7 represent 3:00:00-6:00:00, 6:00:00-9:00:00 ... 21:00:00-24:00:00 (0:00:00-3:00:00 no subway departure).
The values in Hi columns denote to the average passenger numbers of the type N-CTGrp j in Hi time period.
Percent column denotes the proportion of the type N-CTGrp j in total samples. And the bold denotes to active

point of the passenger.
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Relationship between contour coefficient and K
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I
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Figure 8. Non-continuous LSSS clustering analysis. (a) Silhouette Coefficient. dc 1 denotes the number
of clusters, dc 2 denotes to the Silhouette Coefficient of each K. (b) Distribution of classes. The figures
in different colors denote samples in each class, which shows the distance of a two-dimensional plane,
dc 1 and dc 2 denote the feature vectors after a principal component operation.

5. Spatial Model Based on LSSS

Spatial based on LSSS means that this paper first divides each station into different categories
according to their functions. Then, according to the preference of LSSS’s function area, the model
makes cluster analysis, and finally extracts several typical spatial groups. LSSS Clustering Analysis
based on Spatial Model and Functional Area Classification uses the actual data of 1 week from 12
November 2017 to 18 November 2017, as an example and analyzes the data as follows, in which 46,347
situations of LSSS occur in a week, including 27,068 LSSS card numbers.

5.1. Subway Station Functional Area Classification

In order to explore the law of LSSS in geospatial space, this paper classifies the functional areas
of various stations in Beijing, which helps to understand the subway LSSS features on spatial
patterns.

Most of the research on the classification of subway stations considered the urban built-up area
as the research object and the suburban subway station as a sub-category (Korf et al., 1981) [30].
Chinese scholars have not yet formed a unified understanding of the classification method for
subway stations. The main classification methods are described as follows: The first method is the
standard adopted by some cities in China’s about urban subway construction; the second method is
classifying according to the land-use near the station, that is, according to the location characteristics
of the subway station; the third method is classifying by the rail transit operation data; and the fourth
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method is the microscopic urban spatial form based on the station [31]. Because this research
examines passenger travel patterns, the classification of subway stations from the perspective of
passenger travel characteristics is more suitable for the research. Yin Qin et al. [31] (2016) employed
the time series clustering method with passenger flow characteristics to classify the 195 subway
stations in Beijing. Tan [32] et al. performed feature factor extraction and station type identification
using smart card data of 136 subway stations in Guangzhou. Chen et al. [33] (2018) extracted five
main factors from the variables and the main factors to cluster the stations. By the K-means clustering
method, the subway station of Shanghai Metro Line 359 is divided into several types of stations with
different congestion levels. This paper quotes the results of Yin Qin et al. [31] and combines the
research results of Tan [34] to fine-tune the results of the station; the metro stations are divided into
10 categories.

5.2. LSSS Clustering Analysis Based on Spatial Model and Functional Area Classification

Each station is matched with the corresponding functional area. Figure 9 left shows the
functional area OD pairs of the regular passenger flow; the abscissa is the inbound frequency of the
i-function zone; and the ordinate is the outbound frequency of the i-function zone. Each point in the
figure is near the y = x asymptote, as observed in the functional areas of the regular passenger flow,
which are very balanced. However, the distribution of the LSSS passenger’s functional area inbound
and outbound OD pairs (Figure 9b) is very different. The LSSS inbound station prefers the misplaced
area and the transportation hub area, while the outbound station prefers the misplaced biased
residential stations, the mixed-type stations and other stations.

To study the preference of LSSS in each functional area, we select the frequency of each
passenger’s entry and exit in 10 functional areas as a clustering index and perform a K-means cluster
analysis for users who make more than 10 rides in half a year.

As shown in Figure 10, when K = 10, the Silhouette Coefficient attains the maximum. Thus, the
best classification is 10, SGrp1, SGrp2...5Grp10. We determined that the proportion of more than 60%
has a distinct functional zone preference. SGrp2, 3, 5, and 7 have only a distinct preference in the
inbound functional area, and the outbound station distribution is random. For SGrp4 6, 8 and 9, only
the function area of the outbound station has a distinct preference, and the inbound station is
randomly distributed. The SGrpl’s inbound station and the outbound station both have distinct
preferences. The SGrpl0 passengers are distributed in each functional area without a distinct
preference. Except for SGrp10, each category has a single area preference (inbound function area or
outbound function area) on the functional area. Most of the LSSS routes are fixed, and we extract each
type’s high-frequency functional area. The preferences are shown in Table 6.

