Next Article in Journal
Detection and Verification of a Key Intermediate in an Enantioselective Peptide Catalyzed Acylation Reaction
Next Article in Special Issue
Chemical Profile and Biological Activities of Essential Oil from Piper arboreum for Development and Improvement of Mouthwash
Previous Article in Journal
Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines
Previous Article in Special Issue
Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity

by
Hendra Dian Adhita Dharsono
1,*,
Salsabila Aqila Putri
2,
Dikdik Kurnia
2,
Dudi Dudi
3 and
Mieke Hemiawati Satari
4
1
Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
2
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
3
Department of Livestock Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
4
Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
*
Author to whom correspondence should be addressed.
Molecules 2022, 27(19), 6350; https://doi.org/10.3390/molecules27196350
Submission received: 1 September 2022 / Revised: 16 September 2022 / Accepted: 22 September 2022 / Published: 26 September 2022
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)

Abstract

:
Infection by bacteria is one of the main problems in health. The use of commercial antibiotics is still one of the treatments to overcome these problems. However, high levels of consumption lead to antibiotic resistance. Several types of antibiotics have been reported to experience resistance. One solution that can be given is the use of natural antibacterial products. There have been many studies reporting the potential antibacterial activity of the Ocimum plant. Ocimum is known to be one of the medicinal plants that have been used traditionally by local people. This plant contains components of secondary metabolites such as phenolics, flavonoids, steroids, terpenoids, and alkaloids. Therefore, in this paper, we will discuss five types of Ocimum species, namely O. americanum, O. basilicum, O. gratissimum, O. campechianum, and O. sanctum. The five species are known to contain many chemical constituents and have good antibacterial activity against several pathogenic bacteria.

1. Introduction

Infection by microbes is one of the main problems that causes several diseases. One of the causes of infection is bacteria that can have an impact on public health. Based on the collection of data from 52 sentinel hospitals in North America for 7 years (1998–2004) on contemporary strains of 12,737 strains of pediatric patients under 18 years of age, E. coli as a pediatric pathogen ranks in the top six [1]. Mapanguy et al. [2] also reported that oral antibiotics such as cefixime, amoxicillin, and ciprofloxacin were resistant to E. coli infection about 50–60%. In addition, microorganisms can also cause wound infections and inhibit healing. Some of the bacteria associated with wound infections are Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Proteus spp., Streptococcus spp., and Enterococcus spp. [3,4]. Bacteria is also can be pathogenic in the skin, such as Staphylacoccus, Micrococcus, and Corynebacterium sp. [5]. In relation to dental and oral health, Streptococcus sanguinis and Streptococcus mutans can cause dental caries [6].
Some of the infections mentioned can be treated with antibiotics. However, several studies have proven that antibiotics can cause resistance [7]. Antibiotic resistance occurs due to the use of drugs in large quantities, causing selection pressures on human and natural microbial systems. Microbes can undergo mutations to survive, thereby reducing antibiotic sensitivity [8,9]. Infections due to drug resistance have caused the death of up to 700,000 people every year worldwide [10]. There are several antibiotic resistances, namely vancomycin and teicolanin against S. aureus [11], gentamicin aminoglycoside against E. faecalis and E. faecium with percent resistance of 30% to 50% [12], penicillin against S. pneumonia [13], and E. coli caused resistance of fluorokuinolon more than 80% and gentamicin more than 40% [12].
Therefore, the use of natural antibacterial ingredients is one solution that has great potential. Ocimum species are herbal plants that are available in Indonesia. Ocimum species are native to tropical areas such as southern Asia, Africa, and India [14]. Ocimum comes from the Lamiaceae family, which has about 50 to 150 species [15]. Due to its pharmacological effects, this plant has been widely used traditionally for the treatment of headaches, coughs, diarrhea, constipation, warts, and kidney damage [16]. These properties come from the secondary metabolite components that are abundant in Ocimum plants such as steroids, tannins, alkaloids, flavonoids, and phenolics [17]. In addition, the abundant components of essential oils make Ocimum a plant that can fight the growth of organisms [18,19]. Therefore, in this paper, we will discuss five species of Ocimum that have been tested in vitro to have antibacterial activity against several Gram-positive and Gram-negative bacteria.

2. Chemical Constituents and Antibacterial Activity of Ocimum Species

2.1. Ocimum americanum

O. americanum is native to Africa and is 15 to 60 cm tall with sub-rectangular striated branches [20,21]. The leaf shape is intact or faintly serrated, lanceolate ellipse, glandular spots, and glabrous. The color of flower is pink, white, or purplish with an elongated circle shape. The fruits are small, pitted notelets, and mucilaginous [21]. It is commonly known as hoary basil or mosquito plant and has three chemotypes, namely spicy, camphoraceous, and floral-lemony [22] Traditionally, this plant is used for the treatment of digestive, respiratory, and sedative disorders. It also has benefits as a cough medicine, treating bronchitis, immune disorders, relieving toothache, and dysentery, which is commonly used orally [20,23]. The extract of O. americanum was also used for tobacco flavoring, tea, and body fragrance. The leaves and branches were used for insecticides against mosquitoes, bees, flies, and other insects. In Africa, the Swahili tribe utilizes the aerial parts of the plant for the treatment of high blood pressure and stomach aches [24]. In addition, local people in the Tamil Nadu area use a decoction of the leaves as a medicine for diabetes, constipation, diarrhea, hemorrhoids, and dysentery [25].
O. americanum has several phytochemical components, such as alkaloids, flavonoids, phenolic, tannins, terpenoids, saponin, steroids and glicosides. Some studies reported that saponin, phenolic, and tannins are found in less polar solvent such as ethyl acetate leave extract [24], while glicosides and steroids are commonly found in methanol extract [25]. Moreover, phenolic, flavonoids, saponin, and tannins were found in the aqueous extract of leaves and flowers [26]. The pharmacological activities found in O. americanum are antioxidant, antifungal, antimicrobial, anti-insecticide and larvicide, and gastric cytoprotective antiulcer effect [27,28]. Chemical compounds in O. americanum can be seen in Table 1, Figure S1.

2.2. Ocimum basilicum

Ocimum basilicum, commonly called sweet basil, is one of the species of genus Ocimum from Asia, Africa, and South America regions [36,37]. O. basilicum can live in different climates and ecology, grows in cool humid areas to tropical areas with the temperatures between 6 and 24 °C, and also favors warm conditions [38]. This plant is the species of Ocimum which is commercially available in the market [39]. It has six different morphologies, namely true basil with green leaves, small-leaf basil, which belongs to green cultivars with short narrow leaves and grows rounded, lettuce-leaf with broad leaves, purple basil A, which has green leaves with purple flowers and stems, purple basil B, where the leaves, flower, and stems are purple, and purple basil C, which has a similarity to purple basil B and has broad listered leaves [40,41]. O. basilicum is 20 to 80 cm tall with glabrous and woody stems, large green leaves, and is broadly elliptical, measuring 2.5 to 5 cm × 1 to 2.5 cm. The flowers are red, pink, or white, with a size of 3 mm, and are arranged in terminal spikes [42].
Traditionally, the fruit of O. basilicum was used as folk medicine against inflammation, diarrhea, worm infestation, and eye-related disease [43]. Leaves and flowers of O. basilicum were used as tonic and vermifuge, and can also be used as a tea to treat nausea, flatulence, and dysentery. O. basilicum contains essential oils that are commonly used to treat colds, seizures, and treatment of wasp stings and snakebites [44]. The polysaccharide component of O. basilicum was traditionally used as cancer treatment in China [45,46]. In South Europe, they used O. basilicum as Mediterranean food, such as the cuisines of Italian and Greek [47].
O. basilicum contains the main components that are beneficial for health such as calcium, phosphorus, vitamin A, vitamin C, and beta carotene [48]. Phytochemical constituents contained in O. basilicum are alkaloids, flavonoids, phenols, saponins, tannins, terpenoids, carbohydrates, cardiac glycosides, cholesterol, glycosides, and phlobatannis [49,50]. Therefore, it has the potential to have anti-inflammatory, antimicrobial, antivirals, anticancer, antifungal, antidiabetic, anti-allergic, analgesic, cardioprotective, and immunomodulatory properties [50,51,52,53]. Then, flavonoids and phenolic compounds gave antioxidant activity [54,55]. Chemical compounds in O. basilicum can be seen in Table 2, Figure S2.

