The Concept of Segmented Wind Turbine Blades: A Review
Abstract
:1. Introduction
2. Wind Turbine Blade Manufacturing
3. Transportation of Wind Turbine Blades
4. The Cost of Energy: Requirements for Segmented Blades
4.1. Cost of Energy Components
4.2. The Initial Capital Cost
4.3. Operations and Maintenance Cost
4.4. Levelized Replacement Cost
4.5. Net Annual Energy Production
4.6. General Considerations for Segmented Blades
- Initial capital costs
- –
- manufacturing costs
- –
- tolerance requirements
- –
- production complexity and accuracy
- –
- ability to use with conventional production methods
- –
- quality control
- –
- positioning accuracy and speed of assembly
- Annual energy production
- –
- reliability
- –
- aerodynamics
- –
- weight of the joint
- Annual operating expenses
- –
- requiring minimal inspection
- –
- easy to repair during service
- –
- possibility of disassembly for replacing segments
4.7. Cost Effectiveness of Blade Segmentation
5. Blade Segmentation Strategy
5.1. Segmenting to Obtain a Reduced Component Length
5.2. Segmenting to Obtain a Reduction in Width and Height of the Components
5.3. Segmenting to Obtain a Variable Rotor Loading
6. Adhesive Joints in Segmented Blades
6.1. Cost of Energy
6.2. Implementations
7. Mechanical Joints in Segmented Blades
7.1. Cost of Energy
7.2. Experience from Blade Root Connections
7.2.1. Flange Type
7.2.2. Hub Type
7.2.3. T-Bolt Joint
7.2.4. Stud/Insert Type
7.2.5. Comparison
7.2.6. Implementations in Segmented Blades
7.3. Experience from Blade Root and Hub Extenders
7.4. Experience from Rotor Tips and Glider Wings
7.5. Other Concepts
7.5.1. Cables
7.5.2. Joints Using Transverse Fasteners
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kaldellis, J.K.; Zafirakis, D. The Wind Energy (r) Evolution: A Short Review of a Long History. Renew. Energy 2011, 36, 1887–1901. [Google Scholar] [CrossRef]
- Sieros, G.; Chaviaropoulos, P.; Sørensen, J.D.; Bulder, B.H.; Jamieson, P. Upscaling Wind Turbines: Theoretical and Practical Aspects and Their Impact on the Cost of Energy. Wind Energy 2012, 15, 3–17. [Google Scholar] [CrossRef]
- Campbell, S. Big Wind Turbines | Windpower Monthly. Available online: http://www.windpowermonthly.com/10-biggest-turbines (accessed on 14 July 2017).
- Lantz, E.; Wiser, R.; Hand, M. WP2 IEA Wind Task 26: The Past and Future Cost of Wind Energy; Technical Report NREL/TP-6A20-53510; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Johnson, S.J.; Baker, J.P.; van Dam, C.P.; Berg, D. An Overview of Active Load Control Techniques for Wind Turbines with an Emphasis on Microtabs. Wind Energy 2010, 13, 239–253. [Google Scholar] [CrossRef]
- Caduff, M.; Huijbregts, M.A.J.; Althaus, H.J.; Koehler, A.; Hellweg, S. Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity? Environ. Sci. Technol. 2012, 46, 4725–4733. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, O.T. Sandwich Materials for Wind Turbine Blades—Present and Future. J. Sandw. Struct. Mater. 2009, 11, 7–26. [Google Scholar] [CrossRef]
- Hau, E. Wind Turbines; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Nolet, S.C. Composite Wind Blade Engineering and Manufacturing; Independent Activities Period Mini-Course; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011. [Google Scholar]
- Veers, P.S.; Ashwill, T.D.; Sutherland, H.J.; Laird, D.L.; Lobitz, D.W.; Griffin, D.A.; Mandell, J.F.; Musial, W.D.; Jackson, K.; Zuteck, M.; et al. Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades. Wind Energy 2003, 6, 245–259. [Google Scholar] [CrossRef]
- Stiesdal, H.; Enevoldsen, P.B.; Johansen, K.; Kristensen, J.J.O.; Noertem, M.; Winther-Jensen, M. Method for Manufacturing Windmill Blades. E.P. Patent 1,310,351 (A1), 19 April 2006. [Google Scholar]