Regardless of the type, none of the passengers prefer residential functional areas; thus, we can
infer that these LSSS passengers are not commuters. For SGrpl, they tend to misplace the biased
residence station. Most of these stations are Shunyi, Xihongmen and other places; they are located at
the edge of the city and belong to the beginning or end of the subway line.

SGrp2, 3, 5, and 7 have fixed preferences on the entry station, with SGrp5 entering the station
that tends to the tourist zone, and SGrp2, 3, and 7 prefer the employment-oriented zone. Their
outbound stations are complex, which increases their likelihood of suspected distributing advertising
behaviors.

SGrp4, 6, 8, and 9 have fixed preferences on the outbound station, with SGrp4, 8, and 9's
outbound stations preferring the comprehensive and mixed zones, while SGrp6 outbound stations
are more likely to be misplaced biased residence. Although the types have distinct tendencies,
evidence of their purpose does not exist.
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Figure 9. Regular and LSSS passenger functional region Inbound and outbound OD pair distribution.
((a) denotes to regular passenger distribution and (b) denotes to LSSS passenger distribution. Freq_in
denotes to the number of inbound records of functional region i (i is the label of each dot in the figure),
and Freq_out denotes to the number of outbound records of functional region 7).

Relationship between contour coefficient and K

contour coefficient
1

Figure 10. Silhouette Coefficient of LSSS clustering analysis based on spatial functional area. (K
denotes to the number of clusters, Silhouette Coefficient denotes to the Silhouette Coefficient of each

K)
Table 6. Spatial clustering results.
SGrp In Out Percent  SGrp In Out Percent
1 MlsplaFed biased _ Mlspla_ced 8.5% 6 None . Mlspla.ced 13.3%
residence biased residence biased residence
Emol ¢ Mixe
2 mp.oymen None 4.39% 7 d None 6.1%
oriented
type
Positi
3 .OSI on None 14.5% 8 None  Comprehensive 11.9%
misplaced
4 None Other 13.9% 9 None  Comprehensive 9.1%
5 Scenic type None 4.5% 10 None None 13.1%

For SGrp10, these passengers have no station preference and the lines are intricate, as shown in
Figure 11. Their most prominent feature is that they wander purposelessly. According to literature
[8], suspected passengers of each travel purpose have unique fixed characteristics. The spatial
characteristics of this type of passenger are consistent with the paths of suspected thieves.
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(a)

Figure 11. SGrp10 passenger travel route. ((a) and (b) are two samples of SGrp10. And point is the
starting point, circle is the end point, the larger the circle is, the higher the frequency is).

6. Identification Method of Anomaly Riders

6.1. Identification Problem

In order to identify the suspected anomaly riders, we try to qualify the anomaly behavior based
on the riding records and above analysis, and propose a model to identify the anomaly behavior,
which could reduce the risk of subway system. Suppose the subway network is ¢ = (S, E), where
S = {s1,52,..., Sy} is the set of stations, and N is the number of stations. (s;,s;) € E denotes the OD

(Origin-Destination) path from station s; to s;,
destination station. Given a passenger IC card, a set of OD paths with inbound and outbound time
are obtained, and the model extracts the a spatial-temporal feature vector of the rider. Finally, the

anomaly rider is identified by the SAE-DNN framework.

where s; is termed as origin station, and s; is

6.2. Anomaly LSSS feature vector extraction

It has been proved above that the travel of suspected anomaly people has obvious characteristics
both temporal and spatial. If the passenger’s valid travel feature vector can be extracted, the
suspected anomaly behavior can be supervised and identified. Du et al. [8] built a suspected
pickpocket training set from Travel Time and Frequency and achieved good results.

