SARS-CoV-2 Infection Impairs Oculomotor Functions: A Longitudinal Eye-Tracking Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials and Equipment
2.3. Procedure and Design
2.4. Data analysis
3. Results
3.1. The Immediate and Evolving Impact of SARS-CoV-2 Infection
3.2. Linear discriminant analysis
4. Discussion
4.1. The Immediate Impact of SARS-CoV-2 Infection
4.2. Long-Lasting Oculomotor Impairments Due to SARS-CoV-2 Infection
4.3. Limitations of the Current Study
5. Conclusions
Ethics and declaration of conflict
Acknowledgments
References
- Al-Sharif, E., D. Strianese, N. H. AlMadhi, A. D’Aponte, R. dell’Omo, R. Di Benedetto, and C. Costagliola. 2021. Ocular tropism of coronavirus (CoVs): A comparison of the interaction between the animal-to-human transmitted coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS-CoV, CoV-229E, NL63, OC43, HKU1) and the eye. International Ophthalmology 41, 1: 349–362. [Google Scholar] [CrossRef] [PubMed]
- Andalib, S., J. Biller, M. Di Napoli, N. Moghimi, L. D. McCullough, C. A. Rubinos, C. O’Hana Nobleza, M. R. Azarpazhooh, L. Catanese, I. Elicer, M. Jafari, F. Liberati, C. Camejo, M. Torbey, and A. A. Divani. 2021. Peripheral nervous system manifestations associated with COVID-19. Current Neurology and Neuroscience Reports 21, 3: 9. [Google Scholar] [CrossRef]
- Bao, H.-W.-S. 2023. bruceR: Broadly Useful Convenient and Efficient R Functions (2023.9) [Computer software. Available online: https://cran.r-project.org/web/packages/bruceR/index.html.
- Becker, J. H., J. J. Lin, M. Doernberg, K. Stone, A. Navis, J. R. Festa, and J. P. Wisnivesky. 2021. Assessment of cognitive function in patients after COVID-19 infection. JAMA Network Open 4, 10: e2130645. [Google Scholar] [CrossRef] [PubMed]
- Benson, P. J., S. A. Beedie, E. Shephard, I. Giegling, D. Rujescu, and D. St. Clair. 2012. Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biological Psychiatry 72, 9: 716–724. [Google Scholar] [CrossRef] [PubMed]
- Caldani, S., C. L. Gerard, H. Peyre, and M. P. Bucci. 2020. Pursuit eye movements in dyslexic children: Evidence for an immaturity of brain oculomotor structures? Journal of Eye Movement Research 13, 1. [Google Scholar] [CrossRef]
- Ceban, F., S. Ling, L. M. W. Lui, Y. Lee, H. Gill, K. M. Teopiz, N. B. Rodrigues, M. Subramaniapillai, J. D. Di Vincenzo, B. Cao, K. Lin, R. B. Mansur, R. C. Ho, J. D. Rosenblat, K. W. Miskowiak, M. Vinberg, V. Maletic, and R. S. McIntyre. 2022. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain, Behavior, and Immunity 101: 93–135. [Google Scholar] [CrossRef]
- Davis, H. E., G. S. Assaf, L. McCorkell, H. Wei, R. J. Low, Y. Re’em, S. Redfield, J. P. Austin, and A. Akrami. 2021. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 38: 101019. [Google Scholar] [CrossRef] [PubMed]
- De Paula, J. J., R. E. R. P. Paiva, N. G. Souza-Silva, D. V. Rosa, F. L. D. S. Duran, R. S. Coimbra, D. D. S. Costa, P. R. Dutenhefner, H. S. D. Oliveira, S. T. Camargos, H. M. M. Vasconcelos, N. De Oliveira Carvalho, J. B. Da Silva, M. B. Silveira, C. Malamut, D. M. Oliveira, L. C. Molinari, D. B. De Oliveira, J. N. Januário, and M. A. Romano-Silva. 2023. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Molecular Psychiatry 28, 2: 553–563. [Google Scholar] [CrossRef]
- Degen, C., T. Lenarz, and K. Willenborg. 2020. Acute profound sensorineural hearing loss after COVID-19 pneumonia. Mayo Clinic Proceedings 95, 8: 1801–1803. [Google Scholar] [CrossRef]