- Stiesdal, H. Method for Manufacturing a Wind Turbine Rotor Blade and Wind Turbine Rotor Blade. E.P. Patent 2,377,674 (A1), 19 October 2011. [Google Scholar]
- Serrano, J.C. Recovery Act: Wind Blade Manufacturing Innovation; Technical Report DE-EE0001372; U.S. Department of Energy: Washington DC, USA, 2011. [CrossRef]
- Mironov, G. A Wind Turbine Blade Automated Production System. W.O. Patent 2,011,035,539 (A1), 31 March 2011. [Google Scholar]
- Cooper, P. Wind Power Generation and Wind Turbine Design; Tong, W., Ed.; WIT Press: Southampton, UK; Boston, MA, USA, 2010. [Google Scholar]
- Banea, M.D.; da Silva, L.F.M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009, 223, 1–18. [Google Scholar] [CrossRef]
- Hayden, P.; Broome, P. A Method of Making a Root End Joint of a Wind Turbine Blade and a Root Segment for Such a Joint. W.O. Patent 2,013,061,016 (A1), 2 May 2013. [Google Scholar]
- Griffin, D.A. Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades; Technical Report SAND2002-1879; Sandia National Laboratories: Albuquerque, NM, USA, 2002. [CrossRef]
- Toft, H.S.; Branner, K.; Berring, P.; Sørensen, J.D. Defect Distribution and Reliability Assessment of Wind Turbine Blades. Eng. Struct. 2011, 33, 171–180. [Google Scholar] [CrossRef]
- Cairns, D.S.; Riddle, T.; Nelson, J. Wind Turbine Composite Blade Manufacturing: The Need for Understanding Defect Origins, Prevalence, Implications and Reliability; Technical Report SAND2011-1094; Sandia National Laboratories: Albuquerque, NM, USA, 2011.
- Andersen, S.; Albertsen, H.; Grabau, P. Windmill Rotor and Wind Blades Therefor. W.O. Patent 9,914,490 (A1), 25 March 1999. [Google Scholar]
- Hayden, P.T.; Behmer, H. A Modular Structural Composite Beam. W.O. Patent 2,011,135,306 (A1), 3 November 2011. [Google Scholar]
- Kontis, M.; Kulenkampff, J. Rotor Blade of a Wind Power Plant, Method of Fabricating a Rotor Blade and a Pair of Belts for a Rotor Blade. U.S. Patent 9,011,103 (B2), 21 April 2015. [Google Scholar]
- Sorensen, F.; Schytt-Nielsen, R.; Soerensen, F. Blade for a Wind Turbine and a Method of Assembling Laminated Profiles for a Blade. U.S. Patent 7,179,059 (B2), 20 February 2007. [Google Scholar]
- James, T.; Goodrich, A. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry; NREL/PR-6A20-60063; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Smith, K. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; Technical Report NREL/SR-500-29439; National Renewable Energy Laboratory: Kirkland, WA, USA, 2001.
- Flores, J.; Chan, S.; Homola, D. A Field Test and Computer Simulation Study on the Wind Blade Trailer. In Proceedings of the Fifth International Symposium on Highway Geometric Design, Vancouver, BC, Canada, 22–24 June 2015. [Google Scholar]
- García, E. Innoblade®: Gamesa’s Track Record on Blade Modularity. In Proceedings of the IQPC Conference “Advances in Rotor Blades for Wind Turbines”, Bremen, Germany, 25–27 February 2014. [Google Scholar]
- Grabau, P. Seaborne Transportation of Wind Turbine Blades. W.O. Patent 2,009,068,031 (A1), 4 June 2009. [Google Scholar]
- Rebsdorf, A.V. Transportation Method for a Wind Turbine Blade. U.S. Patent 2,012,227,357 (A1), 13 September 2012. [Google Scholar]
- Schibsbye, K.; Sullivan, J.T. Apparatus for Railroad Transportation of Wind Turbine Blades. U.S. Patent 8,641,339 (B2), 4 February 2014. [Google Scholar]
- Ashraf, S. Large Wind Turbine Blade Transportation Solution: The Aeroscraft. Wind Syst. 2013, 24–32. [Google Scholar]
- Cotrell, J.; Stehly, T.; Johnson, J.; Roberts, J.O.; Parker, Z.; Scott, G.; Heimiller, D. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results; Technical Report NREL/TP-5000-61063; National Renewable Energy Laboratory: Golden, CO, USA, 2014.
