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Abstract: Nonlinear component level model (NCLM) is a widely used model for aeroengines.
However, it requires iterative calculation and is, therefore, time-consuming, which restricts its
real-time application. This study aims at developing a simplified real-time modeling approach for
turbofan engines. A mechanism modeling approach is proposed based on linear models to avoid the
iterative calculation in NCLM so as to effectively reduce the computational complexity. Linear local
models, of which the outputs are the solution of the balance equations in NCLM, are established at
the ground operating points and are combined into a linear parameter varying (LPV) state-space
model. Then, the model is extended throughout the full flight envelope in a polytopic expression
and is integrated with the flow path calculation to obtain satisfactory real-time performance. In
order to ensure the accuracy of the integrated model, the upper bound of convergence residual of
the iteration is strictly set and consideration on the interpolation method is taken. The simulation
results demonstrate that the integrated model requires much less computational resources than the
NCLM does. Meanwhile, it maintains an acceptable accuracy performance and, therefore, is suitable
for real-time application.

Keywords: turbofan engine; nonlinear component level model; linear parameter varying model;
real-time model

1. Introduction

An aeroengine, with the requirements of long engine life, great operational flexibility, and control
performance, is a complicated aerothermodynamic system [1]. The engine model is formulated in a
set of mathematical expressions for controller design and health monitoring [2,3]. In the modeling
process, the goal is to obtain an accurate and real-time model with a simple structure. The nonlinear
component level model (NCLM) is a common model established on the basis of mechanical and
aerothermodynamic theories. Though the accuracy of the NCLM is very high, it can hardly deal
with the trade-off between the accuracy and real-time performance [4]. There are increasing demands
needed to be considered due to the development of the modern aircraft, and therefore, the NCLM has
become increasingly complex, which makes the trade-off much more difficult to deal with. Meanwhile,
the balance equations in the NCLM need to be iteratively solved within limited time while the
computational and memory resources of the electronic control unit (ECU) in aeroengines are limited.
Because the real-time performance of NCLM on hardware of aeroengine is not satisfactory, the NCLM
is not suitable for controller design or health monitoring. Hence, a real-time model with acceptable
modeling accuracy and a few required parameters is necessary for practical applications, which is the
motivation of this paper.
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In order to obtain satisfactory real-time performance, it is a common way to simplify or neglect
some nonsignificant processes. Since 1970s, attention has been paid on this problem. A simplified
model of an F100-PW-100 turbofan engine is constructed to operate on a hybrid computer [5].
Some simplification in the flow path of the NCLM is used for a highly compact model which is
able to be operated on an engine mounted computer [6]. Despite the sacrificed accuracy of the
simplified model, the real-time performance is not significantly improved to meet the demands of
ECU. Accelerating the convergence speed of the iteration process is an effective way to ease the
computational burden to some extent [7]. However, these models are still calculated in an iterative
way and the iteration will be hard to converge if the current state is far from the steady state. Besides,
the inputs are calculated by the controller contain noises inevitably, which always makes the model
keep away from the steady state and will worsen the real-time performance of the NCLM. Data-driven
methods provide a choice to construct a real-time model without iteration [8,9]. The model with
low complexity is built to capture the behavior of the system [10]. A data-based Takkgi–Sugeno
fuzzy model is studied in Reference [11] throughout the flight envelope. However, these approaches
rely on plenty of flight data and the modeling process will become more complex if the division of
flight envelope is carried out. Another way to avoid the iteration in NCLM is to transformed the
balance equations into differential and algebraic equations, as shown in Reference [12]. However, this
transformation is complicated because it requires a lot of considerations on the accumulation effect of
a cavity. Establishing linear models without iteration is an ideal way to deal with these problems.

The linear parameter varying (LPV) model, which consists of a series of linear time invariant
(LTI) models, has developed rapidly due to its adaptability in the past 30 years [13–16]. The LTI
models only guarantee the performance around given operating points, and the obtained linear model
can only work near the given operating point. The LPV modeling techniques establish a systematic
gain-scheduling structure and ensure the performance around off-design points. Convex combination
of specific local linear models based on interpolation strategy is the basic idea of the LPV state space
model. This process consists of two steps: firstly, classic modeling method is used to obtain LTI models
at successive operating points. Then, these models and bias data are combined into the form of the
LPV model [17]. The practicability and effectiveness of the LPV models have been proved in turbofan
engines. Balas et al. have performed researches on LPV modeling and control synthesis based on a
P&W STF 952 turbofan engine model [18]. Gilbert et al. designed relatively simple controllers based
on the polynomial LPV models established by turbofan model [19]. A velocity-based LPV model is
established under the assumption of a correct transformation [20]. The differentiation on the input and
output of the model will take cumulative modeling errors. All of these models are control oriented,
and therefore, some steady modeling errors are neglected because the close-loop control makes the
impact of the steady errors on the quality of control quite small [21]. However, the steady errors cannot
be ignored if the model is established for health monitoring. Meanwhile, the discontinuity of the
parameters of the LTI models are not discussed, which will affect the accuracy of the model. This factor
is considered in Reference [22]. In the paper, an analytical model is established based on linearization
of components in NCLM and these linear models are still tied in a iterative framework. However,
the verification of the real-time performance of the analytical model is not given. The LPV model is
usually linearized in the sea-level condition and extended to the full envelope by using similarity
rules [23], but it has trouble dealing with some outputs that do not meet the similarity criteria, such
as thrust.