This paper considers that suspected beggars like to live in the fringe area of the city, and
suspected thieves like to haunt in densely populated areas. We divide 358 subway stations into four
functional areas based on people’s general perception and passenger flow distribution. That is: urban
fringe (M), urban core (C), transportation hub (T) and other stations (O). From this, the OD matrix
PMi; of each passenger can be constructed:

M C T 0
Py Pz P P
PM; = Py Piez Picz Pica 3)

Py Pigzy Pizs Pisa
Piw1y Piwzy Pizay P

QNN =X

®)

For example, the input of machine learning models such as regression, decision tree, and SVM
should be vectors instead of matrices. We do the following processing to get PVi:

_M—>M M-c M->1 M-0 .. O-T 0-0

PV, = 4
" Piayy Piaz Piaz Pias - Pica Piws @
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In the time dimension, we consider two aspects, one is the distribution of the travel time period,
such as suspected beggars like to take action at noon and afternoon, and suspected thieves like to
haunt in the morning and evening peaks. Another indicator is the distribution of travel time. For
example, suspected beggars will stay in the subway for a long time, and suspected thieves often have
shorter pit stops. To this end, we divide the day into four time periods: morning, noon, afternoon,
and evening. The ride duration is divided into five time periods: 0-15, 15-30, 30-60, 60-120, and 120-
. Passenger time feature vector PT:.

PT;
Morning Noon Afternoon Evening 0 - 15 15-30 30 - 60 60-120 120 - o 5)
~ Pim Py P4 Pig Piais Pizo Pigo  Pii20 P;

,00

The Spatial-temporal feature vector Pi of a passenger is (PV;, PT).

An imbalanced data set means that the sample size of each category of the data set is extremely
uneven. Taking the binary classification problem as an example, it is assumed that the number of
samples of the positive class is much larger than that of the negative class. The data in this case is
called imbalance data. Obviously, In the identification model of regular passenger flow and
suspected anomaly passenger flow, the sample of suspected anomaly prediction is an imbalanced
data set. We apply naive random under sampling method to process regular passenger data.

6.3. A Deep Neural Network with Stacked Autoencoders (SAE-DNN)

In this paper, we build a deep neural network with a stacked autoencoders (SAE-DNN) model
for suspected anomaly recognition. In the SAE stage, we can conduct a feature extraction about the
feature vector, and input the trained weight into DNN, which could improve the accuracy of
suspected anomaly detection.

An autoencoder is an artificial neural network used for unsupervised learning of efficient coding
[35]. It was first introduced in the 1980s by Hinton and the PDP group [36] to address the problem of
“back propagation without a teacher”, by using the input data as the teacher [37]. Recently,
autoencoders have been more widely used for learning generative models of data [38].

It typically has an input layer that consists of the input vector X, one or more hidden layers
which consist of the transformed feature vector H defined as an encoder shown in Equation (6), and
an output layer which consists of the reconstruction vector R defined as a decoder shown in Equation
(10). 8 and & denote the linear and weighted combinations shown in Equations (7) and (8),
respectively. The output vectors should match the input vectors, which have the same dimensionality
and values similar to those of the input vectors. T(:) is the activation function. We apply tanh and
rectifier as the activation functions shown in Equations (10) and (11), respectively [36].

H = f(X) = TQY wixi +b) (6)
R=g(X)=TC) Whi+5) 7)
5= Z wix; + by ®)

5= wxi+b, ©)
Tanh(a) = 2:;—2:; (10)
Rectifer(a) = max (0, a) (1)

where input vector X is a set of training datasets {x1, x2, x3,.. .,xn}; H is a set of encoders {hs, h, hs,. . ., hn};
R s the a set of reconstruction results {ri, 2, 13,. . .,ra}; {X) is the encoder function with weight (wi) and
bias (b:); g(H) is the decoder function with weight (w;) and bias (b;); and @ denotes § or 5.
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Equation (12) is used to minimize the reconstruction error between the input vector X and the
reconstruction vector R.
L(X,R) = minL(X,R) (12)
In order to make the reconstruction results R match the input vector X; the loss function L(X,R)
should be minimized by fine-tuning the parameters of w; and b; shown in Equations (13) and (14).

, OL(x;, 1)
Wi =w;— 7)# (13)
L
AL(x,, 7
bi' = bi— n% (14)

where w; and w;' are the original weight and updated weight for the ith node in each hidden layer;
bi and bi' are the original bias and updated bias for the ith node in each hidden layer; and 7 is the
learning rate.

