Selecting the Appropriate Speed for Rotational Elements in Human-Machine Interfaces: A Quantitative Study
Abstract
1. Introduction
2. Experiment 1 Measurement of JNDS for Rotational Speed
2.1. Methods of Experiment 1
2.1.1. Design
2.1.2. Participant
2.1.3. Produce
2.1.4. Apparatus and Environment
2.2. Results of Experiment 1
2.3. Discussion of Experiment 1
3. Experiment 2 Measurement of Perceived Speed
3.1. Methods of Experiment 2
3.1.1. Design
3.1.2. Participant
3.1.3. Produce
3.1.4. Apparatus and Environment
3.2. Results of Experiment 2
3.3. Discussion of Experiment 2
3.4. General Discussion
4. Conclusion
Limitation
Ethics and Conflict of Interest
Acknowledgments
References
- Attneave, F. 1957. Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology 53, 4: 221–227. [Google Scholar] [CrossRef] [PubMed]
- Barraza, J. F., and N. M. Grzywacz. 2002. Measurement of angular velocity in the perception of rotation. Vision Research 42, 21: 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Bazazian, D., B. Magland, C. Grimm, E. Chambers, and K. Leonard. 2022. Perceptually grounded quantification of 2D shape complexity. The Visual Computer 38, 9: 3351–3363. [Google Scholar] [CrossRef]
- Benedetto, S., M. Pedrotti, and B. Bridgeman. 2011. Microsaccades and Exploratory Saccades in a Naturalistic Environment. Journal of Eye Movement Research 4, 2: 2. [Google Scholar] [CrossRef]
- Bex, P. J., S. Bedingham, and S. T. Hammett. 1999. Apparent speed and speed sensitivity during adaptation to motion. JOSA A 16, 12: 2817–2824. [Google Scholar] [CrossRef]
- Blair, C. D., J. Goold, K. Killebrew, and G. P. Caplovitz. 2014. Form features provide a cue to the angular velocity of rotating objects. Journal of Experimental Psychology Human Perception and Performance 40, 1: 116–128. [Google Scholar] [CrossRef]
- Bronstein, A. M. 2004. Vision and vertigo. Journal of Neurology 251, 4: 381–387. [Google Scholar] [CrossRef]
- Brooks, K. R., and L. S. Stone. 2004. Stereomotion speed perception: Contributions from both changing disparity and interocular velocity difference over a range of relative disparities. Journal of Vision 4, 12: 6. [Google Scholar] [CrossRef]
- Brooks, K. R., and L. S. Stone. 2006. Spatial scale of stereomotion speed processing. Journal of Vision 6, 11: 9. [Google Scholar] [CrossRef]
- Casanova, R., O. Borg, and R. J. Bootsma. 2015. Perception of spin and the interception of curved football trajectories. Journal of Sports Sciences 33, 17: 1822–1830. [Google Scholar] [CrossRef]
- Champion, R. A., and P. A. Warren. 2017. Contrast effects on speed perception for linear and radial motion. Vision Research 140: 66–72. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, P. 2014. Rotating Point Symbols on Animated Maps for the Presentation of Quantitative Data. KN—Journal of Cartography and Geographic Information 64, 4: 198–203. [Google Scholar] [CrossRef]
- Cybulski, P., and V. Krassanakis. 2023. Motion velocity as a preattentive feature in cartographic symbolization. Journal of Eye Movement Research 16. [Google Scholar] [CrossRef] [PubMed]
- de’Sperati, C., and G. Baud Bovy. 2017. Low perceptual sensitivity to altered video speed in viewing a soccer match. Scientific Reports 7: 15379. [Google Scholar] [CrossRef] [PubMed]
- de’Sperati, C., and I. M. Thornton. 2019. Motion prediction at low contrast. Vision Research 154: 85–96. [Google Scholar] [CrossRef]
- Duffy, C. J., and R. H. Wurtz. 1991. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology 65, 6: 1329–1345. [Google Scholar] [CrossRef]