- Jensen, J. A Method for the Transport of a Long Windmill Wing and a Vehicle for the Transport Thereof. W.O. Patent 2,006,000,230 (A1), 5 January 2006. [Google Scholar]
- Wobben, A. Transport Vehicle for a Rotor Blade of a Wind-Energy Turbine. W.O. Patent 03,057,528 (A1), 17 July 2003. [Google Scholar]
- Kawada, M. Transporting Method and Transporter of Irregular Shaped Elongated Article. J.P. 2,004,243,805 (A), 2 Sepember 2004. [Google Scholar]
- Nies, J. Transport Device for an Elongate Object Such as a Rotor Blade for a Wind Turbine or the Like. U.S. Patent 8,226,342 (B2), 24 July 2012. [Google Scholar]
- Pedersen, G. A Vehicle for Transporting a Wind Turbine Blade, a Control System and a Method for Transporting a Wind Turbine Blade. W.O. Patent 2,007,147,413 (A1), 27 December 2007. [Google Scholar]
- Landrum, S.C.; King, T.C. Wind Turbine Blade Transportation System and Method. U.S. Patent 7,591,621 (B1), 22 September 2009. [Google Scholar]
- Grabau, P. Transporting and Storing Curved Wind Turbine Blades. U.S. Patent 7,690,875 (B2), 6 April 2010. [Google Scholar]
- Berry, D.; Lockard, S.; Jackson, K.; Zuteck, M.; Ashwill, T. Blade Manufacturing Improvements Remote Blade Manufacturing Demonstration; Technical Report SAND2003-0719; Sandia National Laboratories: Warren, MI, USA, 2003.
- Pedersen, G.K.S. Vehicle for Transporting a Wind Turbine Blade, a Control System and a Method for Transporting a Wind Turbine Blade. U.S. Patent 8,306,695, 6 November 2012. [Google Scholar]
- Thomsen, J. Transport System for a Wind Turbine Blade. U.S. Patent 9,011,054 (B2), 21 April 2015. [Google Scholar]
- Fingersh, L.J.; Hand, M.M.; Laxson, A.S. Wind Turbine Design Cost and Scaling Model; Technical Report NREL/TP-500-40566; National Renewable Energy Laboratory: Golden, Co, USA, 2006.
- Dutton, A.; Kildegaard, C.; Kensche, C.; Hahn, F.; van Delft, D.; de Winkel, G. Design, Structural Testing, and Cost Effectiveness of Sectional Wind turbine Blades; Technical Report JOR3970167; Knowledge Centre WMC: Wieringerwerf, The Netherlands, 2000. [Google Scholar]
- Hibbard, P. Wind Turbine Blade. U.S. Patent 8,177,515 (B2), 15 May 2012. [Google Scholar]
- Wetzel, K.K. Modular Blade Design & Manufacturing, 2014; Wind Turbine Blade Workshop: Albuquerque, NM, USA, 2014.
- Nies, J.J. Adaptive Rotor Blade for a Wind Turbine. U.S. Patent 8,231,351, 31 July 2012. [Google Scholar]
- Saenz, E.; Nuin, I.; Montejo, R.; Sanz, J. Development and Validation of a New Joint System for Sectional Blades: Joint System for Sectional Blades. Wind Energy 2015, 18, 419–428. [Google Scholar] [CrossRef]
- Moroz, E.M. Multi-Piece Wind Turbine Rotor Blades and Wind Turbines Incorporating Same. U.S. Patent 7,381,029 (B2), 3 June 2008. [Google Scholar]
- Rohden, R. Rotor Blade for a Wind Energy Installation. W.O. Patent 2,007,131,937 (A1), 22 November 2007. [Google Scholar]
- Vionis, P.; Lekou, D.; Gonzalez, F.; Mieres, J.; Kossivas, T.; Soria, E.; Gutierrez, E.; Galiotis, C.; Philippidis, T.; Voutsinas, S.; et al. Development of a MW Scale Wind Turbine for High Wind Complex Terrain Sites; the MEGAWIND Project. In Proceedings of the EWEC, Athens, Greece, 27 February–2 March 2006; Volume 2006. [Google Scholar]
- Walters, A.E.D. Methods of Manufacture. U.S. Patent App. 13/576,931, 20 December 2012. [Google Scholar]
- Sayer, F.; Bürkner, F.; Blunk, M.; van Wingerde, A.M.; Busmann, H.G. Influence of Loads and Environmental Conditions on Material Properties over the Service Life of Rotor Blades. DEWI Mag. 2009, 34, 24–31. [Google Scholar]
- Pedersen, B.H.; De La Rua, I.A.; Sola, R.R.; Pascual, E.S.; Savii, H.R. Sensorised Blade Joint. U.S. Patent 20,090,116,962, 7 May 2009. [Google Scholar]
- Petri, L.; Sancho, R. Reversible System for Sectioning Wind Generator Blades in Several Parts. W.O. Patent 2,008,084,126 (B1), 12 September 2008. [Google Scholar]
- Stiesdal, H. Method and Connecting Piece for Assembling Windmill Blade Sections. W.O. Patent 2,006,056,584 (A1), 1 June 2006. [Google Scholar]