2.3. Ocimum gratissimum

O. gratissimum, with the common name of clove basil, is a species of family Labiate which grows in tropical region, namely India and West Africa [71,72]. It is 1–3 m tall and has leaves that are 3–4 cm × 1–2 cm [73]. The flowers have several colors, such as yellowish white, greenish purple, hairy, calyx greenish purple, brown seeds, and not slimy [74]. In Africa, eastern, central, and western Kenya, O. gratissimum is commonly found in scrub and disturbed highland forests at elevations of 600 to 2400 m above sea level [75].
Traditionally, O. gratissimum was used for the treatment of cough, fever, snakebites, mosquito repellent, anemia, inflammation, and diarrhea [75,76]. It has several bioactivities, namely antioxidant, anti-inflammation, antimycotoxicogenic, antibacterial, antifungal, antimalaria, and antiseptic activities [77,78,79,80]. The phytochemical components of O. gratissimum are alkaloids, saponins, tannins, phlobatannins, glycosides, phenols, anthraquinones, flavonoids, and terpenoids [81,82]. Some of the chemical compounds contained in O. gratissimum are listed in Table 3, Figure S3.

2.4. Ocimum campechianum

O. campechianum is a plant of the Lamiaceae family group which originates from the tropics of South and Central America. This plant is commonly known as “Albahaca de campo” or “Albahaca silvestre”, used by local people for traditional medicine or culinary purposes [95,96]. This plant has a height of 1 m and contains essential oil components with two types of aromatic leaves, namely glandular trichomes, peltate, and capitate. In addition, O. campechianum contains components of flavonoids, polyphenols, and tannins [97,98]. Traditionally, this plant is used as a decoction of leaves, ointments, and for the treatment of fever, cough, bronchitis, diarrhea, dysentery, and hypertension. In addition, O. campechianum can also be used as an emmenagogue that helps childbirth [99]. In terms of pharmacological effects, this plant extract is known to have antifungal, antioxidant, antiradical, antiproliferative, and analgesic activities [96,100,101]. In addition, it also has potential as a natural larvicide and pesticide [102]. The data of chemical constituents in O. campechianum can be seen in Table 4, Figure S4.

2.5. Ocimum sanctum

O. sanctum is a plant from the Lamiaceae family, commonly known as basil or tulsi, which is native to India and is widely distributed as a cultivated plant throughout Southeast Asia [106]. It is known as a sacred plant in India and a symbol of purity. It got the name of “Tulasi” from Tulasi Devi, one of the Lord Krishna’s eternal consorts. Tulasi was a Gopi who was said to have fallen in love with Krishna and was cursed by his wife Radha. He is very similar to Vishnu [107]. In India, it is used for religious plants and important events such as weddings [108]. O. sanctum is 30–75 cm tall with an herbaceous shape, and is erect, more-branched, and hairy-soft [107]. It has pointed or blunt leaves, the leaves are oval, and the flowers are tightly coiled with a pale red or dark red color [109].
Traditionally, O. sanctum was used for the treatment of diarrhea, chronic fever, malaria, skin disease, bronchitis, dysentery, insect bite, arthritis, and bronchial asthma [110,111]. O. sanctum has several bioactivities such as anticancer, antispasmodic, antifertility, antimicrobial, anti-inflammatory, antioxidant, antifungal, analgesic, antidiabetic, cardio protective, adaptogenic, antiemetic, and hepatoprotective [112,113,114,115]. It has several phytochemicals, namely terpenoids, phenolic, flavonoids, glycosides, and propenyl phenols [116]. Moreover, it also contains vitamin C, A, and minerals such as zinc, iron, and calcium [117]. The protein content in O. sanctum is 4.2 g, then 0.5 g fat, 25 mg carbohydrates, 287 mg phosphorus, 25 mg calcium, vitamin C per 100 g, and 15.1 mg iron [118]. The chemical constituents included in O. sanctum are listed in Table 5, Figure S5.