- Desforges, M., A. Le Coupanec, P. Dubeau, A. Bourgouin, L. Lajoie, M. Dubé, and P. J. Talbot. 2019. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 12, 1: 14. [Google Scholar] [CrossRef]
- Eldokla, A. M., A. A. Mohamed-Hussein, A. M. Fouad, M. G. Abdelnaser, S. T. Ali, N. A. Makhlouf, I. G. Sayed, H. A. Makhlouf, J. Shah, and H. Aiash. 2022. Prevalence and patterns of symptoms of dysautonomia in patients with long COVID syndrome: A cross-sectional study. Annals of Clinical and Translational Neurology 9, 6: 778–785. [Google Scholar] [CrossRef] [PubMed]
- Falck-Ytter, T., E. Pettersson, S. Bölte, B. D’Onofrio, P. Lichtenstein, and D. P. Kennedy. 2020. Difficulties maintaining prolonged fixation and attention-deficit/hyperactivity symptoms share genetic influences in childhood. Psychiatry Research 293: 113384. [Google Scholar] [CrossRef]
- Fletcher-Watson, S., and S. Hampton. 2018. The potential of eye-tracking as a sensitive measure of behavioural change in response to intervention. Scientific Reports 8, 1: 14715. [Google Scholar] [CrossRef] [PubMed]
- He, D., M. Yuan, W. Dang, L. Bai, R. Yang, J. Wang, Y. Ma, B. Liu, S. Liu, S. Zhang, X. Liao, and W. Zhang. 2023. Long term neuropsychiatric consequences in COVID-19 survivors: Cognitive impairment and inflammatory underpinnings fifteen months after discharge. Asian Journal of Psychiatry 80: 103409. [Google Scholar] [CrossRef]
- Holmqvist, K., M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. van de Weijer. 2011. Eye tracking: A comprehensive guide to methods and measures, 1st ed. Oxford University Press. [Google Scholar]
- Hunfalvay, M., N. P. Murray, R. Mani, and F. R. Carrick. 2021. Smooth pursuit eye movements as a biomarker for mild concussion within 7-days of injury. Brain Injury 35, 14: 1682–1689. [Google Scholar] [CrossRef]
- Hunt, A. W., K. Mah, N. Reed, L. Engel, and M. Keightley. 2016. Oculomotor-based vision assessment in mild traumatic brain injury: A systematic review. Journal of Head Trauma Rehabilitation 31, 4: 252–261. [Google Scholar] [CrossRef]
- Invernizzi, A., A. Torre, S. Parrulli, F. Zicarelli, M. Schiuma, V. Colombo, A. Giacomelli, M. Cigada, L. Milazzo, A. Ridolfo, I. Faggion, L. Cordier, M. Oldani, S. Marini, P. Villa, G. Rizzardini, M. Galli, S. Antinori, G. Staurenghi, and L. Meroni. 2020. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine 27: 100550. [Google Scholar] [CrossRef]
- Ito, J., Y. Yamane, M. Suzuki, P. Maldonado, I. Fujita, H. Tamura, and S. Grün. 2017. Switch from ambient to focal processing mode explains the dynamics of free viewing eye movements. Scientific Reports 7, 1: 1082. [Google Scholar] [CrossRef]
- Jeong, G. U., H.-J. Kwon, W. H. Ng, X. Liu, H. W. Moon, G. Y. Yoon, H. J. Shin, I.-C. Lee, Z. L. Ling, A. G. Spiteri, N. J. C. King, A. Taylor, J. S. Chae, C. Kim, D.-G. Ahn, K.-D. Kim, Y. B. Ryu, S.-J. Kim, S. Mahalingam, and Y.-C. Kwon. 2022. Ocular tropism of SARS-CoV-2 in animal models with retinal inflammation via neuronal invasion following intranasal inoculation. Nature Communications 13, 1: 7675. [Google Scholar] [CrossRef]
- Kanchan, A., A. Singh, N. Khan, M. Jahan, R. Raman, and T. Sathyanarayana Rao. 2018. Impact of neuropsychological rehabilitation on activities of daily living and community reintegration of patients with traumatic brain injury. Indian Journal of Psychiatry 60, 1: 38. [Google Scholar] [CrossRef]