In order to obtain a real-time model based on LPV model for both control and health monitoring,
a novel integrated mechanism model is proposed. The iteration in NCLM is replaced by an LPV model
to improve the real-time performance, and the flow-path calculation is reserved to prevent the loss
of the aerothermodynamic characteristics, and therefore, the dynamic performance of the integrated
model will be more similar to the NCLM than the traditional and straightforward LPV model does.
The modeling process is as follows: Firstly, the small perturbation method is used to get local linear
models at ground operating points. Secondly, the equilibrium points are combined into the coefficient
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matrices of the LPV model to simplify the structure. Thirdly, the polynomial regression method is used
to fit parameters of the LPV models to reduce the required parameters. Then, the similarity rule and
polytope theory are used througout full flight envelope operation. Finally, the LPV model is integrated
with flow path calculation, which takes account of the characteristic of aerothermodynamics of the
turbofan engine. The main contribution of this paper is to integrate the LPV model with flow path
calculation to avoid iteration. The continuity of parameters in LTI models is discussed, and smooth
coefficients of LTIs are obtained by using the spline interpolation method to improve the modeling
accuracy. To verify the efficiency of this approach, the accuracy and real-time performance of the
proposed model, the traditional LPV model, and the NCLM are compared in the simulation at the end
of this paper.

This paper is structured as follows: Section 2 provides the NCLM and LPV model for turbofan
engine. The novel modeling method and its advantages are introduced in Section 3. The accuracy
improvement of the proposed model is discussed in Section 4. The effectiveness of the proposed
modeling method is demonstrated by simulations in Section 5. In the end, the conclusion of the paper
is given in Section 6.

2. Background

2.1. Turbofan Engine and Flow Path Calculation

The aeroengine studied in this paper is a low-bypass twin spool turbofan engine, consisting of an
intake, a fan, a compressor, a combustor, a bypass, a high-pressure turbine, a low-pressure turbine,
a mixing chamber, an afterburner, and a nozzle. The structural diagram and cross-sectional number of
this twin-spool engine are shown in Figure 1. The air extraction for cooling the turbine and bypass
duct is not detailed in this paper.

Figure 1. Structural diagram of the low-bypass turbofan engine.

The NCLM is a set of mathematical formulas for aeroengines based on the principles of
aerothermodynamic, rotor dynamic, and other principles followed by various engine components.
It adopts a lot of physics-based empirical formulas under some basic assumptions to calculate the
flow path.

2.1.1. Main Components Calculation

The flow path calculation is the process to calculate the parameters of the outlet of each component
in Figure 1 according to the parameters of the inlet. The calculation of three main components of the
engine core, the nozzle, and the balance equation of the NCLM are discussed below.

Some simplified methods, such as performance maps and the neglect of vane-tip clearance,
are used in the calculation of the rotor component to obtain approximate results. The performance
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map is widely used to calculate the mass flow and efficiency of the rotating part of the engine [24].
The calculations of the compressor are given as follows:

nH,cor = (nH/
√

T22)/(nH,d/
√

T0)

ηComp = fη,Comp(nH,cor, πH)

γ2 = Cp2/Cv2

W22 = fW,Comp(nH,cor, πH)
P22
P0

√
T0
T22

T3 = T2

(
πH

(γ2−1)/γ2 /ηComp + 1
)

P3 = πCompP22

W3 = W22 −WBp;
NComp = W3(h3 − h22) + WBp∆hBp

(1)

where fW,Comp and fη,Comp stand for the linear interpolation functions of performance maps and γ2 is
the ratio of specific heat. The efficiency ηComp, temperature T3, pressure P3, mass flow W3, and power
NComp are the required outputs. Note that WBp and hBp are calculated in bypass and not detailed
in this paper. The meaning of the parameters and subscriptions in the equation are listed in the
Nomenclature section.