Autoencoders can be stacked to form a deep network to obtain an abstract representation of the
input through gradual feature extraction, known as a SAE. The structure of a SAE is shown in Figure
12. The blue, green, purple, and grey backgrounds represent the first hidden layer, the second hidden
layer, the third hidden layer, and the Nth (last) hidden layer, respectively. The number of nodes in
each hidden layer is kn (n=1, 2...N).

Figure 13 shows the structure of the SAE-DNN. The training and predicting procedures of a
SAE-DNN consist of three stages. In the first stage, we pre-train the greedy layer-wised SAE by using
a purely unsupervised approach with different features combined as different training datasets. The
SAE is used to initialize the weights and bias for the DNN. In the second stage, the supervised DNN
with the label data is conducted. The final stage predicts the category of passengers. The feed-forward
and back-propagation algorithms are based on the literatures. Detailed explanations of the training
and predicting procedures in the three stages are shown in Algorithm 1 [39].

Input layer Hidden layer IT Hidden layer I Output layer

Haig

Transformed Transformed Reconstructed
Features 11 Features 1 Features

t . )

Input features

Figure 12. The structure of a SAE [39].
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Figure 13. The structure of the SAE-DNN [36].

Algorithm 1
Stage I: SAE for an unsupervised pre-training.

1. Input:

(1) Training dataset X = {xij}, i is the number of unsupervised input examples, j is the number of
unsupervised input features;

(2) One input layer, one output layer, and N hidden layers;

(3) Number of nodes in each hidden layer: kn (n=1, 2. . .N);

(4) Stop threshold: 6.

2. Step 1: Initialize the parameters (w, b) in all layers (N +2) randomly.
3. Step 2: Layer-wise train all nodes in all hidden layers. The training process in each layer includes the
following four steps.

(1) Encode every node by Equations (6), (8) and (10);

(2) Decode every node by Equations (7), (8) and (10);

(3) Compute the reconstruction error L(X, R) by Equation (12);
(4) Back-propagation algorithm:

If (L(X, R) > 8) Minimize the reconstruction error L(X, R) by Equations (13) and (14), go to Step 2(1);
Else end.
4. Step 3: Repeat Step 2 until all the hidden nodes in all hidden layers have been trained.
5. Output: The pre-trained SAE.
Stage II: DNN for a supervised training.
6. Input:

(1) The pre-trained SAE;

(2) Training dataset X = {xij’}, i is the number of supervised input examples, j” is the number of
supervised input features;

(3) One input layer, one output layer, and N” hidden layers;

(4) Number of nodes in each hidden layer: kn (n=1, 2. . .N’);

(5) Stop threshold: 6'.

7. Step 4: Use the SAE to initialize the parameters (w’, b’) for all layers (N’ + 2).
8. Step 5: Train all nodes from the input layer to output layer with the assumed passenger type as the label
data. It includes the following three steps.

(1) Train every node with the feed-forward algorithm by Equations (6), (8) and (11) layer to layer, and
get the output Y in the
(2) output layer;
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(3) Compute the error L(X, Y) between the input in the first input layer and the output in the last
output layer by Equation (9);
(4) Back-propagation algorithm:

If (L(X, Y) > 6") Minimize the error L(X, Y) by Equations (13) and (14), go to Step 5(1); Else end.

9. Output: The trained model (predictor).
Stage III: Predicting.
10. Input:

(1) Testing dataset T = {tmj}, m is the number of testing examples, j is the number of input features;
(2) Predictor.

11. Step 6: Input T into the predictor.
12. Step 7: Perform the prediction.
13. Output: Prediction type.

7. Experimental Results

7.1. Anomaly LSSS Samples

The datasets consist of the Beijing Subway OD data from 12 November 2017 to 24 April 2018,
with approximately 75 million effective travel records. OD traffic refers to the amount of traffic
between the start point and the end point. “O” is derived from the English ORIGIN, which indicates
the starting point of the line, and “D” is derived from the English DESTINATION, which indicates
the destination of the line.

