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Abstract: This paper develops a nonparametric method to estimate a conditional quantile function
for a panel data model with an additive individual fixed effects. The proposed method is easy
to implement, it does not require numerical optimization and automatically ensures quantile
monotonicity by construction. Monte Carlo simulations show that the proposed estimator performs
well in finite samples.
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1. Introduction

Using nonparametric techniques to estimate econometric models has received increasing attention
among econometricians in recent decades (see, for example, Pagan and Ullah (1999), Hall et al. (2007),
Belloni et al. (2016), Lin et al. (2015), Li et al. (2013), and Firpo et al. (2009) and Firpo et al. (2018) for
the literature of nonparametric methods and applications). The most popular nonparametric model
is the conditional mean regression model. However, compared with a conditional mean function,
a conditional quantile regression function, when evaluated at different quantiles, can reveal an entire
distributional relationship between the covariates and the response variable. Quantile regression
therefore has many useful applications in economics and finance. For example, in risk and financial
management, researchers are more concerned about the uncertainty or the risk of an asset, which
can be characterized by its left tail behavior (corresponding to the lower quantiles) (see Al Rahahleh
and Bhatti (2017); Al Rahahleh et al. (2017); Nguyen and Bhatti (2015); Al Rahahleh et al. (2016);
Bartram et al. (2018); Al Shubiri and Jamil (2018)) for the literature on idiosyncratic risk), and quantile
regression can play an important role in this line of research.

The existing work on nonparametric estimation of quantile functions mostly focuses on
cross-sectional data, or weakly dependent stationary data processes. Nonparametric estimation of
conditional quantile functions with panel data is more difficult when there exists fixed effects term
that is correlated with covariates. In this paper, we consider the following nonparametric panel data
model with individual fixed effects:

Yy =a;+m(Xy)+ey, i=1,--- ,N; t=1,---,T, 1)
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where Yj; is the outcome variable, Xj; is a scalar!, a; is the individual fixed effect, it has zero mean and
is allowed to be correlated with Xj; in an unknown correlation form, m(-) is smooth but otherwise
unspecified function, the idiosyncratic error €;; is i.i.d with zero mean and a finite variance. Given that
a; + €;; has a zero mean, we have from model (1) that E(Yj;) = E[m(Xj;)]. Without loss of generality,
we assume that E [m(X;;)] = 0.2

A key attractive feature of panel data for empirical researchers is that it controls for the
unobserved heterogeneity. Model (1) has been discussed in Henderson et al. (2008), with a focus on the
nonparametric estimation and testing of the conditional mean function. Our interest lies in estimating
the conditional quantile function of Yj; — a; = m(Xj;) + €j; given Xj; = x. The application of quantile
regression to panel data framework has been a challenging task (see, for example, (Koenker (2004);
Abrevaya and Dahl (2008); Kato et al. (2012); Harding and Lamarche (2014)). The check-function
method and inverse-CDF method are the two main methods in quantile regression analysis, with the
former most widely used in literature. One main challenge with the check-function method is that
the objective criterion function is non-differentiable and therefore numerical optimization is required.
This creates a computational burden. Another drawback of the check-function method is the lack
of monotonicity, also known as the quantile crossing problem (see (Bassett and Koenker (1982) and
He (1997)). Researchers often need to impose shape restrictions or use monotone rearrangement to
address the quantile crossing problem (Chernozhukov et al. (2010); Qu and Yoon (2015)).

This paper develops a new quantile regression method for the nonparametric panel data model (1)
in the spirit of Fang et al. (2018)3. The new method exploits the location-scale structure of Model (1).
Note that the conditional 7-th quantile function of Yj; — «; given X;; = x, denoted by g (x), takes a
particularly simple closed-form structure:

qe(x) = m(x) + Qe(7) , @)

for all T € (0,1), where Qc(1) is the T-th quantile of €;*. Thus, if 7i(x) is the estimator of m(x),
then g (x) can be estimated by

Gr(x) = mi(x) + Qe (), ®)

where Q. (7) is the empirical quantile function of the (normalized) regression residuals.