Combustor is regarded as a chamber to convert chemical energy into heat, and the combustion
time delay is assumed to be ignored. Some empirical formulas are used to calculate the burning
process and the pressure loss [24]. Equation (2) shows the calculating process of the combustor:

σ3 = 1−
(

1− P3,d
P4,d

) (
W3
W4

P0
P3

√
T3
T0

)
α3=Wf/W3

ηComb=1− 0.8
(

W22
VCombT22P1.25

22

)2(
2− e−

(α3−3)2

200

)2

h4 = W3h3+ηCombWf HVF
W3+Wf

T4 = fH2T(α3, h4)

P4 = σ3P3

W4=W3 + Wf

(2)

where σ3 denotes the pressure recovery coefficient, α3 is the fuel–air ratio, Wf is the fuel mass flow,
fH2T is the function of the temperature calculation from enthalpy, VComb is a volumetric coefficient,
HVF is the fuel flow heating value, and fH2T is the function to calculate the temperature from enthalpy.
The temperature T4, pressure P4, and mass flow W4 are the required outputs.

Similar to the calculation of compressors, performance maps including the mass flow to pressure
ratio map fW,HPT and efficiency to pressure ratio map fη,HPT are used to calculate the parameters of
the turbine outlet [24]. Equation (3) shows the calculating process of the high-pressure turbine:

nH,cor = (nH/
√

T4)/(nH,d/
√

T0)

ηHPT = fη,HPT(nH,cor, πHPT)

γ4 = Cp4/Cv4

T43 = T4

[
1−

(
1− πHPT

(γ4−1)/γ4
)

/ηHPT

]
P43 = P4/πHPT

W43 = fW,HPT(nH,cor, πHPT)
P4

P4,d

√
T0
T4

NHPT = W43(h43 − h4)

(3)

where fη,HPT and fW,HPT stand for the linear interpolation functions of performance maps and γ4 is
the ratio of specific heat. The temperature T43, pressure P43, mass flow W43, and power NHPT are the
required outputs.
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The Laval nozzle throat is adjustable, and the area of the nozzle outlet is a specified multiple of
the area of the nozzle throat [24]. Equation (4) shows the calculating process of the nozzle:

γ7 = Cp7/Cv7

α7 = Wf/(W9 −Wf)

R = 8314.4/ (28.97− 0.946α7)

K =

√
γ
R

(
2

γ+1

) γ+1
γ−1

a9 = ksa8

T9 = T7

P9 = σ7P7

W9 = Ka9P9q(λ9)/
√

T9

(4)

where γ7 stands for the ratio of specific heat, α7 is the fuel–air ratio, R is the molar gas constant, λ9 is
the speed coefficient, and ks is the multiplier of a9 to a8. The temperature T9, pressure P9, and power
W9 are the required outputs.

2.1.2. Balance Equation

On one hand, different from the mass flow calculation of other components, the outlet mass
flow calculation of the rotor components and nozzle are independent of the inlet mass flow (see
Equations (1), (3), and (4)). Therefore, there are mass flow conflicts between inlet and outlet of the
rotor components and the nozzle (except the fan because there is no inlet mass flow calculation of
the fan). On the other hand, due to the physical connection of the two shafts, the power between
the high- and low-pressure rotors needs to be balanced (see the computational flow of mass flow in
Figure 2). Therefore, there are four mass flow balance equations and two Euler equations due to the
rotational motion, and the calculation of the NCLM is to solve this differential equation [24], namely
the balance equation:

ṅL =
900(ηm,LPT NLPT−NFan)

π2nL JL

ṅH =
900(ηm,HPT NHPT−NComb−NEX)

π2nH JH

e1 = (W3 −W22)/W3

e2 = (W4 −W43)/W4

e3 = (W43 −W5)/W43

e4 = (W9 −W7)/W9

∆
=

{
ẋ = fiter(u, x, v)

z = giter(u, x, v)
(5)

where x = [nL, nH]
T, v =

[
πFan, πComp, πHPT, πLPT

]T is the input vector of the performance maps,
z = [e1, e2, e3, e4]

T stands for the residual error vector, and u is the input vector of the NCLM which is
constant in the iteration. The Newton–Raphson (N–R) method is adopted in the model with an initial
vector v0 in discrete time:

vk+1 = vk − (∇vk giter)
−1zk k = 1, 2, 3, · · · (6)

The iteration starts with an initial vector v0, and therefore, the calculation of flow path can be
executed. Equation (6) is updated with the flow path calculation and will be stopped with a final
vector vfinal if ‖zk‖ < rub, where rub is the upper bound.
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Figure 2. Computational flow diagram of turbofan engine simulation.

2.2. Traditional LPV Modeling

To obtain a real-time model, a common way is to linearize the NCLM at plenty of operating points
and, then, to map the established LTI models together into an LPV model.

