Next Article in Journal
Draining Water from Aircraft Fuel Using Nitrogen Enriched Air
Next Article in Special Issue
Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants
Previous Article in Journal
A Novel Off-Grid Optimal Hybrid Energy System for Rural Electrification of Tanzania Using a Closed Loop Cooled Solar System
Previous Article in Special Issue
Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessFeature PaperReview
Energies 2018, 11(4), 906; https://doi.org/10.3390/en11040906

A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams

1
Department of Infrastructure Engineering, Room 209B, The University of Melbourne, Building 175, Melbourne, VIC 3010, Australia
2
Deep Earth Energy Laboratory, Department of Civil Engineering, Monash University, Building 60, Melbourne, VIC 3800, Australia
Received: 15 March 2018 / Revised: 5 April 2018 / Accepted: 9 April 2018 / Published: 12 April 2018
(This article belongs to the Collection Bioenergy and Biofuel)
Full-Text   |   PDF [9566 KB, uploaded 3 May 2018]   |  

Abstract

Although enhanced coal bed methane recovery (ECBM) and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2 adsorption-induced swelling and hydrocarbon mobilisation. With regard to the temperature, the combined effects of the generation of thermal cracks, thermal expansion, adsorption behaviour alterations and the associated phase transition must be considered before coming to a final conclusion. A reduction in coal’s CO2 permeability with increasing CO2 pressure may occur due to swelling and slip-flow effects, both of which are influenced by the phase transition in CO2 from sub- to super-critical in deep seams. To date, many models have been proposed to simulate CO2 movement in coal considering various factors, including porosity, effective stress, and swelling/shrinkage. These models have been extremely useful to predict CO2 injectability into coal seams prior to field projects and have therefore assisted in implementing number of successful CO2 sequestration/ECBM projects. View Full-Text
Keywords: deep coal seams; natural permeability; CO2 flow; effective factors; flow models deep coal seams; natural permeability; CO2 flow; effective factors; flow models
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Perera, M.S.A. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams. Energies 2018, 11, 906.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top