- Edwards, M., D. R. Badcock, and A. T. Smith. 1998. Independent speed-tuned global-motion systems. Vision Research 38, 11: 1573–1580. [Google Scholar] [CrossRef]
- Eggleston, J., J. R. McDevitt, and B. P. Dyre. 1999. Perception of Egospeed from Absolute and Relative Motion. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 43, 23: 1280–1284. [Google Scholar] [CrossRef]
- Finlay, D. J., and P. C. Dodwell. 1987. Speed of apparent motion and the wagon-wheel effect. Perception & Psychophysics 41, 1: 29–34. [Google Scholar] [CrossRef]
- Freeman, T. C. A., and M. G. Harris. 1992. Human sensitivity to expanding and rotating motion: Effects of complementary masking and directional structure. Vision Research 32, 1: 81–87. [Google Scholar] [CrossRef]
- Gegenfurtner, K. R., and M. J. Hawken. 1996. Interaction of motion and color in the visual pathways. Trends in Neurosciences 19, 9: 394–401. [Google Scholar] [CrossRef] [PubMed]
- Georges, S., P. Seriès, Y. Frégnac, and J. Lorenceau. 2002. Orientation dependent modulation of apparent speed: Psychophysical evidence. Vision Research 42, 25: 2757–2772. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C. D., and W. Li. 2013. Top-down influences on visual processing. Nature Reviews Neuroscience 14, 5: 5. [Google Scholar] [CrossRef]
- Guerraz, M., L. Yardley, P. Bertholon, L. Pollak, P. Rudge, M. A. Gresty, and A. M. Bronstein. 2001. Visual vertigo: Symptom assessment, spatial orientation and postural control. Brain 124: 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Handbook for Human Engineering Design Guidelines (MIL-HDBK-759c). 1995. Department of Defense.
- Hubel, D. H., and M. S. Livingstone. 1987. Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7, 11: 3378–3415. [Google Scholar] [CrossRef]
- Hussain, Q., W. K. M. Alhajyaseen, A. Pirdavani, N. Reinolsmann, K. Brijs, and T. Brijs. 2019. Speed perception and actual speed in a driving simulator and real-world: A validation study. Transportation Research Part F: Traffic Psychology and Behaviour 62: 637–650. [Google Scholar] [CrossRef]
- Hyönä, J., L. Oksama, and E. Rantanen. 2020. Tracking the identity of moving words: Stimulus complexity and familiarity affects tracking accuracy. Applied Cognitive Psychology 34, 1: 64–77. [Google Scholar] [CrossRef]
- Kaiser, M. K. 1990. Angular velocity discrimination. Perception & Psychophysics 47, 2: 149–156. [Google Scholar] [CrossRef]
- Kaiser, M. K., and J. B. Calderone. 1991. Factors influencing perceived angular velocity. Perception & Psychophysics 50, 5: 428–434. [Google Scholar] [CrossRef]
- Kim, W., S. Xiong, and Z. Liang. 2017. Effect of Loading Symbol of Online Video on Perception of Waiting Time. International Journal of Human–Computer Interaction 33, 12: 1001–1009. [Google Scholar] [CrossRef]
- Ko, Y.-H. 2017. The effects of luminance contrast, colour combinations, font, and search time on brand icon legibility. Applied Ergonomics 65: 33–40. [Google Scholar] [CrossRef]
- Koenderink, J. 1986. Optic Flow. Vision Research 26, 1: 161–179. [Google Scholar] [CrossRef]
- Krueger, E., A. Schneider, B. D. Sawyer, A. Chavaillaz, A. Sonderegger, R. Groner, and P. A. Hancock. 2019. Microsaccades Distinguish Looking From Seeing. Journal of Eye Movement Research 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Langley, G. B., and H. Sheppeard. 1985. The visual analogue scale: Its use in pain measurement. Rheumatology International 5, 4: 145–148. [Google Scholar] [CrossRef]