2.2.1. LTI and LPV Model

The nonlinear dynamic model of turbofan engines can be expressed as follows:{
ẋ = f (u, x)
y = g(u, x)

(7)

where u ∈ Rnu×1 is the input vector; x ∈ Rnx×1 is the state vector; y ∈ Rny×1 is the output vector;
and nu, nx, ny denotes the dimensions of the input vector, state vector, and output vector, respectively.

The equilibrium point (ue, xe, ye) keeps the following relations:{
0= f (ue, xe)

ye=g(ue, xe)
⇒

{
xe = h(ue)

ye = v(ue)=g(ue, h(ue))
(8)

Expanding Equation (7) around each equilibrium point (ue, xe, ye) and neglecting high-order
items yields the following LTI model:{

∆ẋ = Ap∆x + Bp∆u
∆y = Cp∆x + Dp∆u

(9)

where ∆u = u− ue, ∆x = x− xe, ∆y = y− ye, g(ue, xe) = ye,Ap ∈ Rnx×nx,Bp ∈ Rnx×nu,Cp ∈ Rny×nx,
Dp ∈ Rny×nu, and Ap, Bp , Cp and Dp can be calculated as follows:

Ap =
∂ f
∂x

∣∣∣∣
ue

, Bp = −Ap
dh
du

∣∣∣∣
ue

Cp =
∂g
∂x

∣∣∣∣
ue

, Dp =
dv
du

∣∣∣∣
ue

− Cp
dh
du

∣∣∣∣
ue

(10)
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The LPV model consists of a set of LTI models and equilibrium points (up,e, xp,e, yp,e) in
Equation (9). If the parameters of the LTI models vary strongly around some equilibrium points,
a quasi-LPV model is required. Here “quasi” means the selected scheduling parameter should be
related to the state. It is assumed that the scheduling parameters vary slowly enough so that the
scheduled LTI models can be seen as approximate linearized models near equilibrium points.

A typical quasi-LPV model [13] is shown as follows:{
∆ẋ = Ap(θ)∆x + Bp(θ)∆u
∆y = Cp(θ)∆x + Dp(θ)∆u

(11)

where θ is the scheduling parameter related to the state xp and where Ap(θ), Bp(θ), Cp(θ), and Dp(θ)

are scheduling functions of Ap, Bp, Cp, and Dp, respectively. The key to ensure the accuracy of
Equation (11) is to obtain the LTI models of which the dynamic and steady characteristics are very
close to those of the NCLM.

2.2.2. Modeling Throughout Flight Envelope

The LPV model can be expanded throughout full flight envelope with the assumption that the
variables in the model all satisfy kinematic similarity, dynamic similarity, and geometric similarity
rules. Because the variant area of the nozzle throat does not comply with the geometric similarity
rule, the model should be expanded with a constant area of the nozzle throat. The LTI models
can be obtained at several constant a8i in the form of Equation (17); ucor = fx,cor(P0, T0, Ma, H, x),
xcor = fx,cor(P0, T0, Ma, H, x), and ycor = fx,cor(P0, T0, Ma, H, y) are the corrected input, state, and
output; and f∗,cor denotes the corrected function according to Reference [25]. Finally, the LPV model
is structured with a polytopic expression:[

A(θ) B(θ)
C(θ) D(θ)

]
=

N

∑
l=1

wi

[
A(θ, a8i) B(θ, a8i)

C(θ, a8i) D(θ, a8i)

]
(12)

where wi = fw(a8, a8i) stands for the weight coefficient calculated by a function fw of the distance

between a8i with a8,
Na8
∑

i=1
wi = 1, and Na8 denotes the number of the selected a8i .

3. Novel Mechanism Model

Because NCLM is established based on test data, it is a very important model for control and
health monitoring, but this model is not a real-time model for two reasons: (1) The calculation of
∇vk giter in Equation (6) needs repeated flow path calculations and worsens the real-time performance
of NCLM. (2) If the noises and disturbances of the inputs need to be considered, more flow path
calculations will be required because the uncertainty continuously moves the states of the system
away from equilibrium point, and therefore, the real-time performance of NCLM is not satisfactory.
Therefore, the application of NCLM approach is usually limited due to its poor real-time performance.

Meanwhile, although the traditional LPV technique is suitable to obtain a real-time model,
the straightforward linearization of the traditional LPV model will neglect some aerothermodynamic
details and, therefore, affect the modeling accuracy. Moreover, if the LPV model is established using
the similarity criteria, it is hard to deal with the outputs that do not meet the similarity criteria, such
as thrust and power. In such cases, massive linerizations of the traditional LPV model or divisions
of flight envelope are required throughout the large-scale flight envelope, which will restrict the
application of LPV technique.
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In order to overcome the disadvantages of NCLM approach and LPV technique, a novel
mechanism modeling approach is proposed in this paper. In this approach, the mechanism flow
path calculation of NCLM preserves the aerothermodynamic characteristics of NCLM. The solution
of iteration in Equation (6) is calculated by an LPV model and is provided for flow path calculations
directly so that only one flow path calculation is required in one-step simulation. The LPV model here
is established as follows based on the solutions of iteration in NCLM under the sea-level condition.

