Investigation and Evaluation of Primary Energy from Wind Turbines for a Nearly Zero Energy Building (nZEB)
Abstract
:1. Introduction
2. Methodology
2.1. Research Object
2.2. Climate Data
2.3. Primary Energy Calculation Methodology
3. Results
3.1. The Estimation of the PEF of the Wind Turbines
3.2. The Estimation of the Produced and Consumed Electric Power
3.3. The Estimation of the Influence of the Average Wind Speed
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Energy Performance of Buildings—Overarching Standard EPBD; EN 15603:2014; European Union: Brussels, Belgium, 2014.
- Mahela, O.P.; Shaik, A.G. Comprehensive overview of grid interfaced wind energy generation systems. Renew. Sustain. Energy Rev. 2016, 57, 260–281. [Google Scholar] [CrossRef]
- ECOFYS. Primary Energy Factors for Electricity in Buildings. Available online: http://download.dalicloud.com/fis/download/66a8abe211271fa0ec3e2b07/ad5fccc2-4811-434a-8c4f-6a2daa41ad2a/Primary_energy_factors_report_ecofys_29.09.2011.pdf (accessed on 1 March 2019).
- Shafiullah, G.M.; Oo, A.M.T.; Shawkat Ali, A.B.M.; Wolfs, P. Potential challenges of integrating large-scale wind energy into the power grid—A review. Renew. Sustain. Energy Rev. 2013, 20, 306–321. [Google Scholar] [CrossRef]
- Issue Paper: Definition of Primary and Secondary Energy. Available online: http://unstats.un.org/unsd/envaccounting/londongroup/meeting13/LG13_12a.pdf (accessed on 1 March 2019).
- Martinez, F.; Herrero, C.L.; Pablo, S. Open loop wind turbine emulator. Renew. Energy 2014, 63, 212–221. [Google Scholar] [CrossRef]
- Yen, J.; Ahmed, A.N. Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn. 2013, 114, 12–17. [Google Scholar] [CrossRef]
- Islam, R.M.; Mekhilef, S.; Saidur, R. Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 2013, 21, 456–468. [Google Scholar] [CrossRef]
- Herbert, J.G.M.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Hasan, S.N.; Hassan, Y.M.; Majid, S.M.; Rahman, A.H. Review of storage schemes for wind energy systems. Renew. Sustain. Energy Rev. 2013, 21, 237–247. [Google Scholar] [CrossRef]
- Serrano, A.R.; Krawczyk, D.A. Development of Renewable Energy. In Buildings 2020+ Energy Sources, 1st ed.; Serrano, A.R., Krawczyk, D.A., Eds.; Printing House of Bialystok University of Technology: Białystok, Poland, 2019; pp. 7–49. [Google Scholar]
- Chen, L.Z. Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2008, 2, 123–138. [Google Scholar] [Green Version]
- AGFW. German Energy Efficiency Association for District Heating, Cooling and Combined Heat and Power. Available online: https://www.cleanenergywire.org/experts/agfw-energy-efficiency-association-heating-cooling-and-chp (accessed on 1 March 2019).
- Johannson, T.B.; Patwardhan, A.; Nakicenovic, N.; Gomez-Echeverri, L. Global Energy Assessment—Towards a Sustainable Future, 1st ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- International Energy Agency, Eurostat and the Organization for Economic Cooperation and Development. Energy Statistics Manual. Available online: https://www.iea.org/stats/docs/statistics_manual.pdf (accessed on 1 March 2019).
- BP Statistical Review of World Energy. June 2018. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (accessed on 1 March 2019).
- Renewable Energy Monitoring Protocol—Update 2010. Available online: https://www.rvo.nl/sites/default/files/bijlagen/Renewable%20Energy%20Protocol%20Monitoring%202010%20DEN.pdf (accessed on 1 March 2019).
- Special Report on Renewable Energy Sources and Climate Change Mitigation. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SRREN_FD_SPM_final-1.pdf (accessed on 1 March 2019).