For estimation, we first use the first-difference transformation to get rid of the individual fixed
effect &; and estimate the the unknown function m(-) by the series method, we then use deconvolution
method to back up the distribution of error term {¢;; }, therefore the quantile estimator of €. Finally,
we exploit the location-scale structure of the first-differenced model to derive the quantile estimator
of Yj; — a;, which is given in Equation (3). The deconvolution step closely relates to the papers
by Horowitz and Markatou (1996) and Evdokimov (2010) for the application of the deconvolution
method to recover the density of panel data error term. Our approach does not require numerical
optimization, is computationally easy to implement, and automatically ensures quantile monotonicity
by construction. For asymptotic property of the conditional quantile estimator, as long as the series
estimator 71(x) and Q. () are consistent %, the conditional quantile estimator 4. (x) is also consistent by

For ease of exposition, we assume Xj; is univariate, the extension to multivariate case can be carried over straightforwardly.
This can be achieved by using de-mean data for the dependent variable, i.e., replacing Y;; by Y;; — (N 7)1 Z/'IL Zstl Yis
in Equation (1). For notational simplicity, we still use Yj; to denote the dependent variable although it is actually the de-mean
version of it.

Recently, Fang et al. (2018) proposes a new nonparametric method for estimating a conditional quantile function with
cross-sectional data. We refer readers to Fang et al. (2018) for a detailed discussion.

For ease of exposition, we drop the subscript it in Q, (7) and use Q. (7) to denote the 7-th quantile of €;; in general, since
€j; is an i.i.d. sequence.

The consistency can be straightforwardly shown using similar arguments as in Fang et al. (2018) and
Horowitz and Markatou (1996).
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Equation (3) and the continuous mapping theorem. While we do not provide theoretical underpinnings
for the proposed quantile estimator, Monte Carlo simulation results show that the estimator performs
well in finite samples.

The remainder of the paper is organized as follows. Section 2 gives a detailed description of the
methodology. Section 3 presents a Monte Carlo simulation to examine the finite-sample performance
of the proposed quantile estimator. Section 4 considers an extension where the error is heteroskedastic.
Section 5 concludes the paper.

2. Methodology

In this section, we describe the three-step procedure to estimate the conditional quantile
function g (x).

STEP 1. Use the first-difference to get rid of individual fixed effects and estimate m(-) by the
nonparametric series method.
First differencing Equation (1), we have that

Yie = Yipo1 = m(Xy) —m(Xj—1) + € —€ipq, i=1,--- ,N;t=2,---,T. 4)

Note that despite if one uses a de-mean dependent variable or not, it leads to the same
first-differenced model (4) because any additive constant will be wiped out by first-difference
transformation.

Let PX(X;) = [&1(Xit), E2(Xit), -, Ek(Xir)] denote the K x 1 dimensional basis functions, where K
is the number of basis functions. For example, we may choose power series base function so that
[61(Xit), &2(Xit), s Ek(Xir)) = [Xit, X3, -+, XK]', or we can choose spline base function. By the
approximation property of series basis function, there exists an K x 1 vector of constants f such that
sup, ¢ |[PX(x)’B — m(x)| — 0as K — oo, where S € R is a compact support of X;;. In practice, one
can estimate f by the least squares method based on

AYy = Yy—Yiiq
[PX(Xi) — PX(Xie-1)'] B + it
= APy + vy, ®)

where vy = ej — €41 + m(Xi) — m(Xis—1) — [PX(Xit)" — PX(Xi4-1)'] B, AVt = Yip — Yip_1, APy =
PX(Xit) — PX(Xip-1), and vy = € — €541 + m(Xip) — m(Xip-1) — [PX(Xir) — PX(Xi1-1)'] B-
We estimate 8 by applying the OLS to Equation (5), yielding that

B = (AP'AP)"1AP'AY,

where AP = [AP],--- ,APy]"is an N(T — 1) x K matrix of base functions, AP; = [APp,- - - ,AP;r]" is
an (T — 1) x K matrix, AY = [AY},--- ,AY}] is an N(T — 1) x 1 vector of outcome variables, and
AY; = [AYp, - ,AY;r) isan (T — 1) x 1 vector.

