Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reactor Setup
2.3. Gas Analysis
2.4. Data Processing Method
3. Results and Discussion
3.1. Effect of Nitrogen/Oxygen Substances on Methane Pyrolysis
3.1.1. Effect of CO2 on Methane Pyrolysis
3.1.2. Effect of CO on Methane Pyrolysis
3.1.3. Effect of N2 on Methane Pyrolysis
3.2. Pyrolysis of Simulated Coke Oven Gas
3.2.1. Influence of Input Power on the Simulated COG Pyrolysis Process
3.2.2. Influence of Feed Rate on the Simulated COG Pyrolysis Process
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Agency, I.E. Tracking Industrial Energy Efficiency and CO2 Emissions; Organizations for Economic Co-Operation and Development: Paris, France, 2007. [Google Scholar]
- Munoz-Escalona, P.; Payares, M.C.; Dorta, M.; Diaz, R. Analysis and influence of acetylene and propane gas during oxyfuel gas cutting of 1045 carbon steel. J. Mater. Eng. Perform. 2006, 15, 684–692. [Google Scholar] [CrossRef]
- Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760. [Google Scholar] [CrossRef] [PubMed]
- Diercks, R.; Arndt, J.D.; Freyer, S.; Geier, R.; Machhammer, O.; Schwartze, J.; Volland, M. Raw material changes in the chemical industry. Chem. Eng. Technol. 2008, 31, 631–637. [Google Scholar] [CrossRef]
- Slovetskii, D.I. Plasma-chemical processes in petroleum chemistry (review). Pet. Chem. 2006, 46, 295–304. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, J.; Su, B.G.; Wen, G.D.; Yang, Q.W.; Ren, Q.L. Pyrolysis of polyolefins using rotating arc plasma technology for production of acetylene. Energies 2017, 10, 513. [Google Scholar] [CrossRef]
- Bond, R.L.; Ladner, W.R.; Mcconnell, G.I.T.; Galbraith, I.F. Production of acetylene from coal, using a plasma jet. Nature 1963, 200, 1313–1314. [Google Scholar] [CrossRef]
- Beiers, H.G.; Baumann, H.; Bittner, D.; Klein, J.; Juntgen, H. Pyrolysis of some gaseous and liquid hydrocarbons in hydrogen plasma. Fuel 1988, 67, 1012–1016. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.; Wu, J.; Yang, Q.; Wen, G.; Su, B.; Ren, Q. Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma. Energies 2017, 10, 899. [Google Scholar] [CrossRef]
- Ma, J.; Su, B.; Wen, G.; Yang, Q.; Ren, Q.; Yang, Y.; Xing, H. Pyrolysis of pulverized coal to acetylene in magnetically rotating hydrogen plasma reactor. Fuel Process. Technol. 2017, 167, 721–729. [Google Scholar] [CrossRef]
- Maleki, M.; Parvin, P.; Reyhani, A.; Mortazavi, S.Z.; Moosakhani, A.; Ghorbani, Z.; Kiani, S. Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma. J. Opt. Soc. Am. B Opt. Phys. 2015, 32, 493–505. [Google Scholar] [CrossRef]
- Laktiushin, A.N.; Laktiushina, T.V. Computer synthesis by specified characteristic of the process of acetylene and technical hydrogen production from nature gas in hydrogen plasma. High Temp. Mater. Process. 2012, 16, 153–177. [Google Scholar] [CrossRef]
- Qi, J.L.; Kong, F.R. Status and prospect for chemical utilization of coke oven gas in China. Nat. Gas Chem. Ind. 2013, 1, 013. [Google Scholar] [CrossRef]
- Slovetsky, D.I. Modern Problems of Combustion and Its Application. In Proceedings of the IV International School-Seminar, Minsk, Belarus, 2–7 September 2001; p. 97. [Google Scholar]
- Jin, W.B.; Li, X.N.; Zhang, Y.; Yang, Q.W.; Xing, H.B.; Ren, Q.L. Separation of structurally-related compounds with ionic liquids. Sci. China Chem. 2016, 46, 1251–1263. [Google Scholar] [CrossRef]
- Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144. [Google Scholar] [CrossRef] [PubMed]
(a) | Main Component | H2 | CH4 | CmHn | CO | CO2 | O2 | N2 |
Vol % | 55–60 | 23–27 | 2–4 | 5–8 | 1.5–3 | 0.3–0.8 | 3–7 | |
Impurity | NH3 | benzene | HCN | H2S | organic sulfur | naphthalene | Tar | |
g/Nm3 | ≤0.05 | ≤2 | ≤0.3 | ≤0.02 | ≤0.05 | ≤0.1 | ≤0.05 | |
(b) | Main Component | H2 | CH4 | C2H6 | CO | CO2 | N2 | Ar |
Vol % | 56.00 | 27.00 | 3.01 | 6.09 | 2.02 | 4.88 | 1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Jin, J.; Wen, G.; Yang, Q.; Su, B.; Ren, Q. Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma. Energies 2018, 11, 351. https://doi.org/10.3390/en11020351
Huang W, Jin J, Wen G, Yang Q, Su B, Ren Q. Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma. Energies. 2018; 11(2):351. https://doi.org/10.3390/en11020351
Chicago/Turabian StyleHuang, Wei, Junkui Jin, Guangdong Wen, Qiwei Yang, Baogen Su, and Qilong Ren. 2018. "Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma" Energies 11, no. 2: 351. https://doi.org/10.3390/en11020351
APA StyleHuang, W., Jin, J., Wen, G., Yang, Q., Su, B., & Ren, Q. (2018). Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma. Energies, 11(2), 351. https://doi.org/10.3390/en11020351