If the iteration of Equation (6) becomes convergent, Equation (5) will become the following:{
ẋ = fiter(u, x, vfinal)

0 ≈ giter(u, x, vfinal)

∆
=

{
ẋ = fiter(u, x, g̃(u, x)) ∆

= f̃ (u, x)

vfinal = g̃(u, x)
(13)

where f̃ is equivalent to f in Equation (7). An LPV model will be obtained if g̃ is substituted for g in
Equation (7), and then, the state x and output vfinal of this LPV model can be provided for the flow
path calculation in NCLM. This LPV model and flow path calculation are combined into an integrated
model. Figure 2 shows the computational flow diagram of this integrated model, where the input
vector is the same as that of NCLM. The inputs are given to the flow path calculation and is corrected
using similarity criteria according to Reference [25]. The corrected inputs Wf,cor and a8, along with the
scheduling parameter θ = nL measured from the turbofan engine, are furnished to the LPV model.
Note that the scheduling parameters of both the LPV model in integrated model and the traditional
LPV model are obtained from NCLM in this paper. The state and output of LPV model calculated
according to Equation (12) are provided for performance maps to obtain mass flow and efficiency of
each rotor component.

As is shown in Figure 2, iterations and balance equations are not involved in the computational
flow diagram. The flow path calculation is executed once in one time step no matter how far the
current state is away from the equilibrium point; in such case, the real-time performance of this model
will be much better than that of NLCM and will be insensitive to the input noises and disturbances
while that of NCLM not. In addition, the number of outputs of the integrated model is the same as
that of NCLM because the two models share the same flow path calculation. Meanwhile, there are
always two states and four outputs of the LPV model required by the integrated model, and therefore,
less parameters will be required than the traditional LPV model if more than 4 outputs of the real-time
model are required. Moreover, the LPV model in the integrated model is partly linearized from NCLM.
The reserved flow path calculation compensates for aerothermodynamic characteristics neglected by
the linearization of traditional LPV model and tends to result in more accurate outputs. Therefore,
there would be three evident advantages of this integrated model: the real-time performance is (a)
insensitive to the input noises and disturbances, (b) faster than NCLM, and (c) more accurate than the
traditional LPV model.

It should be noticed that ‖zk‖ < rub is ensured in NCLM. However, zfinal = [e1, e2, e3, e4]
T caused

by the modeling errors of the integrated model is out of restriction in the integrated model. If these
modeling errors are under control, the differences between the integrated model and NCLM will be
quite small. Conversely, the problem arises that, if the LPV model is not accurate, the modeling errors
will have side effects on almost all of the outputs of the model.

4. Implementation and Accuracy Improvement

4.1. Linearization

The inputs of the LPV model are environment temperature Ts0, pressure Ps0, altitude H, mach
number Ma, fuel flow Wf, and area of nozzle throat a8; the states are two rotor speeds nL and nH;
and the outputs are four pressure ratios πFan, πComp, πHPT, and πLPT. In order to obtain the partial
derivative, the state of the system is firstly set to a steady mode, and then, nx linearly independent
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small perturbations of the state are given respectively. In this process, Equation (14) can be obtained
according to Equation (9): {

∆ẋi
p,k = Ap∆xi

p,k
∆yi

p,k = Cp∆xi
p,k

, i = 1, 2, · · · nx (14)

where ∆xi
p,k stands for the state derivative at the kth time step under the ith perturbation. Then, the

partial derivative terms in Equation (9) can be calculated in the form below: Ap,k =
[
∆ẋ1

p,k, · · · , ∆ẋnx
p,k

] [
∆x1

p,k, · · · , ∆xnx
p,k

]−1

Cp,k =
[
∆y1

p,k, · · · , ∆ynx
p,k

] [
∆x1

p,k, · · · , ∆xnx
p,k

]−1 (15)

The Equation (15) reveals that Ap and Cp can be calculated at every discrete time k and
taht the partial-derivative terms have a very close connection with the dynamic property of the
system, and it is obvious that the square matrix

[
∆x1

p,k, ∆x2
p,k, · · · , ∆xnx

p,k

]
need to be non-singular.

If
[
∆x1

p,k, ∆x2
p,k, · · · , ∆xnx

p,k

]
is close to a singular matrix, less upper bounds rub of iterations of NCLM

are required and the given perturbations should be adjusted or the order of the linear system should
simply be reduced.