We therefore obtain the series estimator of m(Xj;):

(X)) = PX(Xy)'B, i=1,--- Njt=1,---,T.

STEP 2. Let f(-) denote the density of €. In this step, we use the deconvolution method to recover
fe(t)-

From Step 1, one can obtain the estimator of u;; = €;y —€;¢_1 by @iy = Yj — i1 — thi(xy) —
M(xip—1) = &t — €1
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To see how the density of €;; can be estimated, let ¢, (t) = E(e'it) and ¢e = E(e'it) denote the
characteristic functions of u;; and €;;, respectively, where 1 = v/—1. Assume that the distribution of €;;
is such that ¢ is real and positive for all t € R. Then, it is easy to see that

gu(t) = E(e™)

E (elt€it—lt€i,t—1 )
E (elte”)E e*ltei,t—l )
E (ette,-, ) E (eltei,r—l )
[E(elte”)]z

9e(t)]’,

where in the third equality we use the independence of €;; and €;_1, and the fourth equality uses the

symmetry of #7;;_1.
‘Pe(t) =\ 4’u(t)' (6)

Therefore,
We propose the following steps to obtain the density estimate of €;;:

(1) Estimate ¢y, (t) by
N T

(ﬁu(t) — % Z Z eltﬁis_ (7)

i=1s=1
(2) By Equations (6) and (7), we estimate ¢c(t) by

‘i’e(t) =\ (ﬁu(t)-

(3) By the deconvolution method, we estimate fc(-) by

£ 1 oo —itz t A
= D — t)dt
felz) =5 [ e k(Tn>¢e( Jit, z€R, ®)
where &y (Ti”) is the Fourier transform of the kernel function k(x) = % with bandwidth T%,'
and
0, [t=>3,
Pe(t) =1 5 Itl=3
L, |t<3

STEP 3. We estimate Q¢ () by Qc(7) such that for T € (0,1), Qc(7) satisfies the following condition:

Qe(t)
T= /7 fe(x)dx.

Therefore, for T € (0,1), the 7-th conditional quantile estimator of Yj; — a;, given Xj;; = x,
is estimated by

Ge(x) = 1i1(x) + Qe (1),

where 71(x) and Q¢(T) are estimated in Steps 1 and 2, respectively.

Remark 1. In Step 1, the consistency estimation of m(x) requires that as NT — oo, K — coand K/ (NT) — 0.
In series estimation, K/ (NT) plays a role similar to the bandwidth h in kernel methods. In practice, one can use
Mallows’s Cy, or leave-one-out cross-validation method to determine the series term K. We refer readers to Li and
Racine (2007) for details.
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Remark 2. Note that, in Step 2, assuming ¢e(t) is real and is equivalent to assuming that the density of €;; is
symmetric around 0. We are using the assumption that ¢, is positive in deriving Equation (6).

Remark 3. In Step 2, the smoothing parameter T, depends on the sample size n = NT. To guarantee that
Pe (t) uniformly converges to ¢e(t) over [—Ty, T,] at a geometric rate with respect to the sample size n, Hu and
Ridder (2010) suggests that we can choose Ty, such that

T":C<logn(n)>’y' v E (0,;),

Remark 4. For inference, we recommend using a residual bootstrap method similar to Fang et al. (2018).
We leave the proof of validity of such a bootstrap procedure to a future research topic.

where ¢ > 0 is a constant.

3. Monte Carlo Simulation

In this section, we conduct Monte Carlo simulations to assess the performance of the proposed
conditional quantile estimator.
We consider the following data generating process (DGP):

Yi = a; + 2sin(Xy) + Xt + €iy,

where X;; = 0.4w; + i, where §jy is i.id. ~ uniform|[—1,1], a; is i.i.d. ~ uniform[—1,1]. We consider
two distributions for €;: (i) € is i.i.d. ~ N(0,1); (ii) € is i.i.d. ~ #(3) (a t-distribution with degree of
freedom 3).