- Kullmann, A., R. C. Ashmore, A. Braverman, C. Mazur, H. Snapp, E. Williams, M. Szczupak, S. Murphy, K. Marshall, J. Crawford, C. D. Balaban, M. Hoffer, and A. Kiderman. 2021. Portable eye-tracking as a reliable assessment of oculomotor, cognitive and reaction time function: Normative data for 18–45 year old. PLoS ONE 16, 11: e0260351. [Google Scholar] [CrossRef]
- Levantini, V., P. Muratori, E. Inguaggiato, G. Masi, A. Milone, E. Valente, A. Tonacci, and L. Billeci. 2020. Eyes are the window to the mind: Eye-tracking technology as a novel approach to study clinical characteristics of ADHD. Psychiatry Research 290: 113135. [Google Scholar] [CrossRef]
- Li, G., and Y. Yu. 2015. Visual saliency based on multiscale deep features. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); pp. 5455–5463. [Google Scholar] [CrossRef]
- Li, Y., X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. 2014. The secrets of salient object segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition; pp. 280–287. [Google Scholar] [CrossRef]
- Lüdecke, D. 2019. esc: Effect Size Computation for Meta Analysis (0.5.1) [Computer software. Available online: https://cran.r-project.org/web/packages/esc/index.html.
- Mao, L., H. Jin, M. Wang, Y. Hu, S. Chen, Q. He, J. Chang, C. Hong, Y. Zhou, D. Wang, X. Miao, Y. Li, and B. Hu. 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 77, 6: 683. [Google Scholar] [CrossRef]
- McDonald, M. A., S. J. Holdsworth, and H. V. Danesh-Meyer. 2022. Eye movements in mild traumatic brain injury: Ocular biomarkers. Journal of Eye Movement Research 15, 2. [Google Scholar] [CrossRef]
- McHorney, C. A., J. E. Ware, and A. E. Raczek. 1993. The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical Care 31, 3: 247–263. [Google Scholar] [CrossRef]
- Meinhardt, J., J. Radke, C. Dittmayer, J. Franz, C. Thomas, R. Mothes, M. Laue, J. Schneider, S. Brünink, S. Greuel, M. Lehmann, O. Hassan, T. Aschman, E. Schumann, R. L. Chua, C. Conrad, R. Eils, W. Stenzel, M. Windgassen, and F. L. Heppner. 2021. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience 24, 2: 168–175. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M., A. Hayashi, K. Kakeue, and R. Tamura. 2023. Changes in saccadic eye movement and smooth pursuit gain in patients with acquired comitant esotropia after strabismus surgery. Journal of Eye Movement Research 16, 4. [Google Scholar] [CrossRef]
- Miners, S., P. G. Kehoe, and S. Love. 2020. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimer’s Research & Therapy 12, 1: 170. [Google Scholar] [CrossRef]
- Nagu, P., A. Parashar, T. Behl, and V. Mehta. 2021. CNS implications of COVID-19: A comprehensive review. Reviews in the Neurosciences 32, 2: 219–234. [Google Scholar] [CrossRef]
- Nazari, S., A. Azari Jafari, S. Mirmoeeni, S. Sadeghian, M. E. Heidari, S. Sadeghian, F. Assarzadegan, S. M. Puormand, H. Ebadi, D. Fathi, and S. Dalvand. 2021. Central nervous system manifestations in COVID-19 patients: A systematic review and meta-analysis. Brain and Behavior 11, 5: e02025. [Google Scholar] [CrossRef]
- Ohya, T., K. Morita, Y. Yamashita, C. Egami, Y. Ishii, S. Nagamitsu, and T. Matsuishi. 2014. Impaired exploratory eye movements in children with Asperger’s syndrome. Brain and Development 36, 3: 241–247. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidi, M., P. Overton, and T. Stafford. 2017. Increased microsaccade rate in individuals with ADHD traits. Journal of Eye Movement Research 10, 1. [Google Scholar] [CrossRef]
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: URL: https://www.R-project.org/.