From the temporal mode analysis, the subway LSSS can be divided into continuous LSSS and
discontinuous LSSS. The two types are similar in some respects. From the clustering results, we
determine that the total LSSS can be summarized into two categories in the inbound time dimension:
A: Inbound time stable; B: Inbound time unstable. Combined with the station functional area
classification, the spatial pattern can show the passenger’s preference, and the passengers are
clustered into 10 categories. To highlight the differences in passengers in the spatial model, we merge
the types that are similar. Passengers are divided into four categories in spatial mode: (A): Inbound
and outbound stations are stable, (B): Inbound stable type, (C): Outbound stable type, and D: Inbound
and outbound stations are irregular.

We counted the classification of each passenger in temporal mode and spatial mode. X_Y
represents the passenger classified as X in temporal mode, the passenger classified as Y in spatial
mode, and the classification of passengers, as shown in Tables 7 and 8. After checking the
characteristics one by one with the rail transit safety experts, some LSSS passengers with low
similarity to suspected abnormal behaviors were eliminated. After serious judgment, we obtained
the most suspected passengers (158 in total, training set includes 110 samples and testing set includes
48 samples; the division method is random division).

Table 7. Spatial clustering results.

Type AA AC AD BB BD
Freq 28.65% 44.38% 899% 11.24% 6.74%

Table 8. Temporal and spatial comprehensive classification.

Type A_A AC AD B_B B_D
ted
Suspected suspected suspected unauthorized  suspected suspec ? suspected
. . . unauthorized
behavior begging advertisement theft . theft
advertisement
7.2. Results

The evaluation metrics are Logarithmic Loss metric:
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n
LogLoss = —1/n ) [gt;log(p) + (1 - gt log(1 — po)], (15)
=1
where gt; denotes the ground truth of rider i, and p; is the probability returned by a system that
the identification result of rider i is true.

TP+TN

Acc = )
TP+ TN+ FP + FN

(16)

where TP and FP denote True Positive and False Positive; TP and FN denote True Positive and
False Negative.

Comparison with baseline: We compared the results of baseline methods: Naive Bayes, Random
Forest (RF, ntree = 100, mtry = 3), linear regression, Support Vector Machine (SVM, kernel = radial),
deep neural networks (DNN, hidden units (200, 400, 400, 200), and SAE-DNN (hidden units (200,
400, 400, 200) (Figure 14). We found an overfitting about decision trees and Bayesian, which cause
the test set accuracy to only be about 50%, while other models performed well on both the training
and test sets. SAE-DNN'’s performance is the best one. The training set accuracy can reach 95.7%, and
the test set accuracy can also reach 93.5%.

&

E=

===

©
@

type
ES test
— train

accuracy

=
~

Beyesian DNN LN RF SAE-DNN SVM
model

Figure 14. Accuracy comparison of anomaly prediction models.

Comparison of different hyperparameter: We further analyze the impact of hyperparameters in
the framework, including the structure of SAE-DNNSs. In the following discussion, we change one
hyperparameter while keeping other hyperparameters unchanged. Table 9 shows the performance
of different SAE-DNNs structures, the structure of four hidden layers and (200,400,400,200) hidden
units perform best.

Table 9. Comparison of the structure of SAEDNNSs.

Hidden Layers  Hidden Units  LogLoss ACC

3 (100,100,100) 0.411 0.827
3 (200,200,200) 0.402 0.849
3 (400,400,400) 0.345 0.903
4 (100,100,100,100) 0.313 0.906
4 (100,200,200,100) 0.288 0.912
4 (200,200,200,200) 0.274 0.924
4 (200,400,400,200) 0.253 0.935
5 (400,400,400,400) 0.269 0.922
5 (400,800,800,400) 0.277 0.92
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Comparison with other researches:

Table 10 shows the comparison with other researches. Tang et al., Chong et al. and Silva et al.
[40-42] aimed to detect Flow Anomalies in public transportation or road transportation; our
proposed method performs better than these methods. In addition, Zhao et al. and Du et al. [7,8]
aimed to detect pickpocket by AFC data, and our proposed method could not only identify
pickpocket, but also could identify beggars etc., which reaches a similar result with state of the art.

Table 10. Comparison with other researches.

