Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Measurements
2.3. Measurement of Sphingomyelins and Ceramides
2.4. Serum Sample Preparation for Mass Spectrometry
2.5. Measurement of Serum β-Hydroxybutyrate Levels
2.6. Measurement of Serum N-SMase, IL-1β, and TNF-α Levels
2.7. Statistical Analysis
3. Results
3.1. Laboratory Values
3.2. Serum β-Hydroxybutyrate and Lactate Levels
3.3. Serum TNF-α, IL-1β and N-SMase Values
3.4. Serum Sphingolipid Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
BMI | body mass index |
CERs | ceramides |
CRP | C-reactive protein |
DKA | diabetic ketoacidosis |
ECF | extracellular space |
ELISA | enzyme-linked immunosorben |
FFAs | free fatty acids |
fT4 | free thyroxine |
GLUT-4 | glucose transporter type 4 |
IL-1β | interleukin 1 beta |
IL-6 | interleukin 6 |
IRS | insulin receptor substrates |
LC-MS/MS | tandem mass spectrometry |
NF-κB | nuclear factor-kappa B |
N-SMase | neutral sphingomyelinase |
ROS | reactive oxygen species |
SMs | sphingomyelins |
SphKs | sphingosine kinases |
SPL | S1P lyase |
SPT | serine palmitoyltransferase |
TLRs | toll-like receptors |
TMB | tetramethylbenzidine |
TNF-α | tumor necrosis factor alpha |
TSH | thyroid stimulating hormone |
VLDL | very low-density lipoprotein |
β-OHB | body mass index |
References
- Lee, M.; Lee, S.Y.; Bae, Y.S. Functional roles of sphingolipids in immunity and their implication in disease. Exp. Mol. Med. 2023, 55, 1110–1130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arana, L.; Gangoiti, P.; Ouro, A.; Trueba, M.; Gómez-Muñoz, A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis. 2010, 9, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomez-Larrauri, A.; Presa, N.; Dominguez-Herrera, A.; Ouro, A.; Trueba, M.; Gomez-Muñoz, A. Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 2020, 64, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Özer, H.; Aslan, İ.; Oruç, M.T.; Çöpelci, Y.; Afşar, E.; Kaya, S.; Aslan, M. Early postoperative changes of sphingomyelins and ceramides after laparoscopic sleeve gastrectomy. Lipids Health Dis. 2018, 17, 269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Long, S.D.; Pekala, P.H. Lipid mediators of insulin resistance: Ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem. J. 1996, 319 Pt 1, 179–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, D.J.; Hajduch, E.; Kular, G.; Hundal, H.S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 2003, 23, 7794–7808. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delcheva, G.; Stefanova, K.; Stankova, T. Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases 2024, 12, 195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hammerschmidt, P.; Brüning, J.C. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell. Mol. Life Sci. 2022, 79, 395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gosmanov, A.R.; Gosmanova, E.O.; Kitabchi, A.E.; Feingold, K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.; et al. (Eds.) Hyperglycemic Crises: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar] [PubMed]