- Macknick, J. Energy and CO2 emission data uncertainties. Carbon Manag. 2011, 2, 189–205. [Google Scholar] [CrossRef]
- Harmsen, R.; Wesselink, B.; Eichhammer, W.; Worrell, E. The unrecognized contribution of renewable energy to Europe’s energy savings target. Energy Policy 2011, 39, 3425–3433. [Google Scholar] [CrossRef]
- Building Regulations No. 78/2013 on the Energy Performance of Buildings. Available online: http://www.tzb-info.cz/pravni-predpisy/vyhlaska-c-78-2013-sb-o-energeticke-narocnosti-budov (accessed on 1 March 2019). (In Czech).
- BR18. Building Regulations Guidelines on Energy Consumption. Building Regulations. Available online: http://bygningsreglementet.dk (accessed on 1 March 2019). (In Danish).
- Government of the Republic Regulation. Minimum Requirements for Energy Efficiency Nr. 63. 11 December 2018. Available online: https://www.riigiteataja.ee/akt/113122018014 (accessed on 1 March 2019). (In Estonian).
- Energy Efficiency of Buildings. D3 Finnish Building Code Collection Ministry of the Environment, Department of Built Environment. Available online: http://www.finlex.fi/data/normit/37188-D3-2012_Suomi.pdf (accessed on 1 March 2019). (In Finnish).
- Building Regulations of 26 October 2010 on the Thermal Characteristics and Energy Performance Requirements for New Buildings and New Parts of Buildings. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022959397&categorieLien=id (accessed on 1 March 2019). (In French).
- Energetic Evaluation of Buildings—Building Regulations; DIN V 18599:2016; Beuth Verlag GmbH: Berlin, Germany, 2016; ISBN 13: 978-3410289463. (In German)
- Detailed National Parameter Specifications for the Calculation of the Energy Performance of Buildings and the Issue of the Energy Performance Certificate—Building Regulations. TOTEE 20701-1/2017. Available online: http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/GR_ENERGEIAS/kenak/files/TOTEE_20701-1_2017_TEE_1st_Edition.pdf (accessed on 1 March 2019). (In Greek).
- Regulation on the Definition of the Energy Performance of Buildings—Minister of the Interior. BM 20/2014 (III.7). Available online: http://www.kozlonyok.hu/nkonline/MKPDF/hiteles/MK14035.pdf (accessed on 1 March 2019). (In Hungarian).
- Energy Performance of Buildings—Determination of the Energy Performance for the Classification of the Building; Technical Specification UNI/TS 11300-5:2016; Italian National Unification (UNI—Ente Italiano di Normazione): Milano, Italy, 2016. (In Italian)
- The Methodology for Calculating the Energy Performance of a Building and a Dwelling or a Part of a Building Constituting an Independent Technical and Operational Unit as Well as the Method of Drawing Up and Models of Energy Performance Certificates. Technical regulation Dz.U. 2014 poz. 888. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20140000888/O/D20140888.pdf (accessed on 1 March 2019). (In Polish)
- The Energy Efficiency of Buildings. Regulation of the Ministry of Foreign Affairs of the Slovak Republic. 364/2012. Available online: http://www.sksi.sk/buxus/generate_page.php?page_id=3075 (accessed on 1 March 2019). (In Slovak).
- Efficient Use of Energy. Ministry of Environment and Spatial Planning of the Slovenia Republic. TSG-1-004:2010. Available online: http://www.arhiv.mop.gov.si/fileadmin/mop.gov.si/pageuploads/zakonodaja /prostor/graditev/TSG-01-004_2010.pdf (accessed on 1 March 2019). (In Slovenian)
- The Standard Assessment Procedure for the Energy Rating of Dwellings. SAP 2012. Available online: http://www.bre.co.uk/sap2012/page.jsp?id=2759 (accessed on 1 March 2019).
- Lithuanian Electricity Transmission System Operator (Litgrid). Available online: http://www.litgrid.eu/index.php/paslaugos/kilmes-garantiju-suteikimas/ataskaitos/563 (accessed on 5 December 2015). (In Lithuanian).