3. Antibacterial Activity of Ocimum Species

Tests of antibacterial activity against Ocimum species have been carried out on both Gram-positive and Gram-negative bacteria. Based on the data in Table 6, Table 7 and Table 8, the Ocimum extracts that were widely tested and gave relatively high activity were essential oil extracts. In general, the five Ocimum species have good antibacterial activity. However, based on the inhibition zone data in Table 6, it can be seen that O. americanum, O. basilicum, and O. sanctum had higher activity than the other two species, where the diameter of the inhibition zone reached 20 to 40 mm. In Gram-positive bacteria, O. americanum, O. basilicum, and O. sanctum gave the highest inhibition zone against S. aureus, while O. gratissimum gave the highest inhibition zone against E. faecalis, and O. campechianum gave the highest inhibition against L. ivanovii. Furthermore, in Gram-negative bacteria, O. americanum gave the highest inhibition zone against P. gingivalis and P. intermedia, O. basilicum against P. aeruginosa, O. gratissimum against P. mirabilis, O. campechianum against E. coli, and O. sanctum against Yersinia enterocolitica.
Furthermore, MIC is an antibacterial test used to determine its inhibitory activity. Based on de Aguiar et al. [157], MIC concentrations in the range 101–500 µg/mL have strong activity and in the range 500–1000 µg/mL have moderate activity. As for Table 7, testing of O. basilicum against several bacteria, such as S. mutans, S. aureus, B. cereus, L. monocytogenes, E. coli, P. aeruginosa, and S. typhi, showed MIC values below 100 µg/mL, which means that they provide very strong activity, as well as in O. sanctum. The other three Ocimum species only showed strong to weak activity.
Table 7. Data of minimum inhibitory concentration (MIC) of Ocimum species.
Table 7. Data of minimum inhibitory concentration (MIC) of Ocimum species.
MicroorganismExtractMIC (µg/mL)Positive Control (µg/mL)Reference
12345
Gram-Positive Bacteria
S. mutansEssential oil0.04% v/v18----[126,129,158]
Lauric acid-156----
β-Sitosterol-25,000----
L. caseiEssential oil0.04% v/v-----[126]
E. faecalisEssential oil500-----[41,129]
β-Sitosterol-25,000----
E. faeciumEssential oil500-----[41]
S. aureusEssential oil200-1000-2.50 [41,55,132,133,134,135,137,147,159]
70% hydroethanolic1840-----
Ethanol ----42805e6
Hexane ----2.30-
Linalool -32----
Methanol --->2000--
Rosmarinic acid--->2000--
Eugenol ---1000--
Caryophyllene ----50-
B. cereus70% hydroethanolic1540-----[132,137,159]
Essential oil-18–36----
Eugenol ----25-
S. epidermidisEssential oil300-----[41,145]
Bark-500----
S. phyogenesEssential oil-50----[139,140]
Ethanol --7---
Listeria monocytogenesEssential oil-36----[41,153,160]
Ethanol --2150---
Hydroethanolic-10,000---2b > 150
2b < 150
B. subtilisMethanol-625----[143]
S. sanguinisLauric acid-78----[158,161]
Nevadensin-3750----
S. faecalisEthanol--125---[144]
Gram-Negative Bacteria
P. gingivalisEssential oil350-----[146]
P. intermediaEssential oil350-----
F. nucleatumEssential oil700-----
P. vulgarisEssential oil 400-----[41]
A. baumanniiEssential oil1000-----[151]
E. coliEssential oil-9–181000-2.25-[132,133,134,159,162]
Hexane ----2.50-
(−)-β-elememe---->200-
S. typhimiriumMethanol:DMSO>200-----[26,139,159,163]
Essential oil-1600----
Leave --60–250---
(−)-β-elememe----100-
S. dysenteriaeBark -10,000----[145]
P. aeruginosaEssential oil-9–18-->4.50-[55,132,162]
Linalool -1024----
P. multocidaEssential oil-2300----[154]
K. pneumoniaeHydroethanolic -20,000---2b10,000
2o < 7.80
[164]
M. morganiiHydroethanolic -10,000---2o20,000
2o < 7.80
[164]
P. mirabilisHydroethanolic ->20,000---2b < 150
2o < 7.80
[164]
Coliform bacilliSeed --2500–7000---[165]
Shigalla sp.Ethanol --40,000---
Salmonella sp.Ethanol --60,000
P. syringaeMethanol --->2000-4p2.50[96]
Rosmarinic acid--->2000-4p2.50
Eugenol ---500-4p2.50
S. flexneri(−)-β-elememe----100-[159]
S. typhiEssential oil-9----[153,159]
Methyl eugenol ----50-
E. herbicolaEssential oil----2 µL/mL5k8 [166]
P. putidaEssential oil----1 µL/mL5k4
Aeromonas hydrophilaEthanol ----38205e5[135]
Vibrio harveyiEthanol ----44605e7
Vibrio vulnificusEthanol ----5805e6
(-) = Test not performed; 1 = O. americanum, 2 = O. basilicum, 3 = O. gratissimum, 4 = O. campechianum, 5 = O. sanctum; Positive control: b(Ciprofloxacin), e(Tetracycline), k(Streptomycin), o(Imipenem), p(Cloramphenicol).
The MBC data were used to show the ability of the compound to kill bacterial growth. Based on the MBC data in Table 8, the species from Ocimum that had the best activity in killing bacterial growth was O. sanctum which could be seen in the MBC values against B. cereus, E. herbicola, and P. putida. Therefore, based on the data of inhibition zone, MIC, and MBC, the Ocimum species that have more potential as natural antibacterials are O. basilicum and O. sanctum.
Table 8. Data of minimum bactericidal concentration (MBC) of Ocimum species.
Table 8. Data of minimum bactericidal concentration (MBC) of Ocimum species.
MicroorganismExtractMBC (µg/mL)Reference
12345
Gram-Positive Bacteria
S. mutansEssential oil0.08% v/v----[126,129,158]
Lauric acid-2500---
β-Sitosterol-50,000---
L. caseiEssential oil0.30% v/v----[126]
E. faecalisβ-Sitosterol-50,000---[129]
S. aureusEssential oil--1000--[24,55,133,155]
70% hydroethanolic7340----
Linalool->1024---
Caryophyllene ---->200
B. cereus70% hydroethanolic6150----[137,159]
Eugenol ----50
S. phyogenesEssential oil-1004.2--[139,140]
Listeria monocytogenesEssential oil->20,000---[160,164]
Ethanol --2150--
S. epidermidisBark -2000---[145]
B. subtilisMethanol -625---[143]
S. sanguinisLauric acid -1250---[158,161]
Nevadensin -15,000---
Gram-Negative Bacteria
P. gingivalisEssential oil700----[146]
P. intermediaEssential oil700----
F. nucleatumEssential oil1400----
A. baumanniiEssential oil8000----[151]
E. coliEssential oil--1000--[133,159]
(−)-β-elememe----200
S. typhimiriumEssential oil-3200100–300 [139,159,163]
(−)-β-elememe---->200
S. dysenteriaeBark -20,000---[145]
P. aeruginosaLinalool ->1024---[55]
K. pneumoniaeHydroethanolic ->20,000---[164]
M. morganiiHydroethanolic ->20,000---
P. mirabilisHydroethanolic ->20,000---
S. flexneri(−)-β-elememe----200[159]
S. typhiMethyl eugenol----100
E. herbicolaEssential oil----8[166]
P. putidaEssential oil----4
(-) = Test not performed; 1 = O. americanum, 2 = O. basilicum, 3 = O. gratissimum, 4 = O. campechianum, 5 = O. sanctum.

4. Interaction of Essential Oils to Bacteria

Essential oils usually contain chemical components in the terpenoid and phenylpropanoid groups. The five Ocimum species were proven to contain many essential oil components, especially in the monoterpenoid and sesquiterpenoid groups, as well as some phenylpropanoids [167,168]. Therefore, studies on antibacterial activity have also been carried out on the essential oil components. Essential oils of a plants can inhibit both Gram-positive and negative bacteria. However, some studies reported that essential oils were more sensitive to Gram-positive bacteria, but others reported more sensitive to Gram-negative bacteria [169]. Based on El-Shenaway et al. [170], essential oils were more sensitive against Gram-positive bacteria. This was because of differences in cell wall structures. In Gram-negative bacteria, there was an external capsule which prevented penetration of essential oils into microbial cells. The capsule is composed of a more complex bacterial cell wall with a 2–3 nm thick peptidoglycan layer, where there is an outer membrane on the outer layer of peptidoglycan. The presence of the outer membrane is one of the differences between the cell walls of Gram-negative and Gram-positive bacteria. Peptidoglycan and this outer membrane have strong covalent bonds to Braun lipoproteins. This causes the hydrophobic structure of the essential oil to more easily penetrate the cell walls of Gram-positive bacteria [169].
The ability of essential oils to inhibit bacterial growth is due to their hydrophobicity. It increases cell permeability and leak cell constituents [171]. Essential oils will cross cell wall and cytoplasmic membrane which arrange a lot of polysaccharide layers, fatty acids, and phospholipids. As a result, the interaction between lipophilic compounds from essential oils and various structures found in cell walls and membranes causes a cytotoxic effect [172]. Furthermore, essential oils can also agglomerate in the cytoplasm and cause damage to the protein and lipid layers [173].
In the cell membrane, there is a process of ATP production. The action of essential oils can affect changes in intracellular and external ATP balance. This results in a disturbance with ion loss and a decrease in membrane potential, a decrease in the amount of ATP, and a collapse of the proton pump. [174,175]. This will compromise vital functions such as energy systems, synthesis of structural macromolecules, and secretion of enzymes for growth [171]. In addition, essential oils can affect the pH conditions of bacteria. The presence of essential oils on the membrane can disrupt pH homeostasis and cause a significant decrease in pH. Then, the membrane will lose its capacity to block protons. This is because at low pH, the hydroxyl groups in essential oils do not dissociate so that their hydrophobicity will increase, resulting in easier interaction with bacterial cell membrane lipids [176,177].
There are several methods for extracting essential oils from Ocimum species, such as hydrodistillation, steam distillation, solvent extraction, enfleurage, cohobation, and maceration [178]. However, this method requires a fairly long process if it is to be consumed simply in the community. As an alternative, the Ocimum plant has been widely used traditionally to cure bacterial infections. Ocimum can be processed into juice to relieve toothache and treat otitis. This plant can also be made into an infusion for mouthwash. Decoction of this plant can provide an anesthetic effect and act as an antiseptic. Decoction of the leaves and stems can treat diarrhea, fever, and inflammation of the mucous membranes of the nose [179].

5. Conclusions

O. americanum, O. basilicum, O. gratissimum, O. campechianum, and O. sanctum are five types of Ocimum species that have abundant chemical components and antibacterial activity. Based on data on the chemical components of the five Ocimum species, it is known that the most abundant compounds are terpenoids. O. basilicum is the most commonly used and widely available on the market. However, the activity data of the five Ocimum species show that this plant can be a natural product that has potential as a natural antibacterial agent.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/molecules27196350/s1, Figure S1: Chemical Compound Structures of O. Americanum, Figure S2: Chemical Compound Structures of O. basilicum, Figure S3: Chemical Compound Structures of O. gratissimum, Figure S4: Chemical Compound Structures of O. campechianum, Figure S5: Chemical Compound Structures of O. sanctum.