4.2. Simplification

Equation (11) can be transformed as follows:{
ẋ = Ap(θ)x + Bp(θ)u + M(θ)

y = Cp(θ)x + Dp(θ)u + N(θ)
(16)

where the equilibrium information is separated into M(θ) = −Ap(θ)xe − Bp(θ)ue and N(θ) = ye −
Cp(θ)xe−Dp(θ)ue. The equilibrium manifold M(θ) and N(θ) need to be additionally stored. To reduce
the number of stored data, M(θ) and N(θ) are integrated into a typical quasi-LPV structure:{

ẋ = A(θ)x + B(θ)u
y = C(θ)x + D(θ)u

(17)

where A(θ) = Ap(θ) + [M(θ) /x1 0nx×(nx−1) ], C(θ) = Cp(θ) + [ N(θ)/x1 0nx×(nx−1) ], B(θ) =
Bp(θ), D(θ) = Dp(θ), θ = x1. It is assumed that the current state x and input u are approximately
close to a nearby equilibrium point (ue, xe), where xe,1 ≈ x1, u ≈ ue, and the scheduling parameter θ

can be obtained from the current state. The relationship between the coefficients and the scheduling
parameter θ can be seen as a scalar function; thus, the number of the required parameters can be
reduced by fitting curves:

q(θ) =
m

∑
i=0

qiθ
i, i = 1, 2, . . . , m (18)

where q(θ) stands for the element of the matrices in Equation (17), qi is the polynomial coefficients
similar to that of Reference [19], and m is the selected order of the polynomial formula.
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4.3. Accuracy Improvement

Figure 3 shows the state response from an initial state of ∆nH = 0.02 and ∆nL = 0 at the design
point (H = 0, Ma = 0, Wf = 1, a8 = 1). As is shown in the Figure 3a, the low-pressure and high-pressure
speeds decrease to zero quickly. In Figure 3b, the logarithm is used to make the variation in the state
derivative more easily observed, the magnitude of

[
∆x1

p,k, ∆x2
p,k, · · · , ∆xnx

p,k

]
comes to 10−5 within 1.6

s, and the truncation error of the state derivative will play a role in the calculation of Ap,k. Meanwhile,
the sharp decline in Figure 3b indicates that the state derivative fluctuates up and down around 0 due
to the drawback of the discrete computation of the energy balance equations in Equation (5). Therefore,
there will be imaginary parts in the eigenvalues of Ap,k.
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Figure 3. State response under a disturbance ∆nH = 0.02. (a) conventional coordinate;(b) logarithmic
coordinate.

The truncation error is caused by the discrete calculation of the NCLM. The numerical iteration
becomes convergent with a convergence upper bound residual rub in Equation (6). Figure 4 shows
that the convergent value is related to the initial state. If the initial states x′0, x′′0 of the system are
different and rub = r1, the iterative solutions x′r1 and x′′r1 will be different. It is obvious that a smaller
upper bound rub = r2 < r1 makes the steady states closer to the real solution xe in the center and the
distance between the steady states smaller: ||x′r2 − x′′r2|| < ||x′r1 − x′′r1||. Therefore, a smaller rub makes
the calculation of ∆x = x− xe more credible when different perturbations are imposed on the NCLM
and, therefore, reduces the influence of the truncation error.

Figure 4. Relationship between the equilibrium states and the convergence residual.
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Figure 5a shows the elements of Ak in different times k at the design point with rub = 10−4.
It indicates that, as the truncation error of the NCLM increases, the elements of Ak tend to diverge.
Figure 5b shows that a smaller convergence residual rub = 10−8 can make the elements vary slowly. A
can be obtained by the following:

A = 1/NA

NA

∑
k=1

Ak (19)

where NA denotes the number of the selected Ak.
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Figure 5. Distribution of the elements of Ak. (a) rub = 10−4. (b) rub = 10−8.

The NCLM adopts a lot of piecewise linear interpolations to simplify the computation, such as
the performance maps mentioned in Section 2. It leads to discontinuous steady and dynamic property
of the NCLM and discontinuous elements of the matrices in LTI. In Figure 6a,c, the inputs are H = 0,
Ma = 0, a8 = 1, s0 = 101.325 kPa, and Ts0 = 288.15 K and the fuel flow is given from 0.2 to 1.05
at an interval of 0.01. Eighty-five LTI models are established around these points, and the number
of required parameters is 1700. With simplification and 3-order polynomial curve fitting, only 150
parameters is required. The figures show that dh/du and the elements of A are piecewise when
nL,e = 0.7, 0.8, 0.85, 0.9, 0.95, 1 and that the values of nL,e are the exact boundaries of the piecewise
interpolation function in the calculation of the performance maps of the fan and the compressor.
In order to obtain continuous parameters of the indexed collection of LTI models, the linear
interpolation used in the performance maps is replaced by a 3-order spline-fit interpolation, and the
elements and the eigenvalues of A become obviously continuous in Figure 6b,d. This differentiable
interpolation can improve the dynamic tracking performance of the LTI model. Figure 7 shows the
comparison of the state responses of the system, and nL works across a boundary of the piecewise
interpolation function of performance maps, where the initial states are nL = 0.91 and nH = 0.96; the
inputs are H = 0, Ma = 0, Wf = 0.73, and a8 = 1; and the final states are nL = 0.89 and nH = 0.948.
The response of nL of spline interpolation is apparently better than that of linear interpolation.