- Deksnys, R.P.; Bačauskas, A.; Ažubalis, V.; Jonaitis, A.; Slušnys, D.; Staniulis, R.; Radziukynas, V.; Klementavičius, A.; Kadiša, S.; Leonavičius, A.; et al. Feasibility Analysis of Wind Power Development, Part 1; Lithuanian Energy Institute Report. Available online: http://www.ena.lt/doc_atsi/VEPG_1_dalis.pdf (accessed on 5 December 2018). (In Lithuanian).
- Deksnys, R.P.; Bačauskas, A.; Ažubalis, V.; Ažubalis, M.; Jonaitis, A.; Slušnys, D.; Staniulis, R.; Nevardauskas, V.E.; Juočiūnas, K.; Adomavičius, V.R.; et al. Feasibility Analysis of Wind Power Development, Part 2; Lithuanian Energy Institute Report. Available online: http://www.ena.lt/doc_atsi/VEPG_2_dalis.pdf (accessed on 5 December 2018). (In Lithuanian).
- Katinas, V.; Gecevicius, G.; Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 2018, 218, 442–451. [Google Scholar] [CrossRef]
- IEC Standard 61400-1: Wind Turbine Generator Systems—Part 1: Safety Requirements, 3rd ed.; International Electrotechnical Commission: Geneva, Switzerland, 2005.
- Directive 2010/31/EC of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), Brussels. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri= OJ:L:2010:153:0013:0035:EN:PDF (accessed on 5 December 2018).
- Batagliolia, P.R.; Monarob, M.R.; Courya, V.D. Differential protection for stator ground faults in a full-converter wind turbine generator. Electr. Power Syst. Res. 2019, 169, 195–205. [Google Scholar] [CrossRef]
- Jasiūnas, K.; Teleszewski, T.J. Wind Energy. In Buildings 2020+ Energy Sources, 1st ed.; Serrano, A.R., Krawczyk, D.A., Eds.; Printing House of Bialystok University of Technology: Białystok, Poland, 2019; pp. 99–133. [Google Scholar]
- Şen, Z. Terrain topography classification for wind energy generation. Renew. Energy 1999, 16, 904–907. [Google Scholar] [CrossRef]
- Tian, W.; Ozbay, A.; Hu, H. Terrain effects on characteristics of surface wind and wind turbine wakes. Procedia Eng. 2015, 126, 542–548. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 53–153. [Google Scholar]
- Chitsazan, M.A.; Fadali, M.S.; Trzynadlowski, A.M. Wind speed and wind direction forecasting using echo state network with nonlinear functions. Renew. Energy 2019, 131, 879–889. [Google Scholar] [CrossRef]
Method | Description of Primary Energy Evaluation | PEF | PEF Value | Reference | |
---|---|---|---|---|---|
1. | Zero-equivalent method | Does not evaluate electrical and thermal energy production from renewable energy sources | Total primary energy ƒP,tot, | 0 | [13] |
2a Direct equivalent | Evaluates electrical and thermal energy production from non-fossil renewable energy and nuclear energy sources | Total primary energy ƒP,tot, | 1.0 | [14] | |
2. | 2b Amount of physical energy | Evaluates the primary form of energy obtained in generation process | Total primary energy ƒP,tot, | 1.0 | [15] |
2c Alternate | Evaluates the primary form of energy that is included into the statistical energy balance prior to conversion to the secondary or tertiary form of energy | Total primary energy ƒP,tot, | 2.5 | [16,17] | |