- Ruxton, G. D. 2006. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology 17, 4: 688–690. [Google Scholar] [CrossRef]
- Soriano, J. B., S. Murthy, J. C. Marshall, P. Relan, and J. V. Diaz. 2022. A clinical case definition of post-COVID-19 condition by a Delphi consensus. The Lancet Infectious Diseases 22, 4: e102–e107. [Google Scholar] [CrossRef]
- Spudich, S., and A. Nath. 2022. Nervous system consequences of COVID-19. Science 375, 6578: 267–269. [Google Scholar] [CrossRef]
- SR Research Ltd. 2022. EyeLink® Portable Duo User Manual (version 1.0.9). Oakville, Ontario: SR Research Ltd. [Google Scholar]
- Stafford, T., P. G. Overton, and E. Hampsey. 2019. Can microsaccade rate predict drug response? Journal of Eye Movement Research 12, 6. [Google Scholar] [CrossRef]
- Stein, S. R., S. C. Ramelli, A. Grazioli, J.-Y. Chung, M. Singh, C. K. Yinda, C. W. Winkler, J. Sun, J. M. Dickey, K. Ylaya, S. H. Ko, A. P. Platt, P. D. Burbelo, M. Quezado, S. Pittaluga, M. Purcell, V. J. Munster, F. Belinky, M. J. Ramos-Benitez, and D. S. Chertow. 2022. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 7941: 758–763. [Google Scholar] [CrossRef]
- Tao, L., Q. Wang, D. Liu, J. Wang, Z. Zhu, and L. Feng. 2020. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurological Sciences 41, 7: 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. 2020. Facing up to long COVID. The Lancet 396, 10266: 1861. [Google Scholar] [CrossRef]
- Vaira, L. A., G. Salzano, G. Deiana, and G. De Riu. 2020. Anosmia and ageusia: Common findings in covid-19 patients. The Laryngoscope 130, 7: 1787. [Google Scholar] [CrossRef]
- Van Ede, F., S. R. Chekroud, and A. C. Nobre. 2019. Human gaze tracks attentional focusing in memorized visual space. Nature Human Behaviour 3, 5: 462–470. [Google Scholar] [CrossRef]
- Vassallo, S., and J. Douglas. 2021. Visual scanpath training to emotional faces following severe traumatic brain injury: A single case design. Journal of Eye Movement Research 14, 4. [Google Scholar] [CrossRef]
- Wang, L., H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan. 2017. Learning to detect salient objects with image-level supervision. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); pp. 3796–3805. [Google Scholar] [CrossRef]
- Ware, J. E., Jr., and C. D. Sherbourne. 1992. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care 30, 6: 473–483. [Google Scholar] [PubMed]
- Wei, H., H. Yin, M. Huang, and Z. Guo. 2020. The 2019 novel coronavirus pneumonia with onset of oculomotor nerve palsy: A case study. Journal of Neurology 267, 5: 1550–1553. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. n.d.WHO Coronavirus (COVID-19) Dashboard. Retrieved October 12, 2023, from https://covid19.who.int.