- Ledgeway, T., and A. T. Smith. 1995. The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Research 35, 10: 1421–1434. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S., Y.-H. Ko, I.-H. Shen, and C.-Y. Chao. 2011. Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. Displays 32, 1: 1–7. [Google Scholar] [CrossRef]
- Manning, C., D. Aagten-Murphy, and E. Pellicano. 2012. The development of speed discrimination abilities. Vision Research 70: 27–33. [Google Scholar] [CrossRef]
- Martín, A., J. Chambeaud, and J. Barraza. 2010. Apparent size biases the perception of speed in rotational motion. Journal of Vision 10, 7: 810. [Google Scholar] [CrossRef]
- Mckee, S. P., and K. Nakayama. 1984. The detection of motion in the peripheral visual field. Vision Research 24, 1: 25–32. [Google Scholar] [CrossRef]
- Moroz, M., I. Garzorz, E. Folmer, and P. MacNeilage. 2019. Sensitivity to visual speed modulation in head-mounted displays depends on fixation. Displays 58: 12–19. [Google Scholar] [CrossRef]
- Moscatelli, A., B. L. Scaleia, M. Zago, and F. Lacquaniti. 2019. Motion direction, luminance contrast, and speed perception: An unexpected meeting. Journal of Vision 19, 6: 16. [Google Scholar] [CrossRef] [PubMed]
- Nakatani-Enomoto, S., M. Yamazaki, Y. Kamimura, M. Abe, K. Asano, H. Enomoto, K. Wake, S. Watanabe, and Y. Ugawa. 2019. Frequency-dependent current perception threshold in healthy Japanese adults. Bioelectromagnetics 40, 3: 150–159. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y., Y. Gao, Y. Zhang, C. Xue, and L. Yang. 2019. Improving Eye–Computer Interaction Interface Design: Ergonomic Investigations of the Optimum Target Size and Gaze-triggering Dwell Time. Journal of Eye Movement Research 12, 3. [Google Scholar] [CrossRef]
- Orban, G. A., J. De Wolf, and H. Maes. 1984. Factors influencing velocity coding in the human visual system. Vision Research 24, 1: 33–39. [Google Scholar] [CrossRef]
- Purves, D., J. A. Paydarfar, and T. J. Andrews. 1996. The wagon wheel illusion in movies and reality. Proceedings of the National Academy of Sciences 93, 8: 3693–3697. [Google Scholar] [CrossRef]
- Salthouse, T. A. 2000. Aging and measures of processing speed. Biological Psychology 54, 1: 35–54. [Google Scholar] [CrossRef]
- Shipp, S., and S. Zeki. 1985. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 6017: 6017. [Google Scholar] [CrossRef] [PubMed]
- Skedung, L., K. Danerlöv, U. Olofsson, C. Michael Johannesson, M. Aikala, J. Kettle, M. Arvidsson, B. Berglund, and M. W. Rutland. 2011. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribology International 44, 5: 505–512. [Google Scholar] [CrossRef]
- Stammerjohn, L. W., M. J. Smith, and B. F. Cohen. 1981. Evaluation of Work Station Design Factors in VDT Operations. Human Factors 23, 4: 401–412. [Google Scholar] [CrossRef]
- Stevens, S. S. 1936. A scale for the measurement of a psychological magnitude: Loudness. Psychological Review 43, 5: 405–416. [Google Scholar] [CrossRef]
- Sudkamp, J., and D. Souto. 2023. The effect of contrast on pedestrians’ perception of vehicle speed in different road environments. Transportation Research Part F: Traffic Psychology and Behaviour 92: 15–26. [Google Scholar] [CrossRef]
- Thompson, P. 1981. Velocity after-effects: The effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Research 21, 3: 337–345. [Google Scholar] [CrossRef]
- Thompson, P. 1982. Perceived rate of movement depends on contrast. Vision Research 22, 3: 377–380. [Google Scholar] [CrossRef] [PubMed]