Author Contributions

Conceptualization, D.K. and S.A.P.; methodology, D.K. and S.A.P.; validation, D.K., D.D., M.H.S. and H.D.A.D.; formal analysis, S.A.P.; resources, D.K., H.D.A.D., S.A.P., D.D.; data curation, S.A.P.; writing—original draft preparation, S.A.P.; writing—review and editing, S.A.P. and D.K.; visualization, S.A.P.; supervision, D.K.; project administration, D.K., M.H.S. and H.D.A.D.; funding acquisition, D.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Academic Leadership Grant (ALG) Dikdik Kurnia, Indonesia (2203/UN6.3.1/PT.00/2022; 20 May 2022).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The study did not report any data.

Acknowledgments

The authors are grateful to Academic Leadership Grant (ALG) and to Universitas Padjadjaran for all research facilities.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wu, D.; Ding, Y.; Yao, K.; Gao, W.; Wang, Y. Antimicrobial Resistance Analysis of Clinical Escherichia coli Isolates in Neonatal Ward. Front. Pediatr. 2021, 9, 670470. [Google Scholar] [CrossRef] [PubMed]
  2. Mapanguy, C.C.M.; Adedoja, A.; Kecka, L.G.V.; Vouvoungui, J.C.; Nguimbi, E.; Velavan, T.P.; Ntoumi, F. High prevalence of antibiotic-resistant Escherichia coli in Congolese students. Int. J. Infect. Dis. 2021, 103, 119–123. [Google Scholar] [CrossRef] [PubMed]
  3. Tom, I.M.; Ibrahim, M.M.; Umoru, A.M.; Umar, J.B.; Bukar, M.A.; Haruna, A.B.; Aliyu, A. Infection of Wounds by Potential Bacterial Pathogens and Their Resistogram. Open Access Libr. J. 2019, 6, 1–13. [Google Scholar] [CrossRef]
  4. Sani, R.; Garba, S.; Oyewole, O. Antibiotic resistance profile of gram negative bacteria isolated from surgical wounds in Minna, Bida, Kontagora and Suleja areas of Niger state. Am. J. Med. Med. Sci. 2012, 2, 20–24. [Google Scholar]
  5. Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef]
  6. Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef]
  7. Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
  8. Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
  9. Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef]
  10. Benítez-Chao, D.F.; León-Buitimea, A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Front. Microbiol. 2021, 12, 630695. [Google Scholar] [CrossRef]
  11. Appelbaum, P.C. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 2007, 30, 398–408. [Google Scholar] [CrossRef] [PubMed]
  12. Livermore, D.M.; Hope, R.; Brick, G.; Lillie, M.; Reynolds, R.; on behalf of the BSAC Working Parties on Resistance Surveillance. Non-susceptibility trends among Enterobacteriaceae from bacteraemias in the UK and Ireland, 2001–06. J. Antimicrob. Chemother. 2008, 62, ii41–ii54. [Google Scholar] [CrossRef] [PubMed]
  13. Jacobs, M.R. Streptococcus pneumoniae: Epidemiology and patterns of resistance. Am. J. Med. Suppl. 2004, 117, 3–15. [Google Scholar] [CrossRef] [PubMed]
  14. Stefan, M.; Zamfirache, M.; Padurariu, C.; Trută, E.; Gostin, I. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol. 2013, 8, 600–608. [Google Scholar] [CrossRef]
  15. Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem. 2010, 119, 311–316. [Google Scholar] [CrossRef]
  16. Pavithra, K.H.; Narase Gowda, P.N.; Prasad, M.P. Studies on Antimicrobial Activity of Ocimum Species of Karnataka against Clinical Isolates. Int. J. Pure Appl. Biosci. 2019, 7, 245–254. [Google Scholar] [CrossRef]
  17. Joshi, B.; Lekhak, S.; Sharma, A. Antibacterial Property of Different Medicinal Plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. Kathmandu Univ. J. Sci. Eng. Technol. 2009, 5, 143–150. [Google Scholar] [CrossRef]
  18. Kačániová, M.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Bakay, L.; Zagrobelna, E.; Kluz, M.; et al. Assessment of Ocimum basilicum essential oil anti-insect activity and antimicrobial protection in fruit and vegetable quality. Plants 2022, 11, 1030. [Google Scholar] [CrossRef]
  19. Abd-Alla, M.; Haggag, W.M. Use of some plant essential oils as post-harvest botanical fungicides in the management of anthracnose disease of mango fruits (Mangi Feraindica L.) caused by Colletotrichum Gloeosporioides (Penz). Int. J. Agric. For. 2013, 3, 1–6. [Google Scholar]
  20. Shanaida, M.; Jasicka-Misiak, I.; Makowicz, E.; Stanek, N.; Shanaida, V.; Wieczorek, P.P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J. Pharm. Bioallied Sci. 2020, 12, 139–145. [Google Scholar] [CrossRef]
  21. Maddi, R.; Amani, P.; Bhavitha, S.; Gayathri, T.; Lohitha, T. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurveda Pharm. 2019, 10, 41–48. [Google Scholar]
  22. Abd El-Aziz, S.; Omer, E.; Sabra, A. Chemical composition of Ocimum americanum essential oil and its biological effects against, Agrotis ipsilon, (Lepidoptera: Noctuidae). Res. J. Agric. Biol. Sci. 2007, 3, 740–747. [Google Scholar]
  23. Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
  24. Ali, H.M.; Nguta, J.M.; Mapenay, I.O.; Musila, F.M.; Omambia, V.M.; Matara, D.N. Ethnopharmacological uses, biological activities, chemistry and toxicological aspects of Ocimum americanum var. americanum (Lamiaceae). J. Phytopharm. 2021, 10, 56–60. [Google Scholar] [CrossRef]
  25. Vidhya, E.; Vijayakumar, S.; Rajalakshmi, S.; Kalaiselvi, S.; Pandiyan, P. Antimicrobial activity and phytochemical screening of Ocimum americanum L extracts against pathogenic microorganisms. Acta Ecol. Sin. 2020, 40, 214–220. [Google Scholar]
  26. Zengin, G.; Ferrante, C.; Gnapi, D.E.; Sinan, K.I.; Orlando, G.; Recinella, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Chiavaroli, A.; et al. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L.). Food Res. Int. 2019, 125, 108610. [Google Scholar] [CrossRef]
  27. Sutili, F.J.; Velasquez, A.; Pinheiro, C.G.; Heinzmann, B.M.; Gatlin, D.M., III; Baldisserotto, B. Evaluation of Ocimum americanum essential oil as an additive in red drum (Sciaenops ocellatus) diets. Fish Shellfish. Immunol. 2016, 56, 155–161. [Google Scholar] [CrossRef]
  28. Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J. Antioxidant activity and total phenolic content of Iranian Ocimum Accessions. Food Chem. 2003, 83, 547–550. [Google Scholar] [CrossRef]
  29. Mustafa, A.A.; El-Kamali, H.H. Chemical Composition of Ocimum americanum In Sudan. Res. Pharm. Health Sci. 2019, 5, 172–178. [Google Scholar] [CrossRef]
  30. Saha, S.; Dhar, T.; Sengupta, C.; Ghosh, P. Biological activities of essential oils and methanol extracts of five Ocimum species against pathogenic bacteria. Czech J. Food Sci. 2013, 31, 195–202. [Google Scholar] [CrossRef]