It should be noticed that the spline interpolation is adopted in NCLM to make the parameters of
LPV model continuous to improve accuracy around the boundary of former piecewise interpolation in
NCLM. The former NCLM adopting linear interpolation is established based on test data and can be
seen as a “precise” model, and the NCLMs mentioned elsewhere all stand for this “precise” model.
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Figure 6. The continuity of dh/du and the elements of A: (a) Linear interpolation, (b) spline
interpolation, (c) linear interpolation, and (d) spline interpolation.
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Figure 7. The comparison of state response of linear systems: (a) Response of nL; (b) response of nH.
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5. Simulation Results

In this section, the accuracy and computational complexity of the integrated model will be
discussed. Comparisons among the integrated mechanism model, the NCLM, and the traditional LPV
model are also carried out. The outputs of these models are P3, P4, P43, P6, T3, T4, T43, T6, and F. All the
simulation experiments are conducted on a personal computer with an Intel Core i7-6500U CPU and
8 GB Memory.

The inputs are given in Figure 8a,b, and the states and outputs are shown in Figure 9.
The integrated model and the traditional LPV model share the same states and matrices A and
B according to Equation (17), and thus, the responses of the states are the same in Figure 9a. Compared
with the maximum absolute error (MAE) of the NCLM, the MAE of the states (nL and nH) is less than
1.32% and the root mean square error (RMSE) is 0.77% in Table 1. The MAE of the outputs of the
integrated model is 0.45%, which is less than that of the traditional model. In Table 1, the bold data
shows that the integrated model significantly improves the accuracy of T3, T4, T43, P6 and, therefore,
improves the average MAE and RMSE.
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Figure 8. The inputs of the simulation: (a) 4 inputs without noise and (b) flight envelope.

Table 1. maximum absolute error (MAE) and root mean square error (RMSE) (%).

nL nH T3 P3 T4 P4 T43 P43 T6 P6 F Average

MAE-Integrated 1.32 0.55 0.12 0.33 0.34 0.43 0.41 0.45 0.44 0.23 0.64 0.48
MAE-Traditional 1.32 0.55 0.90 0.29 1.27 0.27 0.68 0.30 0.37 0.31 _ 0.63
RMSE-Integrated 0.77 0.41 0.05 0.11 0.25 0.15 0.32 0.21 0.32 0.12 0.40 0.28
RMSE-Traditional 0.77 0.41 0.55 0.08 0.76 0.08 0.45 0.13 0.23 0.17 _ 0.36

In fact, the inputs inevitably contain noises caused by sensors or disturbances, and therefore,
perturbations on the inputs should be considered when verifying the accuracy and real-time
performance of the considered models. A normally distributed pseudorandom noise ω ∼ N(0, 0.0042)

is added to the fuel flow in Figure 8a while the other three inputs remain the same. Table 2 shows
the time consumption of each model over a thirty-minute simulation. tc1 and Nflowpath1 stand for the
time consumption and the number of flow path calculations, respectively, with smooth inputs, while
tc2 and Nflowpath2 stand for the time consumption and the number of flow path calculations taking
account of input noises, respectively.



Energies 2019, 12, 3791 14 of 18

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

1.0

co
rre

ct
ed

 sp
ee

d

time(min)

 nL,cor-NCLM
 nL,cor-LPV/Integrated
 nH,cor-NCLM
 nH,cor-LPV/Integrated

(a)

0 5 10 15 20 25 30
0.1

0.3

0.5

0.7

0.9

th
ru

st

time(min)

 NCLM
 Integrated model

(b)

0 5 10 15 20 25 30
-5.0

-3.5

-2.0

-0.5

1.0

2.5

time(min)

er
ro
r(1

0-3
)

 e(T3)  e(T4)  e(T43)  e(T6)
 e(P3)  e(P4)  e(P43)  e(P6)

(c)

0 5 10 15 20 25 30
-5

0

5

10

15

20

er
ro
r(1

0-3
)

time(min)

 e(T3)  e(T4)  e(T43)  e(T6)
 e(P3)  e(P4)  e(P43)  e(P6)

(d)

Figure 9. Comparison between the nonlinear component level model (NCLM) and the integrated model:
(a) Comparison of state, (b) comparison of thrust, (c) output error of the integrated model, and (d)
output error of the traditional linear parameter varying (LPV) model.