- Elendu, C.; David, J.A.; Udoyen, A.O.; Egbunu, E.O.; Ogbuiyi-Chima, I.C.; Unakalamba, L.O.; Temitope, A.I.; Ibhiedu, J.O.; Ibhiedu, A.O.; Nwosu, P.U.; et al. Comprehensive review of diabetic ketoacidosis: An update. Ann. Med. Surg. 2023, 85, 2802–2807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolb, H.; Kempf, K.; Röhling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bendridi, N.; Selmi, A.; Balcerczyk, A.; Pirola, L. Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders. Int. J. Mol. Sci. 2022, 23, 14564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciaffi, J.; Mitselman, D.; Mancarella, L.; Brusi, V.; Lisi, L.; Ruscitti, P.; Cipriani, P.; Meliconi, R.; Giacomelli, R.; Borghi, C.; et al. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front. Med. 2021, 8, 792846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, C.M.; Yun, B.; Kim, M.; Song, M.; Kim, Y.-H.; Lee, S.H.; Lee, H.; Lee, S.-M. Postoperative serum metabolites of patients on a low carbohydrate ketogenic diet after pancreatectomy for pancreatobiliary cancer: A nontargeted metabolomics pilot study. Sci. Rep. 2019, 9, 16820. [Google Scholar] [CrossRef]
- Parker, B.A.; Walton, C.M.; Carr, S.T.; Andrus, J.L.; Cheung, E.C.K.; Duplisea, M.J.; Wilson, E.K.; Draney, C.; Lathen, D.R.; Kenner, K.B.; et al. β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. Int. J. Mol. Sci. 2018, 19, 2247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Marques, C.; Pinheiro, M.M.; Lopes, J.; Ribeiro, S.L.E.; de Castro, M.V.M.; de Azevedo Valadares, L.D.; Ranzolin, A.; de Andrade, N.P.B.; do Espírito Santo, R.C.; Araújo, N.C.; et al. COVID-19 on patients with immune-mediated rheumatic disease: A comparative study of disease activity, fatigue, and psychological distress over six months. Adv. Rheumatol. 2025, 65, 4. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile And Cut Off Points. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Balasubramanyam, A.; Zern, J.W.; Hyman, D.J.; Pavlik, V. New profiles of diabetic ketoacidosis: Type 1 vs type 2 diabetes and the effect of ethnicity. Arch. Intern. Med. 1999, 159, 2317–2322. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 508409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, Q.; Li, J.; Gao, F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes 2014, 5, 89–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvarez-Curto, E.; Milligan, G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochem. Pharmacol. 2016, 114, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; McVie, R.; Bocchini, J.A., Jr. Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology 2006, 13, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 2006, 72, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Neudorf, H.; Durrer, C.; Myette-Cote, E.; Makins, C.; O’Malley, T.; Little, J.P. Oral Ketone Supplementation Acutely Increases Markers of NLRP3 Inflammasome Activation in Human Monocytes. Mol. Nutr. Food Res. 2019, 63, e1801171. [Google Scholar] [CrossRef] [PubMed]
- Savulescu-Fiedler, I.; Mihalcea, R.; Dragosloveanu, S.; Scheau, C.; Baz, R.O.; Caruntu, A.; Scheau, A.E.; Caruntu, C.; Benea, S.N. The Interplay between Obesity and Inflammation. Life 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zick, Y. Ser/Thr phosphorylation of IRS proteins: A molecular basis for insulin resistance. Sci. STKE 2005, 2005, pe4. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zabielski, P.; Blachnio-Zabielska, A.; Lanza, I.R.; Gopala, S.; Manjunatha, S.; Jakaitis, D.R.; Persson, X.M.; Gransee, J.; Klaus, K.A.; Schimke, J.M.; et al. Impact of insulin deprivation and treatment on sphingolipid distribution in different muscle subcellular compartments of streptozotocin-diabetic C57Bl/6 mice. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E529–E542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merrill, A.H., Jr.; Jones, D.D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim. Biophys. Acta 1990, 1044, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Merrill, A.H., Jr.; Nixon, D.W.; Williams, R.D. Activities of serine palmitoyltransferase (3-ketosphinganine synthase) in microsomes from different rat tissues. J. Lipid Res. 1985, 26, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.D.; Nixon, D.W.; Merrill, A.H., Jr. Comparison of serine palmitoyltransferase in Morris hepatoma 7777 and rat liver. Cancer Res. 1984, 44, 1918–1923. [Google Scholar] [PubMed]
- Holleran, W.M.; Williams, M.L.; Gao, W.N.; Elias, P.M. Serine-palmitoyl transferase activity in cultured human keratinocytes. J. Lipid Res. 1990, 31, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.D.; Wang, E.; Merrill, A.H., Jr. Enzymology of long-chain base synthesis by liver: Characterization of serine palmitoyltransferase in rat liver microsomes. Arch. Biochem. Biophys. 1984, 228, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Bienias, K.; Fiedorowicz, A.; Sadowska, A.; Prokopiuk, S.; Car, H. Regulation of sphingomyelin metabolism. Pharmacol. Rep. 2016, 68, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Neutral sphingomyelinase: Past, present and future. Chem. Phys. Lipids 1999, 102, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.J.; Hannun, Y.A. Neutral sphingomyelinases and nSMase2: Bridging the gaps. Biochim. Biophys. Acta 2006, 1758, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Shamseddine, A.A.; Airola, M.V.; Hannun, Y.A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 2015, 57, 24–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, H.; Tanaka, K.; Hagiwara, K.; Kobayashi, M.; Hoshikawa, A.; Mizutani, N.; Takagi, A.; Kojima, T.; Sobue, S.; Ichihara, M.; et al. Transcriptional regulation of neutral sphingomyelinase 2 in all-trans retinoic acid-treated human breast cancer cell line, MCF-7. J. Biochem. 2012, 151, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Alemany, R.; van Koppen, C.J.; Danneberg, K.; Ter Braak, M.; Meyer Zu Heringdorf, D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 2007, 374, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.; Saba, J.D. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 2010, 50, 349–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacGregor, K.A.; Gallagher, I.J.; Moran, C.N. Relationship Between Insulin Sensitivity and Menstrual Cycle Is Modified by BMI, Fitness, and Physical Activity in NHANES. J. Clin. Endocrinol. Metab. 2021, 106, 2979–2990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | Control (n = 12) | Obese (n = 11) | DKA (n = 10) | Post-DKA (n = 10) |
---|---|---|---|---|
Weight (kg) | 64.28 ± 6.27 | 112.63 ± 17.96 a | 60.76 ± 11.90 | 60.76 ± 11.90 |
Height k (cm) | 163.6 ± 7.6 | 164.73 ± 8.43 | 168.00 ± 11.87 | 168.00 ± 11.87 |
BMI (kg/m2) | 23.97 ± 2.06 | 41.45 ± 4.77 b | 21.50 ± 3.65 | 21.50 ± 3.65 |
pH | 7.39 ± 0.04 | 7.39 ± 0.01 | 7.17 ± 0.12 c, d | 7.34 ± 0.04 |
HCO3 (mEq/L) | 24.71 ± 1.77 | 23.56 ± 2.19 | 11.38 ± 3.83 c, d | 18.25 ± 3.46 c |
Urine ketone (mmol/L) | 0 | 0 | 2.60 ± 0.70 e, f | 0.56 ± 1.01 |
CRP (mg/L) | 1.54 ± 1.92 | 14.22 ± 17.01 g | 40.39 ± 87.02 g | 37.29 ± 82.11 g |