  31. Shanaida, M.; Kernychna, I.; Shanaida, Y. Chromatographic analysis of organic acids, amino acids, and sugars in Ocimum ameicanum L. Acta Pol. Pharm. Drug Res. 2017, 74, 729–734. [Google Scholar]
  32. Radha, S. A review on phytochemical and pharmacological activities of selected Ocimum species. J. Pharmacogn. Phytochem. 2021, 10, 100–108. [Google Scholar]
  33. Barchuk, O.; Pryshlyak, A.; Shanaida, M. Chemical compositions and sedative activities of the Dracocephalum moldavica L. and Ocimum americanum L. essential oils. Pharmacol. OnLine 2021, 2, 179–187. [Google Scholar]
  34. Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef]
  35. Farag, M.; Ezzat, S.; Salama, M.; Tadros, M. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. J. Pharm. Biomed. Anal. 2016, 125, 292–302. [Google Scholar] [CrossRef] [PubMed]
  36. Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef]
  37. Altemimi, A.B.; Mohammed, M.J.; Yi-Chen, L.; Watson, D.G.; Lakhssassi, N.; Cacciola, F.; Ibrahim, S.A. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation. Foods 2020, 9, 1379. [Google Scholar] [CrossRef]
  38. Calderón Bravo, H.; Vera Céspedes, N.; Zura-Bravo, L.; Muñoz, L.A. Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods 2021, 10, 1467. [Google Scholar] [CrossRef] [PubMed]
  39. Filip, S. Basil (Ocimum basilicum L.) a Source of Valuable Phytonutrients. Int. J. Clin. Nutr. Diet. 2017, 3, 118. [Google Scholar] [CrossRef]
  40. Bajomo, E.M.; Aing, M.S.; Ford, L.S.; Niemeyer, E.D. Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS J. 2022, 26, 1–9. [Google Scholar] [CrossRef]
  41. Carović-Stanko, K.; Šalinović, A.; Grdiša, M.; Liber, Z.; Kolak, I.; Satovic, Z. Efficiency of morphological trait descriptors in discrimination of Ocimum basilicum L. accessions. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 298–305. [Google Scholar]
  42. Ghasemzadeh, A.; Ashkani, S.; Baghdadi, A.; Pazoki, A.; Jaafar, H.Z.E.; Rahmat, A. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules 2016, 21, 1203. [Google Scholar] [CrossRef] [PubMed]
  43. Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-inflammatory, antioxidant, and anthelmintic activities of Ocimum basilicum (sweet basil) fruits. J. Chem. 2020, 2020, 2153534. [Google Scholar] [CrossRef]
  44. Ch, M.A.; Naz, S.B.; Sharif, A.; Akram, M.; Saeed, M.A. Biological and Pharmacological Properties of the Sweet Basil (Ocimum basilicum). Br. J. Pharm. Res. 2015, 7, 330–339. [Google Scholar] [CrossRef]
  45. Kaefer, C.M.; Milner, J.A. The role of herbs and spices in cancer prevention. J. Nutr. Biochem. 2008, 19, 347–361. [Google Scholar] [CrossRef]
  46. Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
  47. Zhan, Y.; An, X.; Wang, S.; Sun, M.; Zhou, H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorganic Med. Chem. 2020, 28, 115179. [Google Scholar] [CrossRef]
  48. Pedro, A.C.; Moreira, F.; Granato, D.; Rosso, N.D. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time. An. Acad. Bras. Ciências 2016, 88, 1055–1068. [Google Scholar] [CrossRef]
  49. Gebrehiwot, H.; Bachetti, R.; Dekebo, A. Chemical composition and antimicrobial activities of leaves of sweet basil (Ocimum basilicum L.) herb. Int. J. Basic Clin. Pharmacol. 2015, 4, 869–875. [Google Scholar] [CrossRef] [Green Version]
  50. Nguyen, V.T.; Nguyen, N.Q.; Thi, N.Q.N.; Thi, C.Q.N.; Truc, T.T.; Nghi, P.T.B. Studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L.). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012083. [Google Scholar] [CrossRef]
  51. De Martino, L.; Amato, G.; Caputo, L.; Nazzaro, F.; Scognamiglio, M.R.; De Feo, V. Variations in composition and bioactivity of Ocimum basilicum cv ‘Aroma 2’ essential oils. Ind. Crops Prod. 2021, 172, 114068. [Google Scholar] [CrossRef]
  52. Eftekhar, N.; Moghimi, A.; Mohammadian Roshan, N.; Saadat, S.; Boskabady, M.H. Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement. Altern. Med. 2019, 19, 349. [Google Scholar] [CrossRef] [PubMed]
  53. Nadeem, H.R.; Akhtar, S.; Sestili, P.; Ismail, T.; Neugart, S.; Qamar, M.; Esatbeyoglu, T. Toxicity, antioxidant activity, and phytochemicals of basil (Ocimum basilicum L.) leaves cultivated in southern Punjab, Pakistan. Foods 2022, 11, 1239. [Google Scholar] [CrossRef] [PubMed]
  54. Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2019, 9, 22. [Google Scholar] [CrossRef]
  55. Da Silva, L.A.L.; Pezzini, B.R.; Soares, L. Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Pharmacogn. Mag. 2015, 11, 96–101. [Google Scholar] [CrossRef]
  56. Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical constituents and antioxidant activity of sweet basil (Ocimum Basilicum L.) essential oil on ground beef from Boran and Nguni cattle. Int. J. Food Sci. 2019, 2019, 2628747. [Google Scholar] [CrossRef]
  57. Ion, V.A.; Nicolau, F.; Petre, A.; Bujor, O.-C.; Badulescu, L. Variation of bioactive compounds in organic Ocimum basilicum L. during freeze-drying processing. Sci. Pap. Ser. B Hortic. 2020, 64, 397–404. [Google Scholar]
  58. Tavallali, V.; Rowshan, V.; Gholami, H.; Hojati, S. Iron-urea nano-complex improves bioactive compounds in essential oils of Ocimum basilicum L. Sci. Hortic. 2020, 265, 109222. [Google Scholar] [CrossRef]
  59. Amaral-Baroli, A.; Lago, J.H.G.; de Almeida, C.V.; de Almeida, M.; Scotti, M.T.; Leone, G.F.; Soares, M.G.; Cavalari, A.A.; Sartorelli, P. Variability in essential oil composition produced by micropropagated (in vitro), acclimated (ex vitro) and in-field plants of Ocimum basilicum (Lamiaceae). Ind. Crop. Prod. 2016, 86, 180–185. [Google Scholar] [CrossRef]
  60. Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 2–8. [Google Scholar] [CrossRef] [Green Version]
  61. Pirbalouti, A.G.; Mahdad, E.; Craker, L. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
  62. Tshilanda, D.D.; Babady, P.B.; Onyamboko, D.N.V.; Tshiongo, C.M.T.; Tshibangu, D.S.-T.; Ngbolua, K.-T.; Tsalu, P.; Mpiana, P.T. Chemo-type of essential oil of Ocimum basilicum L. from DR Congo and relative in vitro antioxidant potential to the polarity of crude extracts. Asian Pac. J. Trop. Biomed. 2016, 6, 1022–1028. [Google Scholar] [CrossRef]
  63. Koroch, A.R.; Simon, J.E.; Juliani, H.R. Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Ind. Crop. Prod. 2017, 107, 526–530. [Google Scholar] [CrossRef]
  64. Sonmezdag, A.S.; Amanpour, A.; Kelebek, H.; Selli, S. The most aroma-active compounds in shade-dried aerial parts of basil obtained from Iran and Turkey. Ind. Crop. Prod. 2018, 124, 692–698. [Google Scholar] [CrossRef]