- Baker, M.L.; Arendt, C.P. Lightweight Composite Truss Wind Turbine Blade. U.S. Patent 7,517,198, 2 May 2013. [Google Scholar]
- Rudling, P. Wind Turbine Blade. U.S. Patent 8,696,317 (B2), 15 April 2014. [Google Scholar]
- Birkemeyer, J.; Beyland, L. Segmentation Technology for Large Onshore Blades. In Proceedings of the IQPC Conference “Advances in Rotor Blades for Wind Turbines”, Bremen, Germany, 25–27 February 2014. [Google Scholar]
- Wobben, A. Rotor Blade for a Wind Power Installation. W.O. Patent 02,051,730 (A3), 7 November 2002. [Google Scholar]
- Siegfriedsen, S. Rotor Blade for Wind Power Installations. W.O. Patent 0,146,582 (A2), 28 June 2001. [Google Scholar]
- Lachenal, X.; Daynes, S.; Weaver, P.M. Review of morphing concepts and materials for wind turbine blade applications. Wind Energ. 2012. [Google Scholar] [CrossRef]
- Niu, C.; Niu, M. Airframe Structural Design: Practical Design Information and Data on Aircraft Structures; Airframe Book Series; Conmilit Press Limited: Hong Kong, China, 1999. [Google Scholar]
- Griffin, D.A. WindPACT Turbine Design Scaling Studies Technical Area 1–Composite Blades for 80- to 120-Meter Rotor. Technical Report NREL/SR-500-29492; National Renewable Energy Laboratory: Golden, CO, USA, 2001. [Google Scholar]
- Schubel, P. Technical Cost Modelling for a Generic 45-m Wind Turbine Blade Producedby Vacuum Infusion (VI). Renew. Energy 2010, 35, 183–189. [Google Scholar] [CrossRef]
- Mikhail, A. Low Wind Speed Turbine Development Project Report; Technical Report NREL/SR-500-43743; National Renewable Energy Laboratory: Golden, CO, USA, 2009.
- Vronsky, T.; Hancock, M. Segmented Rotor Blade Extension Portion. W.O. Patent 2,010,013,025 (A3), 4 November 2010. [Google Scholar]
- Judge, P.W. Segmented Wind Turbine Blade. U.S. Patent 7,854,594 (B2), 21 December 2010. [Google Scholar]
- Broome, P.; Hayden, P. An Aerodynamic Fairing for a Wind Turbine and a Method of Connecting Adjacent Parts of Such a Fairing. W.O. Patent 2,011,064,553 (A3), 5 January 2012. [Google Scholar]
- Van Wingerde, A.M.; van Delft, D.R.V.; Molenveld, K.; Bos, H.L.; Bulder, B.H.; de Bonte, H. BLADECO Eindrapport; Technical Report BLDPV1-05; Knowledge Centre WMC: Wieringerwerf, The Netherlands, 2002. [Google Scholar]
- De La Rua, I.A.; Pascual, E.S.; Collado, S.A. Blade Insert. U.S. Patent 8,388,316, 5 March 2013. [Google Scholar]
- Mark, H. Modular Wind Turbine Blade with Both Spar and Foil Sections Forming Aerodynamic Profile. G.B. Patent 2,488,099 (A), 22 August 2012. [Google Scholar]
- Barlas, T.; van Kuik, G. Review of State of the Art in Smart Rotor Control Research for Wind Turbines. Prog. Aerosp. Sci. 2010, 46, 1–27. [Google Scholar] [CrossRef]
- Pasupulati, S.V.; Wallace, J.; Dawson, M. Variable Length Blades Wind Turbine. In Proceedings of the Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; pp. 2097–2100. [Google Scholar]
- Dawson, M.H. Variable Length Wind Turbine Blade; Technical Report DE-FG36-03GO13171; U.S. Department of Energy Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2006. [CrossRef]
- Imraan, M.; Sharma, R.N.; Flay, R.G. Wind Tunnel Testing of a Wind Turbine with Telescopic Blades: The Influence of Blade Extension. Energy 2013, 53, 22–32. [Google Scholar] [CrossRef]
- Dawson, M.; Wallace, J. Variable Length Wind Turbine Blade Having Transition Area Elements. W.O. Patent 2,010,120,595 (A1), 21 October 2010. [Google Scholar]
- Castaignet, D.; Barlas, T.; Buhl, T.; Poulsen, N.K.; Wedel-Heinen, J.J.; Olesen, N.A.; Bak, C.; Kim, T. Full-Scale Test of Trailing Edge Flaps on a Vestas V27 Wind Turbine: Active Load Reduction and System Identification: Full-Scale Test of Trailing Edge Flaps on a Vestas V27 Wind Turbine. Wind Energy 2014, 17, 549–564. [Google Scholar] [CrossRef]
- Berg, J.; Resor, B.; Paquette, J.; White, J. SMART Wind Turbine Rotor: Design and Field Test; SAND2014-0681; Sandia National Laboratories: Albuquerque, NM, USA, 2014.