Research Data Problem Results
Du et al. [8] AFC records in Beijing Detecting Pickpocket Suspects Recall = 0.931
Zhao et al. [7] AFC records in Beijing Detecting Pickpocketing Gangs Recall = 0.94
Detecting P F1
Tang et al. [40] AFC records in Shenzhen electng asse.nger ow F1=0.87
Anomalies
Chong et al. PTS records and tweets in Detecting Flow Anomalies RMSE lower than
[41] USA & baselines
PSi i Algorith =
Silva et al. [42] GPS in unmentioned Anomaly Detection in Roads gorithms scores
country 0.87
P d
;loefzgzed AFC records in Beijing Anomaly Detection in subway Accuracy =0.935

PTS denotes to Public Transportation System.

7.3. Discussion

Between inbound and outbound stations, the passenger could, in theory, travel through multiple
paths, and if there was a problem like a train stopped, travelers were asked to take alternative routes.
Although this situation will not happen too frequently, we should pay attention to it. Chilipirea, et
al. [43] developed three algorithms for determining stops and movements for GPS-based datasets
and explored their applicability to WiFi-based data, if the problem of train stops etc. are considered
in our research, it will reduce the false positive phenomenon of the model.

In addition, our research team is developing a system that addresses the suspected behavior
(Figure 15). The system can capture the faces of passengers with suspected behavior when they swipe
their cards and applies a smart camera to continuously record the behaviors of these passengers.
Once the suspected behavior is confirmed, the subway staff can catch the offending passengers the
next time that they swipe their cards. In order to protect privacy, normal card swiping will not be
recorded.

Anomaly w| Face recording w| Smartcamera
identification 7’| when they swiping 2 tracking
Confirm abnormal Catch them when
behavior 7| they swiping again

Figure 15. Suspected abnormal personnel intelligent tracking system.

8. Conclusions

This paper proposes a method for identifying the LSSS in the subway based on the shortest path
and analyzes its travel mode. In combination with the past research of scholars, we try to quantify
the suspected behavior with a database of assumed suspected behavior records. Finally, we extract
the spatial-temporal travel features of passengers, and we propose a SAE-DNN algorithm to identify
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suspected anomalie; the accuracy of the training set can reach 95.7%, and the accuracy of the test set
can also reach 93.5%, which provides a reference for the subway operators and the public security
system.

Besides, three issues need to be focused on:

Dataset: It is hard for us to get real-world labels. Indeed, the suspected passengers are not real
thieves, etc. the labels of the suspected abnormal passengers were marked manually based on the
high similarity. This is a result judged by the rail transit safety experts and police based on data and
experience. Using such a dataset is because they show some odd rides exactly. Our model performs
well in identifying assumed abnormal behaviors, this means that if the real-world dataset is obtained,
the model has great potential to be effective.

Method: Since we focus on the extraction and analysis of spatial-temporal features, this paper is
inadequate regarding the model construction of LSSS identification. We only rely on the shortest path
algorithm and do not consider the diversified path selection problem of passengers. We establish a
constant transfer time and do not consider the difference in the spatial structure of different stations.
For this reason, we deliberately set this constant to the maximum value of all transfer times and try
to avoid defining normal passenger flow as abnormal. However, this approach may miss some
abnormal passenger flow. In future research, we can infer the passenger’s path selection problem
based on probability and achieve a more accurate identification model of suspected abnormal
passenger flow.

Privacy: Firstly, the smart card data we collect is anonymous, the cards do not involve any
personal information. So, the privacy of passengers was not be touched in the model. Secondly, if the
system is applied to the real world, the offence to regular passengers caused by the error of
classification is a key problem. Improving the performance of the model can reduce such risks; and
using surveillance video to verify the behavior can fundamentally solve this problem. In addition,
surveillance video Intelligent verification without artificial observation is a good future work.

Others: We are not sure that LSSS is commonly found in other underground systems all over the
world, but we believe that odd rides are commonly found all over the world; for example, there are
thieves everywhere, and their habits must be different from those of ordinary passengers; LSSS is just
one of the odd rides, and we chose it for our research. The proposed framework of research methods
can quantify these odd riding behaviors and identify them, this is the value that this paper brings to
the whole world.
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