  65. Milenković, L.; Stanojević, J.; Cvetković, D.; Stanojević, L.; Lalević, D.; Šunić, L.; Fallik, E.; Ilić, Z. New technology in basil production with high essential oil yield and quality. Ind. Crop. Prod. 2019, 140, 111718. [Google Scholar] [CrossRef]
  66. Ahmed, A.F.; Attia, F.A.K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
  67. Pistelli, L.; Ascrizzi, R.; Giuliani, C.; Cervelli, C.; Ruffoni, B.; Princi, E.; Fontanesi, G.; Flamini, G.; Pistelli, L. Growing basil in the underwater biospheres of nemo’s garden®: Phytochemical, physiological and micromorphological analyses. Sci. Hortic. 2020, 259, 108851. [Google Scholar] [CrossRef]
  68. Purushothaman, B.; Srinivasan, R.P.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A Comprehensive Review on Ocimum basilicum. J. Nat. Remedies 2018, 18, 71–85. [Google Scholar] [CrossRef]
  69. Maurya, S.; Chandra, M.; Yadav, R.K.; Narnoliya, L.K.; Sangwan, R.S.; Bansal, S.; Sandhu, P.; Singh, U.; Kumar, D.; Sangwan, N.S. Interspecies comparative features of trichomes in Ocimum reveal insights for biosynthesis of specialized essential oil metabolites. Protoplasma 2019, 256, 893–907. [Google Scholar] [CrossRef]
  70. Tirillini, B.; Maggi, F. Volatile Organic Compounds of the Glandular Trichomes of Ocimum basilicum and Artifacts during the Distillation of the Leaves. Appl. Sci. 2021, 11, 7312. [Google Scholar] [CrossRef]
  71. Prabhu, K.S.; Lobo, R.; Shirwaikar, A.A.; Shirwaikar, A. Ocimum gratissimum: A Review of its Chemical, Pharmacological and Ethnomedicinal Properties. Open Complement. Med. J. 2009, 1, 1–15. [Google Scholar] [CrossRef]
  72. Tella, J.O.; Oseni, S.O. Comparative Profiling of Solvent-mediated Phytochemical Expressions in Ocimum gratissimum and Vernonia amygdalina Leaf Tissues via FTIR Spectroscopy and Colorimetric Assays. J. Adv. Med. Pharm. Sci. 2019, 19, 1–25. [Google Scholar] [CrossRef]
  73. Monga, S.; Dhanwal, P.; Kumar, R.; Kumar, A.; Chhokar, V. Pharmacological and physico-chemical properties of Tulsi (Ocimum gratissimum L.): An updated review. Pharma Innov. 2017, 6, 181–186. [Google Scholar]
  74. Chowdhury, T.; Mandal, A.; Roy, S.C.; De Sarker, D. Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC–MS) analysis. J. Genet. Eng. Biotechnol. 2017, 15, 275–286. [Google Scholar] [CrossRef]
  75. Ogendo, J.; Kostyukovsky, M.; Ravid, U.; Matasyoh, J.; Deng, A.; Omolo, E.; Kariuki, S.; Shaaya, E. Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J. Stored Prod. Res. 2008, 44, 328–334. [Google Scholar] [CrossRef]
  76. Akara, E.U.; Emmanuel, O.; Ude, V.C.; Uche-Ikonne, C.; Eke, G.; Ugbogu, E.A. Ocimum gratissimum leaf extract ameliorates phenylhydrazine-induced anaemia and toxicity in wistar rats. Drug Metab. Pers. Ther. 2021, 36, 311–320. [Google Scholar] [CrossRef] [PubMed]
  77. Usunomena, U.; Eseosa, U. In vitro medicinal studies on Ocimum gratissimum leaves. ARC J. Pharm. Sci. 2016, 2, 1–5. [Google Scholar]
  78. Dambolena, J.S.; Zunino, M.P.; López, A.G.; Rubinstein, H.R.; Zygadlo, J.A.; Mwangi, J.W.; Thoithi, G.N.; Kibwage, I.O.; Mwalukumbi, J.M.; Kariuki, S.T. Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innov. Food Sci. Emerg. Technol. 2010, 11, 410–414. [Google Scholar] [CrossRef]
  79. Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
  80. Costa, R.S.; Carneiro, T.C.B.; Cerqueira-Lima, A.T.; Queiroz, N.V.; Alcântara-Neves, N.M.; Pontes-De-Carvalho, L.C.; da Silva Velozo, E.; Oliveira, E.J.; Figueiredo, C.A. Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int. Immunopharmacol. 2012, 13, 126–134. [Google Scholar] [CrossRef]
  81. Olamilosoye, K.P.; Akomolafe, R.O.; Akinsomisoye, O.S.; Adefisayo, M.A.; Alabi, Q.K. The aqueous extract of Ocimum gratissimum leaves ameliorates acetic acid-induced colitis via improving antioxidant status and hematological parameters in male Wistar rats. Egypt. J. Basic Appl. Sci. 2018, 5, 220–227. [Google Scholar] [CrossRef]
  82. Talabi, J.Y.; Makanjuola, S. Proximate, Phytochemical, and In Vitro Antimicrobial Properties of Dried Leaves from Ocimum gratissimum. Prev. Nutr. Food Sci. 2017, 22, 191–194. [Google Scholar] [CrossRef] [PubMed]
  83. Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
  84. Noori, S.; Hassan, Z.M.; Yaghmaei, B.; Dolatkhah, M. Antitumor and immunomodulatory effects of salvigenin on tumor bearing mice. Cell. Immunol. 2013, 286, 16–21. [Google Scholar] [CrossRef] [PubMed]
  85. Lin, H.-H.; Chan, K.-C.; Sheu, J.-Y.; Hsuan, S.-W.; Wang, C.-J.; Chen, J.-H. Hibiscus sabdariffa leaf induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chem. 2012, 132, 880–891. [Google Scholar] [CrossRef]
  86. Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
  87. Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World 2017, 10, 869–872. [Google Scholar] [CrossRef]
  88. Ajayi, A.M.; Martins, D.T.D.O.; Balogun, S.O.; de Oliveira, R.G.; Ascêncio, S.D.; Soares, I.M.; Barbosa, R.D.S.; Ademowo, O.G. Ocimum gratissimum L. leaf flavonoid-rich fraction suppress LPS-induced inflammatory response in RAW 264.7 macrophages and peritonitis in mice. J. Ethnopharmacol. 2017, 204, 169–178. [Google Scholar] [CrossRef]
  89. Venuprasad, M.; Kandikattu, H.K.; Razack, S.; Khanum, F. Phytochemical analysis of Ocimum gratissimum by LC-ESI–MS/MS and its antioxidant and anxiolytic effects. S. Afr. J. Bot. 2014, 92, 151–158. [Google Scholar] [CrossRef]
  90. Sahoo, D.; Kumar, A. Secondary metabolites of Ocimum gratissimum and their biological activities. Int. Res. J. Pharm. 2013, 4, 10–28. [Google Scholar] [CrossRef]
  91. Okoye, F.B.; Obonga, W.O.; Onyegbule, F.A.; Ndu, O.O.; Ihekwereme, C.P. Chemical composition and anti-inflammatory activity of essential oils from the leaves of Ocimum basilicum L. and Ocimum gratissimum L. (Lamiaceae). Int. J. Pharm. Sci. Res. 2014, 5, 2174–2180. [Google Scholar]
  92. Mith, H.; Yayi-Ladékan, E.; Sika Kpoviessi, S.D.; Yaou Bokossa, I.; Moudachirou, M.; Daube, G.; Clinquart, A. Chemical Composition and Antimicrobial Activity of Essential Oils of Ocimum basilicum, Ocimum canum and Ocimum gratissimum in Function of Harvesting Time. J. Essent. Oil Bear. Plants 2016, 19, 1413–1425. [Google Scholar] [CrossRef]
  93. Sen, A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J. Clin. Cases 2020, 8, 1767–1792. [Google Scholar] [CrossRef] [PubMed]
  94. Vieira, A.; Beserra, F.; Souza, M.; Totti, B.; Rozza, A. Limonene: Aroma of innovation in health and disease. Chem.-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