3. | 3a Effectiveness of technical conversion | Evaluates the entire energy production chain by separating the renewable and non-renewable energy | Non-renewable primary energy ƒP,nren, | 0.032 | [16,17] |
Renewable primary energy ƒP,ren, | 2.5 | ||||
3b Amount of physical energy | Evaluates the primary form of energy produced in the generation process | Non-renewable primary energy ƒP,nren, | 0.032 | [15] | |
Renewable primary energy ƒP,ren, | 1.0 |
Country | PEF | Total PEF, ƒP, tot | Non-Renewable PEF, ƒP, nren | Renewable PEF, ƒP, ren | Literature Source |
---|---|---|---|---|---|
Czech Republic | - | - | - | - | [21] |
Denmark | - | - | - | - | [22] |
Estonia | - | - | - | - | [23] |
Finland | - | - | - | - | [24] |
France | 1.00 | - | - | - | [25] |
Germany | - | 1.03 | 0.03 | 1.00 | [26] |
Greece | - | - | - | - | [27] |
Hungary | 0 | - | - | - | [28] |
Italy | - | 1.00 | 0 | 1.00 | [29] |
Poland | - | 1.00 | 0 | 1.00 | [30] |
Slovakia | - | - | - | - | [31] |
Slovenia | - | - | - | - | [32] |
United Kingdom | 1.00 | - | - | - | [33] |
Mark | Total Installed Power Capacity, MW | Turbine Capacity, MW | No of Turbine in Farm | Blade Length, m | Tower Height, m | Produced Electrical Energy, MWh/year | Consumed Electrical Energy, MWh/year |
---|---|---|---|---|---|---|---|
1A | 39.1 | 2 | 20 | 41 | 85 | 85298.1 | 30.6 |
2A | 34 | 2 | 17 | 41 | 97 | 15695.1 | 2.3 |
3A | 21.4 | 2 | 10 | 41 | 85 | 37496.8 | 212.7 |
4A | 20 | 2 | 10 | 41 | 85 | 45591.2 | 254.0 |
5A | 16 | 2.75–3 | 6 | 41 | 85 | 35780.3 | 225.0 |
6A | 12 | 2 | 6 | 41 | 78 | 10751.9 | 37.2 |
1B | 0.8 | 0.8 | 1 | 21 | 45 | 1842.0 | 0.4 |
2B | 0.8 | 0.8 | 1 | 21 | 45 | 1321.3 | 4.6 |
3B | 0.6 | 0.6 | 1 | 20 | 42 | 1637.8 | 5.7 |
4B | 0.25 | 0.25 | 1 | 15 | 50 | 124.8 | 0.03 |
5B | 0.25 | 0.25 | 1 | 15 | 50 | 394.7 | 0.06 |
6B | 0.25 | 0.25 | 1 | 15 | 45 | 683.1 | 13.7 |
7B | 0.25 | 0.25 | 1 | 15 | 55 | 366.9 | 4.8 |
8B | 0.225 | 0.225 | 1 | 14 | 50 | 209.9 | 0.05 |
Indicators | The Values of the Capacities of the Wind Turbines Operated in Lithuania | Weighted Average | |
---|---|---|---|
(>10) MW | (<10) MW | ||
fP,nren | 0.012 | 0.009 | 0.01 |
fP,ren | 1 | 1 | 1 |
fP,tot | 1.012 | 1.009 | 1.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamašauskas, R.; Šadauskienė, J.; Bruzgevičius, P.; Krawczyk, D.A. Investigation and Evaluation of Primary Energy from Wind Turbines for a Nearly Zero Energy Building (nZEB). Energies 2019, 12, 2145. https://doi.org/10.3390/en12112145
Tamašauskas R, Šadauskienė J, Bruzgevičius P, Krawczyk DA. Investigation and Evaluation of Primary Energy from Wind Turbines for a Nearly Zero Energy Building (nZEB). Energies. 2019; 12(11):2145. https://doi.org/10.3390/en12112145
Chicago/Turabian StyleTamašauskas, Rokas, Jolanta Šadauskienė, Patrikas Bruzgevičius, and Dorota Anna Krawczyk. 2019. "Investigation and Evaluation of Primary Energy from Wind Turbines for a Nearly Zero Energy Building (nZEB)" Energies 12, no. 11: 2145. https://doi.org/10.3390/en12112145