- Berg, J.C.; Barone, M.F.; Yoder, N.C. SMART Wind Turbine Rotor: Data Analysis and Conclusions; SAND2014-0712; Sandia National Laboratories: Albuquerque, NM, USA, 2014.
- Tobergte, N.J. Apparatus and Method for Transporting and Aligning Wind Turbine Rotor Blade. U.S. Patent 8,172,493, 8 May 2012. [Google Scholar]
- Baker, M.; Arendt, C.; Madrid, B.; Vilhauer, S. Efficient Wind Turbine Blades, Wind Turbine Blade Structures, and Associated Systems and Methods of Manufacture, Assembly and Use. W.O. Patent 2010065928 (A1), 10 June 2010. [Google Scholar]
- Zirin, R.M.; Lin, W.W.L.; Zhou, Y.; Quek, S.C.; Praveen, G.; Kirkpatrick, B.; Livingston, J.T.; Baehmann, P.L. Multi-Segment Wind Turbine Blade and Method for Assembling the Same. U.S. Patent 7,740,453 (B2), 22 June 2010. [Google Scholar]
- Livingston, J.T. Structure and Method for Self-Aligning Rotor Blade Joints. U.S. Patent 8,167,569, 1 May 2012. [Google Scholar]
- Baehmann, P.L.; Miebach, T.; Telfeyan, E.J.; Lin, W.W.L.; Yerramalli, C.S.; Quek, S.C. Method for Assembling Jointed Wind Turbine Blade. U.S. Patent 2,010,132,884 (A1), 3 June 2010. [Google Scholar]
- Riddell, S.G. Joint Design for Rotor Blade Segments of a Wind Turbine. U.S. Patent 7,922,454 (B1), 12 April 2011. [Google Scholar]
- Kyriakides, S.A.; Riddell, S.G.; Walker, A.M. Method for Assembling a Multi-Segment Wind Turbine Rotor Blade with Span-Wise Offset Joints. U.S. Patent 2,013,091,705 (A1), 18 April 2013. [Google Scholar]
- Livingston, J.T.; Driver, H. Wind Blade Joint Bonding Grid. U.S. Patent 8,221,085, 17 July 2012. [Google Scholar]
- Arelt, R. Method for Producing a Rotor Blade, a Corresponding Rotor Blade and a Wind Power Plant. U.S. Patent 2,006,127,222 (A1), 15 June 2006. [Google Scholar]
- Driver, H.D.; Lin, W.W.; Livingston, J.T. Modular Wind Turbine Blades with Resistance Heated Bonds. U.S. Patent 2,009,148,300 (A1), 11 June 2009. [Google Scholar]
- Spera, D.A.; Esgar, J.B.; Gougeon, M.; Zuteck, M.D. Structural Properties of Laminated Douglas Fir/Epoxy Composite Material; National Aeronautics and Space Administration: Cleveland, OH, USA, 1990.