It can be concluded that the time consumption mainly depends on the number of flow path
calculations. Therefore, when the input noise is considered, the time consumption and the number of
flow path calculations of the NCLM increase evidently, while those of the integrated model and
traditional LPV model are almost not affected. In Table 3, the noise has a slight side effect on
the accuracy of all the outputs of the two models. The bold data shows that, similar to Table 2,
the integrated model can also improve the accuracy of T3, T4, T43, and P6 and the average MAE and
RMSE when the noises are considered.

Table 2. Comparison of time consumption and iterative number.

tc1(s) Nflowpath1(×104) tc2(s) Nflowpath2(×104)

NCLM 32.54 45 65.43 104
Integrated model 7.32 9 7.25 9

Traditional LPV model 1.95 0 1.94 0
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Table 3. MAE and RMSE considering the input noise (%).

nL nH T3 P3 T4 P4 T43 P43 T6 P6 F Average

MAE-Integrated 1.40 0.61 0.20 0.43 0.44 0.53 0.49 0.55 0.52 0.30 0.76 0.57
MAE-Traditional 1.40 0.61 0.97 0.38 1.43 0.37 0.81 0.40 0.49 0.38 _ 0.72
RMSE-Integrated 0.77 0.41 0.06 0.12 0.25 0.16 0.32 0.21 0.32 0.13 0.41 0.29
RMSE-Traditional 0.77 0.41 0.55 0.10 0.76 0.10 0.45 0.14 0.23 0.18 _ 0.37

6. Conclusions

In order to obtain a mechanism model of turbofan engine with satisfactory real-time performance
and accuracy, an integrated model is proposed. The iteration in NCLM is substituted by an LPV
model to improve the real-time performance, and the flow-path calculation is integrated with the
LPV model to preserve the nonlinearity and aerothermodynamics of the model. The influence of the
residual and the continuity of the NCLM are discussed to improve the accuracy of the integrated
model, and it can be concluded that lower residual and spline-fit interpolation of NCLM make the
integrated model more accurate. Simplification and curve fitting are used to reduce the number of the
restored parameters. In the simulation, only 8% parameters are required after the simplification.

From the simulation results, the following can be concluded: (a) Compared to NCLM,
the proposed model saves over 75% of simulation time if the input noises are not considered and
89% in the presence of the input noises, which means that the real-time performance of the proposed
model is insensitive to input noises. (b) When the input noise is neglected, although the integrated
mechanism model works slower, it gives better MAE and RMSE values for T3, T4, and T43 than the
traditional LPV model. Meanwhile, the average MAE and RMSE of the proposed model decrease by
0.15% and 0.08%, respectively. (c) The real-time performance of the proposed model is insensitive to
the input noises, and therefore, the simulation time is nearly the same as the simulation time when
ignoring noises. Although the input noises will slightly deprave the accuracy of the two models,
the average MAE and RMSE of the proposed model decrease by 0.15% and 0.12%, respectively.

Due to the positive effect of the verification, further researches are encouraged: (a) The proposed
model could be applied to other aeroengines that require iteration of balance equation, such as turbojet
engine and turboshaft engine, and (b) the accuracy and real-time performance could be verified on
hardware in loop.
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Nomenclature

Parameter Description (Unit)
a8 area of nozzle throat
a9 area of nozzle outlet
nL low-pressure rotor speed
nH high-pressure rotor speed
H altitude (km)
F thrust
f function
d design point
J inertia (kg·m2)
Ma Mach number
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N power (N·m/s)
h enthalpy (kJ/kg)
HVF fuel flow heating value (kJ/kg)
P pressure (Pa)
R molar gas constant (J/mol/K)
T temperature (K)
W flow capacity
w weight coefficient
u control vector
v input vector of the performance maps
z residual error vector
x state vector
y output vector
α fuel–air ratio
γ ratio of specific heat
η efficiency
π pressure ratio
∆ deviation value
σ pressure recovery coefficient
nu number of input
nx number of state
ny number of output

Subscript Description
13 bypass inlet
16 bypass outlet
2 fan inlet
22 compressor inlet
3 compressor outlet
4 combustor outlet
43 low-pressure turbine inlet
5 low-pressure turbine outlet
6 mixing duct inlet
7 afterburner chamber outlet
8 nozzle throat
9 nozzle outlet
amp atmosphere condition
Bp bypass
cor corrected value
Comp compressor
Comb combustor
d design point
e equilibrium point
EX accessory
f fuel
Fan fan
LPT low-pressure turbine
HPT high-pressure turbine
p plant
s static
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