- Ye, Y. 2023. China’s rolling covid waves could hit every six months. Nature 618, 7965: 442–443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D., X. Liu, L. Xu, Y. Li, Y. Xu, M. Xia, Z. Qian, Y. Tang, Z. Liu, T. Chen, H. Liu, T. Zhang, and J. Wang. 2022. Effective differentiation between depressed patients and controls using discriminative eye movement features. Journal of Affective Disorders 307: 237–243. [Google Scholar] [CrossRef]
- Zhao, S., S. Toniolo, A. Hampshire, and M. Husain. 2023. Effects of COVID-19 on cognition and brain health. Trends in cognitive sciences 27, 11: 1053–1067. [Google Scholar] [CrossRef]
Clinical Symptom | Percentage | Clinical Symptom | Percentage |
---|---|---|---|
Fever | 94% | Hyposmia or hypogeusia | 42% |
Headache | 68% | Pneumonia | 2% |
Body aches | 54% | Eye pain | 2% |
Asthenia | 72% | Anorexia | 2% |
Dry throat | 60% | Insomnia | 2% |
Rhinobyon | 70% | Diarrhea | 2% |
Rhinorrhea | 56% | Feel cold | 2% |
Cough | 88% |
SF-36 domains | Mean (SD) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
C0 | T0 | T1 | T2 | C0 vs. T0 | C0 vs. T1 | C0 vs. T2 | [T0 T1 T2] # | ||
Physical functioning | 94.17 (9.05) | 89.50 (11.75) | 93.07 (5.63) | 94.38 (8.93) | 0.050 + ↓ | 0.119 | 0.670 | 0.063 + ↑ | |
Role limitation due to physical health | 91.67 (21.70) | 19.50 (30.43) | 80.68 (34.89) | 71.25 (39.45) | <0.001 *** ↓ | 0.125 | 0.018 * ↓ | <0.001 *** ↑ | T0 < T1 = T2 |
Social functioning | 87.08 (11.58) | 75.75 (14.84) | 81.19 (16.54) | 81.44 (13.75) | <0.001 *** ↓ | 0.206 | 0.150 | 0.041 * ↑ | T0 < T2 |
Bodily pain | 84.83 (14.78) | 58.88 (19.02) | 76.66 (16.45) | 79.45 (17.11) | <0.001 *** ↓ | 0.070 + ↓ | 0.258 | <0.001 *** ↑ | T0 < T1 = T2 |
General mental health | 68.83 (14.59) | 65.28 (12.92) | 65.82 (14.00) | 66.40 (13.97) | 0.227 | 0.535 | 0.415 | 0.921 | |
Role limitation due to emotional problems | 72.22 (37.64) | 40.00 (43.12) | 68.18 (38.01) | 75.83 (36.19) | 0.002 ** ↓ | 0.655 | 0.716 | <0.001 *** ↑ | T0 < T1 = T2 |
Vitality | 68.13 (12.05) | 63.70 (14.14) | 69.09 (12.35) | 66.75 (14.44) | 0.169 | 0.693 | 0.684 | 0.006 ** ↑ | T0 < T1 |
General health perceptions | 76.00 (11.47) | 68.22 (16.10) | 71.39 (14.79) | 73.68 (17.45) | 0.036 * ↓ | 0.337 | 0.868 | 0.029 * ↑ |
Eye movement metrics | Mean (SD) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
C0 | T0 | T1 | T2 | C0 vs. T0 | C0 vs. T1 | C0 vs. T2 | [T0 T1 T2] # | ||
Fixation task (without distractor) | |||||||||
Fixation number | 25.37 (17.69) | 32.05 (16.26) | 30.48 (13.98) | 27.87 (13.30) | 0.081 + ↑ | 0.104 | 0.261 | 0.278 | |