- Gougeon, M.A.; Gougeon, J.C. Wind Turbine Blade Joint Assembly and Method of Making Wind Turbine Blades. U.S. Patent 4,474,536 (A), 2 October 1984. [Google Scholar]
- Bech, A. Wind Turbine Blades Made of Two Separate Sections, and Method of Assembly. U.S. Patent 8,348,622 (B2), 8 January 2013. [Google Scholar]
- Bhat, C.; Noronha, D.J.; Saldana, F.A. Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2015, 9, 996–1005. [Google Scholar]
- Schwartz, M.M. MIL-HDBK-17-3F: Composite Materials Handbook, Polymer Matrix Composites: Materials Usage, Design, and Analysis. In Composite Materials Handbook; U.S. Department of Defense: Arlington County, VA, USA, 2002; Volume 3. [Google Scholar]
- Hayden, P.; Behmer, H. A Wind Turbine Blade. W.O. Patent 2,012,004,571 (A3), 12 April 2012. [Google Scholar]
- Frederiksen, H. A Method of Producing a Composite Structure via Intermediate Products and a Composite Structure Obtainable by the Method. E.P. Patent 2,033,769 (A1), 11 March 2009. [Google Scholar]
- National Research Council. Assessment of Research Needs for Wind Turbine Rotor Materials Technology; National Academy Press: Washington, DC, USA, 1991. [Google Scholar]
- Kensche, C. Fatigue of Composites for Wind Turbines. Int. J. Fatigue 2006, 28, 1363–1374. [Google Scholar] [CrossRef]
- Hosseini-Toudeshky, H.; Jahanmardi, M.; Goodarzi, M. Progressive Debonding Analysis of Composite Blade Root Joint of Wind Turbines under Fatigue Loading. Compos. Struct. 2015, 120, 417–427. [Google Scholar] [CrossRef]
- Ashwill, T. Sweep-Twist Adaptive Rotor Blade: Final Project Report; Technical Report SAND2009-8037; Sandia National Laboratories: Albuquerque, NM, USA, 2010.
- Martínez, V.; Güemes, A.; Trias, D.; Blanco, N. Numerical and Experimental Analysis of Stresses and Failure in T-Bolt Joints. Compos. Struct. 2011, 93, 2636–2645. [Google Scholar] [CrossRef]
- Harismendy, R.D.A.; Amezqueta, P.; Sanz, M.; Nuin, M.; Lasa, M.; Sanz, R. Sistema De Amarre Para La Union De Tramos De Palas De Aerogenerador Partidas. E.S. Patent 2,352,945 (A1), 16 February 2011. [Google Scholar]
- Quell, P.; Bendel, U.; Schubert, M.; Eusterbarkey, C. Rotor Blade Attachment. U.S. Patent 8,133,029, 2 April 2012. [Google Scholar]
- Doorenspleet, F.; Arelt, R.; Eyb, E. Rotor Blade for a Wind Turbine. U.S. Patent 7,517,194 (B2), 14 April 2009. [Google Scholar]
- Hayden, P.; Broome, P.; Whiley, D. An Insert and Method for Forming an End Connection in a Uni -Axial Composite Material. W.O. Patent 2,010,041,008 (A1), 15 April 2010. [Google Scholar]
- Vronsky, T.; Hahn, F.H. Wind Turbine Rotor Blade. U.S. Patent 8,105,040, 31 January 2012. [Google Scholar]
- Faddoul, J.R. Test Evaluation of a Laminated Wood Wind Turbine Blade Concept; Technical Report DOE/NASA/ 20320-30; Lewis Research Center, National Aeronautics and Space Administration: Cleveland, OH, USA, 1981.
- Raina, A.; Wullenschneider, T.S.; Barnhart, R.M.; Wetzel, K.K.; Yang, C. Insert and Method of Attaching Insert to Structure. U.S. Patent 2,015,071,701 (A1), 12 March 2015. [Google Scholar]
- McEwen, L.N.; Louarn, F.H.; Sellier, J.; Chignell, A.J. Wind or Tidal Turbine Blade Having an Attachment. U.S. Patent 20,130,108,464, 2 May 2013. [Google Scholar]
- Sorensen, F.; Schytt-Nielsen, R.; Soerensen, F. Method of Manufacturing a Wind Turbine Blade Root. U.S. Patent 7,530,168 (B2), 12 May 2009. [Google Scholar]
- Bendel, U.; Werner, M.; Knops, M. Method for Establishing A Blade Connection of a Rotor Blade, A Blade Connection and a Securing Element for a Blade Connection. U.S. Patent 2,011,044,817 (A1), 24 February 2011. [Google Scholar]
- Kildegaard, C. Embedding Element to Be Embedded in the End Part of a Windmill Blade, a Method Producing Such an Embedding Element as Well as Embedding of Such Embedding Elements in a Windmill Blade. U.S. Patent 2,005,106,029 (A1), 19 May 2005. [Google Scholar]
- Grove-Nielsen, E. A Root Bushing for a Wind Turbine Rotor Blade, a Wind Turbine Rotor Blade, a Wind Turbine and a Method for Manufacturing a Wind Turbine Rotor Blade for a Wind Turbine. E.P. Patent 2,952,735 (A1), 9 December 2015. [Google Scholar]
- Feigl, L. Wind Turbine Blade Connector Assembly. W.O. Patent 2,013,014,228 (A1), 31 January 2013. [Google Scholar]
- Schmidt, R.; Weimer, C.; Stadtfeld, H. Blade Connection for the Rotor Blades of a Wind-Energy Turbine and a Method for the Production Thereof. W.O. Patent 03,082,551 (A1), 9 October 2003. [Google Scholar]
- Tangler, J.L. The Evolution of Rotor and Blade Design; National Renewable Energy Laboratory: Palm Springs, CA, USA, 2000.