Glucose (mg/dL) | 77.67 ± 7.89 | 88.73 ± 9.96 | 446.50 ± 150.02 c, d | 182.50 ± 39.51 c |
BUN (mg/dL) | 9.58 ± 2.84 | 11.50 ± 2.32 | 21.00 ± 11.48 g, d | 9.78 ± 3.23 |
Creatinine (mg/dL) | 0.85 ± 0.14 | 0.80 ± 0.13 | 1.18 ± 0.35 e, d | 0.89 ± 0.23 |
GFR (ml/dk) | 96.92 ± 13.65 | 104.27 ± 16.96 | 74.00 ± 29.43 h, f | 99.44 ±26.45 |
Na+ (mmol/L) | 139.33 ± 1.72 | 139.45 ± 2.54 | 131.70 ± 3.71 c, d | 137.8 ± 6.5 |
K+ (mmol/L) | 4.30 ± 0.22 | 4.37 ± 0.38 | 4.30 ± 0.85 | 3.95 ± 0.48 |
HbA1c (%) | 5.33 ± 0.26 | 5.68 ± 0.35 | 11.29 ± 1.82 c | - |
TSH (mU/L) | 2.14 ± 1.00 | 2.37 ± 1.43 | 2.26 ± 1.82 | - |
fT4 (ng/dL) | 0.82 ± 0.10 | 1.20 ± 0.64 g | 0.92 ± 0.15 | - |
Total cholesterol (mg/dL) | 196.17 ± 26.77 | 171.36 ± 34.20 | 214.50 ± 168.62 | - |
HDL-C (mg/dL) | 64.58 ± 16.43 | 44.00 ± 9.49 g | 67.70 ± 62.71 | - |
LDL-C (mg/dL) | 117.33 ± 28.30 | 102.90 ± 24.05 | 84.80 ± 45.97 | - |
VLDL-C (mg/dL) | 14.25 ± 5.41 | 24.45 ± 12.86 g | 89.30 ± 206.63 g | - |
Triglyceride (mg/dL) | 71.33 ± 26.61 | 121.91 ± 64.78 g | 446.30 ± 1033.94 g | - |
Cl− (mmol/L) | 103.50 ± 1.88 | 103.55 ± 1.92 | 99.50 ± 5.23 c | - |
Ca2+ (mg/dL) | 9.41 ± 0.22 | 9.49 ± 0.48 | 9.09 ± 0.80 | - |
Albumin (mg/dL) | 43.28 ± 3.61 | 42.23 ± 2.93 | 35.86 ± 6.90 e | - |
ALT (U/L) | 13.67 ± 3.58 | 26.91 ± 11.82 g | 26.60 ± 27.79 | - |
AST (U/L) | 16.25 ± 3.28 | 19.27 ± 4.56 | 19.33 ± 12.97 | - |
Lipase (U/L) | 16.25 ± 6.81 | 24.45 ± 20.43 | 53.50 ± 97.22 | - |
Insulin (mIU/L) | 6.69 ± 3.54 | 13.31 ± 5.40 i | - | - |
HOMA-IR | 1.32 ± 0.82 | 3.03 ± 1.20 i | - | - |
Parameter | Control (n = 12) | Obese (n = 11) | DKA (n = 10) | Post-DKA (n = 10) |
---|---|---|---|---|
Sphingomyelin (µmol/mL) | ||||
16:0 SM (d18:1/16:0) | 1.40 ± 0.23 | 1.24 ± 0.23 | 0.71 ± 0.19 a | 0.86 ± 0.36 b |
18:0 SM (d18:1/18:0) | 0.13 ± 0.03 | 0.14 ± 0.05 | 0.05 ± 0.01 a | 0.06 ± 0.02 a |
24:0 SM (d18:1/24:0) | 0.30 ± 0.08 | 0.28 ± 0.06 | 0.17 ± 0.06 c | 0.17 ± 0.07 c |
Ceramide (nmol/mL) | ||||
C16 CER (d18:1/16:0) | 3.97 ± 0.87 | 3.62 ± 0.42 | 2.92 ± 0.98 | 3.12 ± 0.59 |
C18 CER (d18:1/18:0) | 1.03 ± 0.31 | 1.51 ± 0.59 | 0.71 ± 0.31 d | 0.76 ± 0.29 d |
C20 CER (d18:1/20:0) | 1.79 ± 0.38 | 1.96 ± 0.94 | 0.80 ± 0.23 a | 0.96 ± 0.36 a |
C22 CER (d18:1/22:0) | 26.20 ± 7.37 | 29.32 ± 7.47 | 16.18 ± 6.86 c | 15.81 ± 7.30 c |
C24 CER (d18:1/24:0) | 89.65 ± 33.67 | 90.19 ± 21.55 | 50.64 ± 20.17 c | 53.85 ± 27.74 c |
S1P (nmol/mL) | 13.74 ± 3.81 | 12.80 ± 3.28 | 5.43 ± 2.75 a | 6.82 ± 5.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, I.; Çeker, T.; Ustabaş, T.; Zorlu, V.; Yılmaz, Ç.; Aslan, M. Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study. Pathophysiology 2025, 32, 29. https://doi.org/10.3390/pathophysiology32030029
Aslan I, Çeker T, Ustabaş T, Zorlu V, Yılmaz Ç, Aslan M. Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study. Pathophysiology. 2025; 32(3):29. https://doi.org/10.3390/pathophysiology32030029
Chicago/Turabian StyleAslan, Ibrahim, Tuğçe Çeker, Tayfun Ustabaş, Vuslat Zorlu, Çağatay Yılmaz, and Mutay Aslan. 2025. "Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study" Pathophysiology 32, no. 3: 29. https://doi.org/10.3390/pathophysiology32030029
APA StyleAslan, I., Çeker, T., Ustabaş, T., Zorlu, V., Yılmaz, Ç., & Aslan, M. (2025). Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study. Pathophysiology, 32(3), 29. https://doi.org/10.3390/pathophysiology32030029