Fixation duration (s) | 2.30 (2.93) | 1.21 (0.74) | 1.30 (0.89) | 1.47 (0.97) | 0.037 * ↓ | 0.066 + ↓ | 0.26 | 0.294 | |
Saccade duration (ms) | 13.19 (4.78) | 15.84 (6.91) | 13.40 (4.28) | 13.78 (5.59) | 0.121 | 0.785 | 0.746 | 0.051 + ↓ | |
Saccade amplitude (°) | 0.61 (0.65) | 0.87 (1.27) | 0.63 (0.41) | 0.70 (0.89) | 0.013 * ↑ | 0.066 + ↑ | 0.143 | 0.32 | |
Saccade average velocity (°/s) | 39.71 (12.84) | 45.75 (18.47) | 42.32 (10.01) | 41.90 (16.86) | 0.014 * ↑ | 0.078 + ↑ | 0.36 | 0.377 | |
Saccade peak velocity (°/s) | 53.18 (23.80) | 64.54 (33.78) | 56.27 (18.72) | 56.92 (31.60) | 0.014 * ↑ | 0.182 | 0.347 | 0.263 | |
Saccade number | 24.69 (17.88) | 31.42 (16.18) | 29.98 (14.02) | 27.03 (13.39) | 0.077 + ↑ | 0.114 | 0.275 | 0.234 | |
RMSE | 0.56 (0.34) | 0.83 (0.85) | 0.65 (0.39) | 0.61 (0.39) | 0.042 * ↑ | 0.12 | 0.179 | 0.146 | |
Log10(BCEA) | −0.69 (0.39) | −0.50 (0.50) | −0.57 (0.39) | −0.59 (0.35) | 0.057 + ↑ | 0.093 + ↑ | 0.125 | 0.507 | |
Fixation task (with distractor) | |||||||||
Fixation number | 21.49 (15.33) | 25.40 (12.55) | 24.67 (13.41) | 22.90 (13.73) | 0.078 + ↑ | 0.168 | 0.549 | 0.949 | |
Fixation duration (s) | 2.07 (1.33) | 1.52 (0.85) | 1.93 (2.28) | 2.21 (2.35) | 0.082 + ↓ | 0.137 | 0.632 | 0.353 | |
Saccade duration (ms) | 13.63 (4.26) | 14.43 (4.34) | 14.89 (6.80) | 14.30 (4.57) | 0.457 | 0.662 | 0.554 | 1 | |
Saccade amplitude (°) | 0.44 (0.17) | 0.73 (0.55) | 0.62 (0.43) | 0.64 (0.43) | <0.001 *** ↑ | 0.004 ** ↑ | 0.005 ** ↑ | 0.293 | |
Saccade average velocity (°/s) | 37.51 (6.10) | 43.83 (11.12) | 42.70 (11.02) | 42.56 (9.54) | 0.007 ** ↑ | 0.022 * ↑ | 0.015 * ↑ | 0.741 | |
Saccade peak velocity (°/s) | 49.83 (10.61) | 60.94 (21.44) | 58.15 (20.21) | 58.23 (18.46) | 0.019 * ↑ | 0.084 + ↑ | 0.087 + ↑ | 0.673 | |
Saccade number | 20.54 (15.30) | 24.70 (12.53) | 24.01 (13.61) | 22.43 (14.11) | 0.061 + ↑ | 0.132 | 0.467 | 0.983 | |
RMSE | 0.44 (0.19) | 0.58 (0.29) | 0.59 (0.37) | 0.54 (0.25) | 0.031 * ↑ | 0.075 + ↑ | 0.098 + ↑ | 0.399 | |
Log10(BCEA) | −0.74 (0.25) | −0.62 (0.33) | −0.63 (0.37) | −0.64 (0.32) | 0.085 + ↑ | 0.263 | 0.176 | 0.77 | |
Free-viewing task | |||||||||
Fixation number | 17.63 (1.52) | 16.89 (1.68) | 16.58 (1.76) | 16.59 (1.49) | 0.067 + ↓ | 0.014 * ↓ | 0.011 * ↓ | 0.029 * ↓ | |
Fixation duration (s) | 0.25 (0.33) | 0.26 (0.35) | 0.27 (0.050) | 0.27 (0.42) | 0.365 | 0.12 | 0.032 * ↑ | 0.003 ** ↑ | T0 < T2 |
Saccade duration (ms) | 38.86 (2.60) | 38.90 (2.62) | 39.09 (2.64) | 38.71 (3.69) | 0.85 | 0.602 | 0.539 | 0.921 | |
Saccade amplitude (°) | 5.89 (0.81) | 6.02 (0.83) | 5.81 (0.66) | 5.68 (0.65) | 0.329 | 0.921 | 0.531 | 0.014 * ↓ | T0 > T2 |
