Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System
Abstract
1. Introduction
2. Experimental Methodology
3. Results and Discussion
3.1. Velocity Attenuation Characteristic
3.2. Positive Phase Pressure Function
3.3. Pressure Decay Characteristic
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weir, P.; Edwards, J.H. Mechanical loading and Cardox revolutionize an old mine. Coal Age 1928, 33, 288–290. [Google Scholar]
- Lu, T.K.; Wang, Z.F.; Yang, H.M.; Yuan, P.J.; Han, Y.B.; Sun, X.M. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas. Int. J. Rock Mech. Min. Sci. 2015, 77, 300–312. [Google Scholar] [CrossRef]
- Wilson, H.H. Coal augers: Development and application underground. Trans. Inst. Min. Eng. 1954, 113, 524–539. [Google Scholar]
- Clairet, J. Use of Cardox in coal mining in Sarre. Rev. Industrie Miner. 1952, 33, 846–854. [Google Scholar]
- Yang, X.; Wen, G.; Sun, H.; Li, X.; Lu, T.; Dai, L.; Cao, J.; Li, L. Environmentally friendly techniques for high gas content thick coal seam stimulation—multi-discharge CO2 fracturing system. J. Nat. Gas Sci. Eng. 2019, 61, 71–82. [Google Scholar] [CrossRef]
- Ke, B.; Zhou, K.; Xu, C.; Ren, G.; Jiang, T. Thermodynamic properties and explosion energy analysis of carbon dioxide blasting systems. Min. Technol. 2019, 128, 39–50. [Google Scholar] [CrossRef]
- Vidanovic, N.; Ognjanovic, S.; Ilincic, N.; Ilic, N.; Tokalic, R. Application of unconventional methods of underground premises construction in coal mines. Tech. Technol. Educ. Manag. 2011, 6, 861–865. [Google Scholar]
- Pantovic, R.; Milic, V.; Stojadinovic, S. Consideration of possibilities for application of CARDOX method in purpose of improvement of coal fragmentation. Proceedings of IOC 2002: 34 th International October Conference on Mining and Metallurgy, Bor Lake, Yugoslavia, 30 September–3 October 2002; pp. 131–135. [Google Scholar]
- Zou, D.; Panawalage, S. Passive and Triggered Explosion Barriers in Underground Coal Mines—A Literature Review of Recent Research; Natural Resources Canada: Ottawa, ON, Canada, 2001. [Google Scholar]
- Zhang, W.; Zhang, D.; Wang, H.; Cheng, J. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China. Minerals 2015, 5, 919–935. [Google Scholar] [CrossRef]
- Pesch, R.; Robertson, A. Drilling and Blasting for Underground Space. In Proceedings of the EXPLO Conference, Wollongong, Australia, 3–4 September 2007; pp. 189–193. [Google Scholar]
- Tampekis, S.; Samara, F.; Sakellariou, S.; Sfougaris, A.; Christopoulou, O. An eco-efficient and economical optimum evaluation technique for the forest road networks: The case of the mountainous forest of Metsovo, Greece. Environ. Monit. Assess. 2018, 190, 134. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Lotfalian, M. Demolition agent selection for rock breaking in mountain region of hyrcanian forests. Res. J. Environ. Sci. 2009, 3, 384–391. [Google Scholar] [CrossRef][Green Version]
- Bajpayee, T.; Rehak, T.; Mowrey, G.; Ingram, D. Blasting injuries in surface mining with emphasis on flyrock and blast area security. J. Saf. Res. 2004, 35, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Durga, S.; Swetha, R. Disaster Prevention and Control Management. Procedia Earth Planet. Sci. 2015, 11, 516–523. [Google Scholar] [CrossRef][Green Version]
- Chen, H.D.; Wang, Z.F.; Chen, X.E.; Chen, X.J.; Wang, L.G. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J. CO2 Util. 2017, 19, 112–119. [Google Scholar] [CrossRef]
- He, W.R.; He, F.L.; Zhang, K.; Zhao, Y.Q.; Zhu, H.Z. Increasing Permeability of Coal Seam and Improving Gas Drainage Using a Liquid Carbon Dioxide Phase Transition Explosive Technology. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Kang, J.H.; Zhou, F.B.; Qiang, Z.Y.; Zhu, S.J. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting. Adv. Mech. Eng. 2018, 10, 15. [Google Scholar] [CrossRef]
- Wang, Z.F.; Sun, X.M.; Lu, T.K.; Han, Y.B. Experiment Research on Strengthening Gas Drainage Effect with Fracturing Technique by Liquid CO2 Phase Transition. J. Henan Polytech. Univ. 2015, 34, 1–5. (In Chinese) [Google Scholar]
- Zhao, L.P. Technology of Liquid Carbon Dioxide Deep Hole Blasting Enhancing Permeability in Coal Seam. Saf. Coal Mines 2013, 44, 76–78. (In Chinese) [Google Scholar]
- Huo, Z.G. New Technology of Carbon Dioxide Fracturer Applied to Deep Borehole Pre-Cracking Blasting for Seam Permeability Improvement. Coal Sci. Technol. 2015, 43, 80–83. (In Chinese) [Google Scholar]