  95. Sacchetti, G.; Medici, A.; Maietti, S.; Radice, M.; Muzzoli, M.; Manfredini, S.; Braccioli, E.; Bruni, R. Composition and Functional Properties of the Essential Oil of Amazonian Basil, Ocimum micranthum Willd., Labiatae in Comparison with Commercial Essential Oils. J. Agric. Food Chem. 2004, 52, 3486–3491. [Google Scholar] [CrossRef]
  96. Tacchini, M.; Guevara, M.E.; Grandini, A.; Maresca, I.; Radice, M.; Angiolella, L.; Guerrini, A. Ocimum campechianum Mill. from Amazonian Ecuador: Chemical Composition and Biological Activities of Extracts and Their Main Constituents (Eugenol and Rosmarinic Acid). Molecules 2020, 26, 84. [Google Scholar] [CrossRef]
  97. Silva, M.G.V.; Vieira, I.G.P.; Mendes, F.N.P.; Albuquerque, I.L.; Dos Santos, R.N.; Silva, F.O.; Morais, S.M. Variation of Ursolic Acid Content in Eight Ocimum Species from Northeastern Brazil. Molecules 2008, 13, 2482–2487. [Google Scholar] [CrossRef]
  98. Amorim, E.L.; Nascimento, J.E.; Monteiro, J.M.; Peixoto Sobrinho, T.; Araújo, T.A.; Albuquerque, U.P. A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Funct. Ecosyst. Communities 2008, 2, 88–94. [Google Scholar]
  99. Wilson, T.M.; Murphy, B.J.; Abad, A.; Packer, C.; Poulson, A.; Carlson, R.E. Essential oil composition and stable isotope profile of cultivated Ocimum campechianum Mill. (Lamiaceae) from Peru. Molecules 2022, 27, 2777. [Google Scholar] [CrossRef]
  100. Trevisan, M.T.S.; Silva, M.G.V.; Pfundstein, B.; Spiegelhalder, A.B.; Owen, R.W. Characterization of the Volatile Pattern and Antioxidant Capacity of Essential Oils from Different Species of the Genus Ocimum. J. Agric. Food Chem. 2006, 54, 4378–4382. [Google Scholar] [CrossRef]
  101. Caamal-Herrera, I.O.; Carrillo-Cocom, L.M.; Escalante-Réndiz, D.Y.; Aráiz-Hernández, D.; Azamar-Barrios, J.A. Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves. BMC Complement. Altern. Med. 2018, 18, 55. [Google Scholar] [CrossRef] [PubMed]
  102. Scalvenzi, L.; Radice, M.; Toma, L.; Severini, F.; Boccolini, D.; Bella, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M. Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite 2019, 26, 23. [Google Scholar] [CrossRef] [PubMed]
  103. Ruiz-Vargas, J.A.; Morales-Ferra, D.L.; Ramírez-Ávila, G.; Zamilpa, A.; Negrete-León, E.; Acevedo-Fernández, J.J.; Peña-Rodríguez, L.M. α-Glucosidase inhibitory activity and in vivo antihyperglycemic effect of secondary metabolites from the leaf infusion of Ocimum campechianum mill. J. Ethnopharmacol. 2019, 243, 112081. [Google Scholar] [CrossRef] [PubMed]
  104. Figueiredo, P.L.B.; Silva, S.G.; Nascimento, L.D.; Ramos, A.R.; Setzer, W.N.; da Silva, J.K.R.; Andrade, E.H.A. Seasonal Study of Methyleugenol Chemotype of Ocimum campechianum Essential Oil and Its Fungicidal and Antioxidant Activities. Nat. Prod. Commun. 2018, 13, 1934578X1801300833. [Google Scholar] [CrossRef] [Green Version]
  105. Benitez, N.P.; León, E.M.M.; Stashenko, E.E. Eugenol and methyl eugenol chemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia. J. Chromatogr. Sci. 2009, 47, 800–803. [Google Scholar] [CrossRef]
  106. Vij, D.; Gupta, S. Ocimum sanctum: The queen of herbs. Int. J. Multidiscip. Curr. Educ. Res. (IJMCER) 2021, 3, 49–52. [Google Scholar]
  107. Deshmukh, A.; Deshmukh, G.; Shirole, P. Ocimum sanctum: A medicinal gift from nature. Int. J. Pharmacogn. 2015, 2, 550–559. [Google Scholar]
  108. Singh, E.; Sharma, S.; Dwivedi, J.; Sharma, S. Diversified potentials of Ocimum sanctum Linn (Tulsi): An exhaustive survey. J. Nat. Prod. Plant Resour. 2012, 2, 39–48. [Google Scholar]
  109. Vishwabhan, S.; Birendra, V.; Vishal, S. A review on ethnomedical uses of Ocimum sanctum (Tulsi). Int. Res. J. Pharm. 2011, 2, 1–3. [Google Scholar]
  110. Agarwal, S.; Kumar, V.R.; Kumar, A. Pharmacognostical characterization of Ocimum spp. J. Pharmacogn. Phytochem. 2013, 2, 219–224. [Google Scholar]
  111. Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol. 2005, 49, 125–131. [Google Scholar] [PubMed]
  112. Doss, A. Preliminary phytochemical screening of some Indian Medicinal Plants. Anc. Sci. Life 2009, 29, 12–16. [Google Scholar] [PubMed]
  113. Borah, R.; Biswas, S. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int. J. Environ. Agric. Biotechnol. 2018, 3, 265258. [Google Scholar]
  114. Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010, 4, 95–105. [Google Scholar] [CrossRef]
  115. Hakkim, F.L.; Shankar, C.G.; Girija, S. Chemical Composition and Antioxidant Property of Holy Basil (Ocimum sanctum L.) Leaves, Stems, and Inflorescence and Their in Vitro Callus Cultures. J. Agric. Food Chem. 2007, 55, 9109–9117. [Google Scholar] [CrossRef]
  116. Pandey, R.; Chandra, P.; Srivastava, M.; Mishra, D.; Kumar, B. Simultaneous quantitative determination of multiple bioactive markers in Ocimum sanctum obtained from different locations and its marketed herbal formulations using UPLC-ESI-MS/MS combined with principal component analysis. Phytochem. Anal. 2015, 26, 383–394. [Google Scholar] [CrossRef]
  117. Anbarasu, K.; Vijayalakshmi, G. Improved Shelf Life of Protein-Rich Tofu Using Ocimum sanctum (Tulsi) Extracts to Benefit Indian Rural Population. J. Food Sci. 2007, 72, M300–M305. [Google Scholar] [CrossRef]
  118. Rahman, S.; Islam, R.; Kamruzzaman, M.; Alam, K.; Jamal, A. Ocimum sanctum L.: A review of phytochemical and pharmacological profile. Am. J. Drug Discov. Dev. 2011, 1, 15. [Google Scholar]
  119. Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crop. Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
  120. Desai, S.; Daunde, J.; Potphode, N.; Walvekar, M. GC-MS analysis of Ocimum sanctum seeds. BIOINFOLET Q. J. Life Sci. 2021, 18, 163–164. [Google Scholar]
  121. Saharkhiz, M.J.; Alam Kamyab, A.; Kazerani, N.K.; Zomorodian, K.; Pakshir, K.; Rahimi, M.J. Chemical Compositions and Antimicrobial Activities of Ocimum sanctum L. Essential Oils at Different Harvest Stages. Jundishapur J. Microbiol. 2015, 8, e13720. [Google Scholar] [CrossRef] [PubMed]
  122. Saaban, K.F.; Ang, C.H.; Chuah, C.H.; Khor, S.M. Chemical constituents and antioxidant capacity of Ocimum basilicum and Ocimum sanctum. Iran. J. Chem. Chem. Eng. (IJCCE) 2019, 38, 139–152. [Google Scholar]
  123. Hussain, A.I.; Chatha, S.A.S.; Kamal, G.M.; Ali, M.A.; Hanif, M.A.; Lazhari, M.I. Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. Int. J. Food Prop. 2017, 20, 1569–1581. [Google Scholar] [CrossRef] [Green Version]
  124. Panchal, P.; Parvez, N. Phytochemical analysis of medicinal herb (Ocimum sanctum). Int. J. Nanomater. Nanotechnol. Nanomed. 2019, 5, 008–011. [Google Scholar] [CrossRef]