We conduct 2000 Monte Carlo replications for samples of size N = 100,200,400 with
T = 10. We report mean squared error (MSE) of three estimators: (1) the series estimator
i (x) with MSE(rir) = (NT)" N, YT (i (Xa) — m(Xit))z, (2) the quantile estimator Q- (€) with
MSE(Qe(7)) = [Qe(T) — Qe(r)]z, and (3) the conditional quantile estimator 4. (x) with MSE(§.) =
(NT)'yN yT, (G (Xit) — qT(Xit))z. For each of the three quantities above, we average them over
the 2000 replications.

We first examine the performance of the deconvolution method for recovering the density of error
terms. As an illustration, we only present the result (Figure 1) for the case of €;; ~ N(0,1), with sample
size N = 100, T = 10. We examine the sensitivity of the estimated density to the choice of different
bandwidths. Wesetc =1, and ¢y = %, 1%, %, %. It can be seen from Figure 1 that the performance of the
deconvolution method can be somewhat sensitive to the choice of bandwidth. This is a well known
problem of the deconvolution method, not a particular problem to our approach. When 7 is small,
say vy = %, the estimated density is flatter than the true density. However, generally, the estimated
density tracks the true density®.

Tables 1 and 2 report the Mean MSE of 71, Qc(7) and 4. It can be seen that, as sample size
doubles, MSEs of 7, Qe(T), and §; decrease by about 1 which indicates that the proposed estimator
behaves well.

6 There is no rule-of-thumb to choose the optimal bandwidth in the deconvolution method. In practice, researchers can try

different bandwidths as a robust check to see how results vary across the different bandwidths.
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Panel A Panel B
Recovered density, T, = (1/logn)/8 Recovered density, T, = (1/logn)3/16
0.45 0.45
Estimated Estimated
0.4 - — — —Tre 0.4 - — — —Tre

0.35

0.3

Panel C Panel D
Recovered density, T, = (n/logn)

1/4 3/8

Recovered density, T, = (n/logn)

0.45

Estimated Estimated
0.4 - — — —True X — — —True

0.3

0.25

0.2

0.15

01

Figure 1. Recovered densities across different bandwidths and homoskedastic symmetric normal errors.

Table 1. Mean MSE (x100), N(0, 1) Errors.

Estimators
Sample Size (N, T MSE(Qc(t MSE(§
pleSize (N,T) /oo (Qe(1)) (<)
T=02 T=03 T=04 T=02 T=03 T=04
(100, 10) 0.0149 0.0037 0.0022 0.0006 0.0204 0.0185 0.0163
(200,10) 0.0092 0.0012 0.0007 0.0002 0.0107 0.0102 0.0096
(400, 10) 0.0048 0.00051  0.00028 0.000082  0.0052 0.0050 0.0048

Table 2. Mean MSE (x100), ¢(3) Errors.

Estimators
Sample Size (N, T MSE(Qc (T MSE(§
ample Size (N, T) MSE(ii) (Qe(7)) (4<)
T=02 =03 TT=04 T7v=02 T=03 T=04
(100,10) 0.0139 0.0423 0.0235 0.0065 0.0642 0.0433 0.0235
(200,10) 0.0094 0.0210 0.0128 0.0036 0.0304 0.0222 0.0130

(400,10) 0.0048 0.0091 0.0063 0.0019 0.0104 0.0112 0.0067
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4. Extension: Conditional Heteroskedastistic Error Case

In this section, we consider an extension where the error term is conditional heteroskedastic.

Specifically, we generalize model (1) to the following case’:

Yii =i +m(Xy) +o(Xi)ny, i=1,--- ,N; t=1,---,T, )

where 0(X;;) > 0is an unknown function, #;; is assumed to be i.i.d with zero mean, unit variance and
independent of {X]-s} j=1,..,N;s=1,..,7- Without loss of generality, we assume that E [m(Xit)} = 0 (similar
to the conditional homoskedasticity case).

Define €;; = 0(Xj;)7;;- The conditional 7-th quantile function of Yj; — a; given X;; = x, denoted
by g-(x), takes the following closed-form structure:

qe(x) = m(x) + Qe|x=x(T) = m(x) + o(x)Qy(7), (10)
forall T € (0,1), where Q¢ |x—(T) = 0(x)Qy(7), and Qy(7) is the (un-conditional) 7-th quantile of 1;;.