- Dong, Q.X. , Wang, Z.F.; Han, Y.B., Sun, X.M. Research on TNT Equivalent of Liquid CO2 Phase–Transition Fracturing. China Saf. Sci. J. 2014, 24, 84–88. (In Chinese) [Google Scholar]
- Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Davies, B.; Hawkes, I. The Mechanics of Blasting Strata Using the Cardox and Air Blasting Systems; Toothill Press: London, UK, 1984; pp. 461–467. [Google Scholar]
- Zhang, Y.; Deng, J.; Ke, B.; Deng, H.; Li, J. Experimental Study on Explosion Pressure and Rock Breaking Characteristics under Liquid Carbon Dioxide Blasting. Adv. Civ. Eng. 2018, 2018, 9. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Deng, J.R.; Deng, H.W.; Ke, B. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting. Int. J. Damage Mech. 2019, 28, 1038–1052. [Google Scholar] [CrossRef]
- Hu, G.Z.; He, W.R.; Sun, M. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. J. Nat. Gas Sci. Eng. 2018, 60, 164–173. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.W.; Zhu, Z.J.; Ren, T.X.; Cao, C.; Zhu, F.; Li, Y.P. A new shock-wave test apparatus for liquid CO2 blasting and measurement analysis. Trans. Inst. Meas. Control 2019, 52, 399–408. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, K.L.; Lei, Y.; Zhang, B.L. Evolutionary Features in Damage and Destruction of Gas-Rich Coal Seam by CO2 Phase-transition Blasting. Ekoloji 2018, 27, 1605–1613. [Google Scholar]
- Zhu, W.C.; Gai, D.; Wei, C.H.; Li, S.G. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage. J. Nat. Gas Sci. Eng. 2016, 36, 1253–1263. [Google Scholar] [CrossRef]
- Sun, K.; Xin, L.; Wang, T.; Wang, J. Simulation research on law of coal fracture caused by supercritical CO2 explosion. J. China Univ. Min. Technol. 2017, 46, 501–506. [Google Scholar]
- Gao, F.; Leihu, T.; Zhou, K.-P.; Yanan, Z.; Ke, B. Mechanism Analysis of Liquid Carbon Dioxide Phase Transition for Fracturing Rock Masses. Energies 2018, 11, 2909. [Google Scholar] [CrossRef]
- Zhou, Y. Study on the Mechanism and Damage Effect of CO2 Boiling Liquid Expanding Vapor Explosion in CO2 Flooding; Beijing Institute of Technology: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Papanicolaou, P.N.; List, E.J. Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 1988, 195, 341–391. [Google Scholar] [CrossRef]
- Persson, P.-A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kinney, G.F.; Graham, K.J. Explosive Shocks in Air, 2nd ed.; Springer Science & Business Media: Berlin, Germany, 2013; pp. 18–49. [Google Scholar]
Serial Number | Type | Range/MPa |
---|---|---|
A | MYD-8432C | 250 |
B(C) | MYD-8432E | 40 |
D | MYD-8432F | 10 |
E | MYD-8432G | 5 |
F | MYD-8432H | 1 |
G | MYD-8432H | 1 |
H | MYD-8432H | 1 |
I | MYD-8432I | 0.5 |
J | MYD-8432J | 0.2 |
K | MYD-8432K | 0.1 |
Number | Start/s | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 9.60 | 5.64 | 0.00828 | 0.01722 | 0.01899 | 0.03992 | 0.06800 | 0.076 | 0.195 | 0.867 |
2 | 0.36 | 5.49 | 3.72 | 0.00622 | 0.0129 | 0.01644 | 0.02524 | 0.05028 | 0.053 | 0.104 | 0.985 |
3 | 0.14 | 9.32 | 9.26 | 0.00618 | 0.01291 | 0.01404 | 0.02672 | 0.04502 | 0.039 | 0.230 | 0.922 |
4 | 0.30 | 9.15 | 5.7 | 0.0046 | 0.01276 | 0.01835 | 0.03420 | 0.04294 | 0.114 | 0.189 | 0.819 |
Test Values /MPa | Theoretical Calculation Values /MPa | ||
---|---|---|---|
0.23 | 0.741 | 8.653 | 5.866 |
0.6 | 1.934 | 1.515 | 0.884 |
0.9 | 2.900 | 0.683 | 0.439 |
1.2 | 3.867 | 0.492 | 0.276 |
1.5 | 4.834 | 0.419 | 0.196 |
1.8 | 5.801 | 0.294 | 0.150 |
2 | 6.445 | 0.190 | 0.129 |
2.5 | 8.057 | 0.142 | 0.095 |
3 | 9.668 | 0.023 | 0.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, B.; Zhou, K.; Ren, G.; Shi, J.; Zhang, Y. Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies 2019, 12, 4134. https://doi.org/10.3390/en12214134
Ke B, Zhou K, Ren G, Shi J, Zhang Y. Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies. 2019; 12(21):4134. https://doi.org/10.3390/en12214134
Chicago/Turabian StyleKe, Bo, Keping Zhou, Gaofeng Ren, Ji Shi, and Yanan Zhang. 2019. "Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System" Energies 12, no. 21: 4134. https://doi.org/10.3390/en12214134
APA StyleKe, B., Zhou, K., Ren, G., Shi, J., & Zhang, Y. (2019). Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies, 12(21), 4134. https://doi.org/10.3390/en12214134