- Jackson, K.J.; Zuteck, M.D.; van Dam, C.P.; Standish, K.J.; Berry, D. Innovative Design Approaches for Large Wind Turbine Blades. Wind Energy 2005, 8, 141–171. [Google Scholar] [CrossRef]
- UpWind: Design Limits and Solutions for Very Large Wind Turbines; Technical Report; European Wind Energy Association: Brussels, Belgium, 2011.
- Montejo, Y.; Amezqueta, P.; Lahuerata, C.; Nuin, M.D.L.; Guelbenzu, B.; Sanz, M.; Del, R.C.; Farinas, C.; Saenz, M. System for Joining Component Portions of Wind-Turbine Blades. W.O. Patent 2,012,156,547 (A1), 3 May 2012. [Google Scholar]
- Aarhus, K. Blade Root Extender for a Wind Turbine. U.S. Patent 8,337,161 (B2), 25 December 2012. [Google Scholar]
- Heerkes, H.; Scherer, R. Wind Turbine Rotor, and Hub and Extender Therefor. W.O. Patent 0,142,647 (A2), 14 June 2001. [Google Scholar]
- Wobben, A. Wind Turbine Blade Root Spacer for Increasing the Separation of the Blade Tip from the Tower. W.O. Patent 03,060,319 (A1), 24 July 2003. [Google Scholar]
- Joassard, R.; Bodin, P.; Filippi, G. Wind Generator for Power Plant, Has Offset Unit Offsetting Leading Edge Such That Main Axis Extended between Center of Root Base of Blades and Opposite Ends of Blades Does Not Pass through Rotational Axis of Hub. F.R. Patent 2,863,318 (A1), 10 June 2005. [Google Scholar]
- Linscott, B.S. DOE Large Horizontal Axis Wind Turbine Development at NASA Lewis Research Center; Technical Report DOE/NASA/20320-47; Lewis Research Center, National Aeronautics and Space Administration: Cleveland, OH, USA, 1982.
- Lu, H.; Zeng, P.; Lei, L.; Yang, Y.; Xu, Y.; Qian, L. A Smart Segmented Blade System for Reducing Weight of the Wind Turbine Rotor. Energy Convers. Manag. 2014, 88, 535–544. [Google Scholar] [CrossRef]
- Curtin, G.A. Expansion Assembly for a Rotor Blade of a Wind Turbine. U.S. Patent 20,110,142,636, 16 June 2011. [Google Scholar]
- Olthoff, G. Removable Rotor Blade Tip. U.S. Patent 20,130,236,321, 12 September 2013. [Google Scholar]
- Hoffmann, A.; Dulle, D.; Clemens, C. Rotor Blade Tip. U.S. Patent 2,016,090,963 (A1), 31 March 2016. [Google Scholar]
- Gay, P.L.; Gay, P.L. Wind Turbine Blade Tip Brake Apparatus and Method. U.S. Patent 8,403,641 (B2), 26 March 2013. [Google Scholar]
- Pajard, J.P. Aircraft Wing Including a Plurality of Dismountable Members. U.S. Patent 8,128,032, 6 March 2012. [Google Scholar]
- Thompson, B.E.; Lotz, R.D. Sailplane Carry-through Structures Made with Composite Materials. J. Aircraft 1996, 33, 596–600. [Google Scholar] [CrossRef]
- Rudling, P. A Root End Joint for a Wind Turbine Blade. W.O. Patent 2,009,034,292 (A2), 19 March 2009. [Google Scholar]
- Bech, A.; Hibbard, P. A Sectional Blade. W.O. Patent 2,010,023,299 (A2), 4 March 2010. [Google Scholar]
- Hibbard, P.; Hancock, M. Sectional Wind Turbine Blade. U.S. Patent 9,388,789 (B2), 12 July 2016. [Google Scholar]
- Eyb, E. Modular Rotor Blade for a Wind Turbine and Method for Assembling Same. U.S. Patent 7,654,799 (B2), 2 February 2010. [Google Scholar]
- Wang, W.; Jin, B.; Liu, Z.; Dang, Q.; Wang, S. Segmented Wind Rotor Blade for Wind Turbine Generator System and Assemblying Method Thereof. U.S. Patent 2,012,213,642 (A1), 23 August 2012. [Google Scholar]
- Finnigan, P.M.; Lanaud, C.; Rengarajan, G.; Qian, G. System and Method for Joining Turbine Blades. U.S. Patent 8,123,488 (B2), 28 February 2012. [Google Scholar]