Remark 5. In deriving Equation (10), we use the fact that Qg x—.(T) = 0(x)Qy(7) because o(x) > 0 and
Xt and w;; are independent with each other.

Remark 6. Noting that, due to the independence between X and €js, we have that ej|x,—x =
€itlxy=x;, 1=x = 0(X)n, and this implies that fex. x, () = fe,x,(u) (conditional
independence property).

We propose the following three-step procedure to estimate the conditional quantile function of
Yir — a; = m(Xjt) + o(Xit) i given Xjp = x.

STEP 1. We obtain 7i1(X;;) = PX(X;;)'B by exactly the same procedure as in Step 1 of the conditional
homoskedastic error case.

STEP 2. We use the deconvolution method to estimate f,|x,—(-), the conditional density of € given
Xt = x. Define AYj; = Yj; — Yir_1. Assuming that the density of 7;; is symmetric around zero,% and
note that [m(Xj) — m(Xi;—1)]x,=x,x,,_,=x = m(x) — m(x) = 0, we have

$av, (s|x) = Elexp(isAYy) Xy = Xj—1 = ¥]
= Elexp[is(ejs — €j—1)|Xit = Xip—1 = x]

{ Elexplusei) i = 5] { Elexp(-isci-) X = 1}

{E[exp(lseitﬂxit = x]}{E[exP(lSGit1)|Xit1 = x]} (11)

{E[exposeimxit - x]}z
= ¢ (sla),

where 1 = /—1, the third equality uses the conditional independence property as described in
Remark 6, and in the fourth equality we use the symmetry of €;;_1|X;;—1 = x = 0(x)#; 11, and #; 1
is symmetric around zero.

Fang et al. (2018) also considers the same form of heteroskedastic error as described here.
This implies the conditional density of €;; given X;; = x is symmetric, since, given that €| Xp=x = o(x)1;, the symmetry of
7t is equivalent to the symmetry of €j;.

8
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Under the assumption that ¢e(s|x) is positive, the above equation implies that ¢, (s|x) =
Pay, (s|x). The left-hand side of Equation (11) can be estimated from data:

Zifil YL, exp [is(Yi — th—l)]K(X%;x)K(X”ﬁi;_x)
- Xi—1— '
Y T K(B) K (Z45=)

‘f’Ant(S|x) =

Therefore, we estimate ¢, (s|x) by §e,, (s|x) = 1/ Pay, (s[x). Let fey|xy==(+) denote the conditional
density of €;; = o (X; t)’?zt given X;; = x. Then, using the deconvolution method as in the homoskedastic
case, one can recover f€t| x,—x() using ¢e, (s|x) as in Equation (8). We use fet‘ x;,=x (") to denote the
resulting estimator of f x,—(")-

STEP 3. Let Qe‘ x—=x(T) denote the estimate of Q.x—,(7), T € (0,1). The following identity

Qe\X:x(T)
T:lm fe|X:x(Z)dz

suggests that we can obtain Qe\X:x(T) based on the following equation:

Q6|X X T) A
T_/ e\X «(2)dz,

where f€| x—y(2) is estimated from Step 2.
By Equation (10), the t-th conditional quantile estimator of Y;; — «;, given Xj; = x, is estimated by

Gr(x) = 1h(x) + Qe|x=(7), T€(0,1),
where 71(x) = PX(x)'B is obtained in Step 1, and Qe‘X:x(T) is obtained in Step 3.

Remark 7. Note that, in the last step, we estimate the T-th quantile of €; = o (Xj;)n;; directly, instead of
estimating the unknown function o(-) and Q,(7) separately (e.g., Fang et al. (2018)).

5. Conclusions

In this paper, we propose an easy-to-implement nonparametric method to estimate conditional
quantile functions in a fixed effects panel data model. There are many directions that one can extend
the results of this paper to more general settings. For example, one can allow for panel non-stationary
data as considered in Chen and Khan (2008) or allow for the covariate Xj; to be endogenous. We leave
these as possible future research topics.
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