Saccade average velocity (°/s) | 136.42 (12.90) | 139.91 (14.19) | 134.57 (10.92) | 133.59 (10.87) | 0.303 | 0.562 | 0.381 | 0.002 ** ↓ | T0 > T1 = T2 |
Saccade peak velocity (°/s) | 230.20 (29.14) | 240.17 (34.17) | 226.42 (28.24) | 225.63 (27.14) | 0.205 | 0.613 | 0.542 | <0.001 *** ↓ | T0 > T1 = T2 |
Saccade number | 14.68 (1.51) | 14.51 (1.79) | 14.02 (1.80) | 13.91 (1.40) | 0.665 | 0.116 | 0.052 + ↓ | 0.001*** ↓ | T0 > T2 |
Smooth pursuit task | |||||||||
Fixation number | 71.20 (26.57) | 70.85 (23.14) | 73.01 (28.16) | 70.86 (27.23) | 0.957 | 0.795 | 0.961 | 0.928 | |
Fixation duration (s) | 0.74 (0.29) | 0.73 (0.28) | 0.75 (0.36) | 0.78 (0.37) | 0.794 | 0.82 | 0.966 | 0.672 | |
Saccade duration (ms) | 17.81 (5.04) | 19.38 (6.75) | 18.20 (8.85) | 17.49 (5.80) | 0.448 | 0.586 | 0.472 | 0.118 | |
Saccade amplitude (°) | 0.99 (0.43) | 1.31 (1.21) | 1.04 (0.72) | 1.13 (0.99) | 0.267 | 0.858 | 0.935 | 0.101 | |
Saccade average velocity (°/s) | 51.82 (8.99) | 57.45 (18.61) | 52.94 (13.18) | 54.08 (16.14) | 0.349 | 0.825 | 0.956 | 0.105 | |
Saccade peak velocity (°/s) | 73.23 (17.99) | 84.25 (33.46) | 74.19 (24.82) | 75.83 (29.23) | 0.243 | 0.708 | 0.793 | 0.022 * ↓ | T0 > T1 |
Saccade number | 70.22 (26.55) | 70.08 (23.15) | 72.24 (28.27) | 69.98 (27.32) | 0.982 | 0.773 | 0.973 | 0.931 | |
Velocity gain | 1.00 (0.08) | 1.03 (0.19) | 1.10 (0.21) | 1.06 (0.14) | 0.934 | 0.009 ** ↑ | 0.245 | 0.004 ** ↑ | T0 < T1 |
RMSE | 1.00 (0.40) | 1.12 (0.62) | 1.08 (0.55) | 1.12 (0.62) | 0.475 | 0.748 | 0.385 | 0.847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
This article is licensed under a Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Huang, Z.; Zhang, S.; Zhu, G.; Wang, R.; Wang, Z. SARS-CoV-2 Infection Impairs Oculomotor Functions: A Longitudinal Eye-Tracking Study. J. Eye Mov. Res. 2024, 17, 1-16. https://doi.org/10.16910/jemr.17.1.2
Duan X, Huang Z, Zhang S, Zhu G, Wang R, Wang Z. SARS-CoV-2 Infection Impairs Oculomotor Functions: A Longitudinal Eye-Tracking Study. Journal of Eye Movement Research. 2024; 17(1):1-16. https://doi.org/10.16910/jemr.17.1.2
Chicago/Turabian StyleDuan, Xiaoting, Zehao Huang, Shuai Zhang, Gancheng Zhu, Rong Wang, and Zhiguo Wang. 2024. "SARS-CoV-2 Infection Impairs Oculomotor Functions: A Longitudinal Eye-Tracking Study" Journal of Eye Movement Research 17, no. 1: 1-16. https://doi.org/10.16910/jemr.17.1.2
APA StyleDuan, X., Huang, Z., Zhang, S., Zhu, G., Wang, R., & Wang, Z. (2024). SARS-CoV-2 Infection Impairs Oculomotor Functions: A Longitudinal Eye-Tracking Study. Journal of Eye Movement Research, 17(1), 1-16. https://doi.org/10.16910/jemr.17.1.2