- Wobben, A. Butt Connection for Hollow Profile Members. U.S. Patent 7,481,624, 27 January 2009. [Google Scholar]
- Kootstra, D.J. Wind Turbine Rotor Blade Joint. U.S. Patent 8,172,539, 8 May 2010. [Google Scholar]
- Doellinger, R.; Schindler, R.; Franz, D. Rotor Blade Comprising a Plurality of Individual Sections. U.S. Patent 4,389,162 (A), 21 June 1983. [Google Scholar]
- Cairo, R.R.; Cairo, R.R. Modular Blades and Methods for Making Same. U.S. Patent 7,393,184 (B2), 1 July 2008. [Google Scholar]
- Klein, H. Rotor Blade or Rotor Blade Segment for a Wind Turbine. U.S. Patent 8,888,462, 18 November 2014. [Google Scholar]
- Torres, M.M.; Torres, M. Pala De Aerogenerador Dividida En Tramos Y Proceso De Fabricacion De La Misma. E.S. Patent 2,343,712 (A1), 6 August 2010. [Google Scholar]
- Llorente, G.; Velez, O. Wind Turbine Blade. W.O. Patent 2,005,100,781 (A1), 27 October 2005. [Google Scholar]
Transportation Method | Max. Weight (Tonne) | Max. Length (m) | Max. Height (m) | Max. Width (m) |
---|---|---|---|---|
rail | 163 | 27.4 | 4 | 3.4 |
road (over weight) | >36 | 45.7 | 4.1 | 2.6 |
water (barge) | >200 | 76.2 | - | 16.5 |
Segmentation Strategy | Type of Division | Advantages | Drawbacks |
---|---|---|---|
Reducing length | Span-wise joint | Potential cost reductions | Goes against historical trend |
Slender blades reduce available space | |||
Optimal split transport/structure differs | |||
Division of structural spar | |||
Reducing width/height | Chord-wise joint | Potential cost reductions | Transfer of edge-wise loads |
Reducing rotor loading | Span-wise: telescopic blades | Variable swept area | Division of structural spar |
Reduced extreme loads. | |||
Chord-wise: trailing edge flaps | Variable blade shape | No need to divide structural spar | |
Reduced extreme and fatigue loads | Increased complexity |
Adhesive Joint Issue | Suggested Remedies | |
---|---|---|
Time of assembly | Alignment of the segments | -Alignment using laser-positioning |
-Brackets attached to spar cap | ||
-Alignment pins | ||
-Overlapping portions | ||
Curing of the bonds | -Resistance heated bonds | |
Bond-quality | Bond thickness | -Bonding grid |
-Shims | ||
-Producing the segments in a single mold | ||
Air entrapment | -Flooding of a cavity | |
-Infusion |
Blade Root Connection | Advantages | Drawbacks | Implementations |
---|---|---|---|
Flange type | - | Inferior fatigue behavior | - |
Hub type | - | Heavy | - |
T-bolt type | Inexpensive and simple | Packing limitation of the T-bolts | [45,52,100] |
Stud/insert type | Allows for the lightest joint | cost | [49,55] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peeters, M.; Santo, G.; Degroote, J.; Paepegem, W.V. The Concept of Segmented Wind Turbine Blades: A Review. Energies 2017, 10, 1112. https://doi.org/10.3390/en10081112
Peeters M, Santo G, Degroote J, Paepegem WV. The Concept of Segmented Wind Turbine Blades: A Review. Energies. 2017; 10(8):1112. https://doi.org/10.3390/en10081112
Chicago/Turabian StylePeeters, Mathijs, Gilberto Santo, Joris Degroote, and Wim Van Paepegem. 2017. "The Concept of Segmented Wind Turbine Blades: A Review" Energies 10, no. 8: 1112. https://doi.org/10.3390/en10081112
APA StylePeeters, M., Santo, G., Degroote, J., & Paepegem, W. V. (2017). The Concept of Segmented Wind Turbine Blades: A Review. Energies, 10(8), 1112. https://doi.org/10.3390/en10081112