- Tong, M., S. Chen, Y. Niu, and C. Xue. 2023. Effects of speed, motion type, and stimulus size on dynamic visual search: A study of radar human–machine interface. Displays 77: 102374. [Google Scholar] [CrossRef]
- Tonsen, M., J. Steil, Y. Sugano, and A. Bulling. 2017. InvisibleEye: Mobile Eye Tracking Using Multiple Low-Resolution Cameras and Learning-Based Gaze Estimation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3: 106:1–106:21. [Google Scholar] [CrossRef]
- van Boxtel, J. J. A., and C. J. Erkelens. 2006. A single motion system suffices for global-motion perception. Vision Research 46, 28: 4634–4645. [Google Scholar] [CrossRef]
- VanRullen, R. 2007. The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation. Vision Research 47, 16: 2143–2149. [Google Scholar] [CrossRef]
- Wang, Y., Y. Guo, J. Wang, Z. Liu, and X. Li. n.d.Pupillary response to moving stimuli of different speeds. Journal of Eye Movement Research 14, 1. [Google Scholar] [CrossRef]
- Werkhoven, P., and J. J. Koenderink. 1991. Visual processing of rotary motion. Perception & Psychophysics 49, 1: 73–82. [Google Scholar] [CrossRef]
- Yantis, S. 1992. Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology 24, 3: 295–340. [Google Scholar] [CrossRef]
- Yong, Z., and P.-J. Hsieh. 2017. Speed–size illusion correlates with retinal-level motion statistics. Journal of Vision 17, 9: 1. [Google Scholar] [CrossRef] [PubMed]
Speed | Simple Stimuli | Complex Stimuli | ||||
---|---|---|---|---|---|---|
JNDS (M) | JNDS (SD) | Weber Fraction | JNDS (M) | JNDS (SD) | Weber Fraction | |
5 | 0.99 | 0.06 | 0.198 | 1.07 | 0.07 | 0.214 |
10 | 2.03 | 0.21 | 0.203 | 1.87 | 0.13 | 0.187 |
30 | 5.25 | 0.35 | 0.175 | 4.65 | 0.28 | 0.155 |
90 | 12.78 | 1.78 | 0.142 | 14.76 | 1.74 | 0.164 |
180 | 25.74 | 2.42 | 0.143 | 26.82 | 3.13 | 0.149 |
360 | 54.00 | 4.63 | 0.150 | 54.72 | 5.31 | 0.152 |
720 | 167.04 | 22.58 | 0.232 | 158.40 | 25.02 | 0.220 |
1800 | 511.20 | 89.75 | 0.284 | 550.80 | 98.55 | 0.306 |
Perception Scale | ||
---|---|---|
Speed (degrees/s) | Average Value (M) | Standard Deviation (S) |
5 | 1.00 | 0.00 |
10 | 1.24 | 0.22 |
30 | 1.84 | 0.30 |
60 | 2.18 | 0.22 |
90 | 2.23 | 0.30 |
180 | 2.79 | 0.43 |
360 | 3.28 | 0.34 |
720 | 4.28 | 0.51 |
1440 | 4.81 | 0.32 |
1800 | 4.96 | 0.19 |
Variant | Experiment 2 | Experiment 2 | ||
---|---|---|---|---|
F | P | F | P | |
Rotation speed | 271.81 | 0.00 | 387.30 | 0.00 |
Stimulus type | 3.92 | 0.06 | 26.65 | 0.02 |
Interaction | 0.913 | 0.32 | 107.28 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
This article is licensed under a Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, M.; Chen, S.; Tang, W.; Zhang, Y.; Xue, C. Selecting the Appropriate Speed for Rotational Elements in Human-Machine Interfaces: A Quantitative Study. J. Eye Mov. Res. 2024, 17, 1-21. https://doi.org/10.16910/jemr.17.1.1
Tong M, Chen S, Tang W, Zhang Y, Xue C. Selecting the Appropriate Speed for Rotational Elements in Human-Machine Interfaces: A Quantitative Study. Journal of Eye Movement Research. 2024; 17(1):1-21. https://doi.org/10.16910/jemr.17.1.1
Chicago/Turabian StyleTong, Mu, Shanguang Chen, Wenzhe Tang, Yu Zhang, and Chengqi Xue. 2024. "Selecting the Appropriate Speed for Rotational Elements in Human-Machine Interfaces: A Quantitative Study" Journal of Eye Movement Research 17, no. 1: 1-21. https://doi.org/10.16910/jemr.17.1.1
APA StyleTong, M., Chen, S., Tang, W., Zhang, Y., & Xue, C. (2024). Selecting the Appropriate Speed for Rotational Elements in Human-Machine Interfaces: A Quantitative Study. Journal of Eye Movement Research, 17(1), 1-21. https://doi.org/10.16910/jemr.17.1.1