  125. Ijaz, B.; Hanif, M.; Mushtaq, Z.; Khan, M.; Bhatti, I.; Jilani, M. Isolation of bioactive fractions from Ocimum sanctum essential oil. Oxid. Commun. 2017, 40, 158–167. [Google Scholar]
  126. Thaweboon, S.; Thaweboon, B. In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. Southeast Asian J. Trop. Med. Public Health 2009, 40, 1025–1033. [Google Scholar]
  127. Verma, R.S.; Bisht, P.S.; Padalia, R.C.; Saikia, D.; Chauhan, A. Chemical composition and antibacterial activity of essential oil from two Ocimum spp. grown in sub-tropical India during spring-summer cropping season. J. Tradit. Med. 2011, 6, 211–217. [Google Scholar]
  128. Taufiq, M.; Darah, I. Antibacterial activity of an endophytic fungus Lasiodiplodia pseudotheobromae IBRL OS-64 residing in leaves of a medicinal herb, Ocimum sanctum Linn. J. Appl. Biol. Biotechnol. 2019, 7, 35–41. [Google Scholar]
  129. Evangelina, I.A.; Herdiyati, Y.; Laviana, A.; Rikmasari, R.; Zubaedah, C.; Anisah; Kurnia, D. Bio-mechanism inhibitory prediction of Β-Sitosterol from Kemangi (Ocimum basilicum L.) as an inhibitor of MurA Enzyme of Oral bacteria: In vitro and in silico study. Adv. Appl. Bioinform. Chem. AABC 2021, 14, 103–115. [Google Scholar] [CrossRef]
  130. Jesuwenu, A.D.; Michael, O.O. Ntibacterial activity of Ocimum gratissimum L. Against some selected human bacterial pathogens. J. Pharm. Res. Int. 2010, 20, 1–8. [Google Scholar] [CrossRef]
  131. Carović-Stanko, K.; Orlić, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
  132. Moghaddam, A.M.D.; Shayegh, J.; Mikaili, P.; Sharaf, J.D. Antimicrobial activity of essential oil extract of Ocimum basilicum L. Leaves on a variety of pathogenic bacteria. J. Med. Plants Res. 2011, 5, 3453–3456. [Google Scholar]
  133. Melo, R.S.; Azevedo, M.A.; Pereira, A.M.G.; Rocha, R.R.; Cavalcante, R.M.B.; Matos, M.N.C.; Lopes, P.H.R.; Gomes, G.A.; Rodrigues, T.H.S.; dos Santos, H.S.; et al. Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil Against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019, 24, 3864. [Google Scholar] [CrossRef] [PubMed]
  134. Rajesh, T.; Venkatanagaraju, E.; Goli, D.; Basha, S.J. Evaluation of antimicrobial activity of different herbal plant extracts. Int. J. Pharm. Sci. Res. 2014, 5, 1460–1468. [Google Scholar]
  135. Harikrishnan, R.; Kim, M.-C.; Kim, J.-S.; Balasundaram, C.; Jawahar, S.; Heo, M.-S. Identification and Antimicrobial Activity of Combined Extract from Azadirachta indica and Ocimum sanctum. Isr. J. Aquac.-Bamidgeh 2010, 62, 85–95. [Google Scholar] [CrossRef]
  136. Ogundare, A. Antibacterial properties of the leaf extracts of Vernonia amygdalina, Ocimum gratissimum, Corchorous olitorius and Manihot palmate. J. Microbiol. Antimicrob. 2011, 3, 77–86. [Google Scholar]
  137. Ali, H.; Nguta, J.; Musila, F.; Ole-Mapenay, I.; Matara, D.; Mailu, J. Evaluation of antimicrobial activity, cytotoxicity, and phytochemical composition of Ocimum americanum L. (Lamiaceae). Evid. -Based Complement. Altern. Med. 2022, 2022, 6484578. [Google Scholar] [CrossRef]
  138. Torpol, K.; Wiriyacharee, P.; Sriwattana, S.; Sangsuwan, J.; Prinyawiwatkul, W. Antimicrobia activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapour phases. Int. J. Food Sci. Technol. 2018, 53, 2119–2128. [Google Scholar] [CrossRef]
  139. Helal, I.M.; El-Bessoumy, A.; Al-Bataineh, E.; Joseph, M.R.P.; Rajagopalan, P.; Chandramoorthy, H.C.K.; Ahmed, S.B.H. Antimicrobial Efficiency of Essential Oils from Traditional Medicinal Plants of Asir Region, Saudi Arabia, over Drug Resistant Isolates. BioMed. Res. Int. 2019, 2019, 8928306. [Google Scholar] [CrossRef]
  140. Opara, A.; Egbuobi, R.; Ndudim, J.N.D.; Onyewuchi, C.; Nnodim, J. Antibacterial Activity of Ocimum gratissimum (Nchu-Anwu) and Vernonia amygdalina (Bitter-Leaf) Antibacterial Activity of Ocimum gratissimum (Nchu-Anwu) and Vernonia amygdalina (Bitter-Leaf). Br. Biotechnol. J. 2014, 4, 1115–1122. [Google Scholar] [CrossRef]
  141. Hapsari, I.P.; Feroniasanti, Y.M.L. Phytochemical screening and in vitro antibacterial activity of sweet basil leaves (Ocimum basilicum L.) essential oil against Cutibacterium acnes ATCC 11827. AIP Conf. Proc. 2019, 2099, 020007. [Google Scholar]
  142. Bulfon, C.; Volpatti, D.; Galeotti, M. In Vitro Antibacterial Activity of Plant Ethanolic Extracts against Fish Pathogens. J. World Aquac. Soc. 2014, 45, 545–557. [Google Scholar] [CrossRef]
  143. Gupta, P.C.; Batra, R.; Chauhan, A.; Goyal, P.; Kaushik, P. Antibacterial activity and TLC bioautography of Ocimum basilicum L. against pathogenic bacteria. J. Pharm. Res. 2009, 2, 407–409. [Google Scholar]
  144. Stanley, M.C.; Ifeanyi, O.E.; Chinedum, O.K.; Chinenye, N.D. The Antibacterial Activity of Leaf Extracts of Ocimum Gratissimum and Sida Acuta. Int. J. Microbiol. Res. 2014, 5, 124–129. [Google Scholar] [CrossRef]
  145. Issazadeh, K.; Majid, K.P.M.R.; Massiha, A.; Bidarigh, S.; Giahi, M.; Zulfagar, M.P. Analysis of the phytochemical contents and anti-microbial activity of Ocimum basilicum L. Int. J. Mol. Clin. Microbiol. 2012, 2, 141–147. [Google Scholar]
  146. Thaweboon, S.; Thaweboon, B. Ocimum americanum L. essential oil exhibits antimicrobial activity against oral bacteria related to periodontal disease. Adv. Mater. Res. 2014, 1025–1026, 755–759. [Google Scholar] [CrossRef]
  147. Mahmood, K.; Yaqoob, U.; Bajwa, R. Antibacterial activity of essential oil of Ocimum sanctum L. Mycopath 2008, 6, 2. [Google Scholar]
  148. Nweze, E.I.; Eze, E.E. Justification for the use of Ocimum gratissimum L in herbal medicine and its interaction with disc antibiotics. BMC Complement. Altern. Med. 2009, 9, 37. [Google Scholar] [CrossRef]
  149. Londhe, A.; Kulkarni, A.; Lawand, R. In-vitro comparative study of antibacterial and antifungal activities: A case study of Ocimum kilimandscharicum, Ocimum tenuiflorum and Ocimum gratissimum. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 104–110. [Google Scholar]
  150. Helen, M.; Raju, V.; Gomathy, S.; Nizzy, S.; Sree, S. Essential oil analysis in Ocimum sps. Herb. Technol. Ind. 2011, 8, 12–15. [Google Scholar]
  151. Intorasoot, A.; Chornchoem, P.; Sookkhee, S.; Intorasoot, S. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter Baumannii. J. Intercult. Ethnopharmacol. 2017, 6, 218–222. [Google Scholar] [CrossRef] [PubMed]
  152. Niculae, M.; Spînu, M.; Şandru, C.D.; Brudaşcă, F.; Cadar, D.; Szakacs, B.; Scurtu, I.; Bolfă, P.; Mateş, C. Antimicrobial potential of some Lamiaceae essential oils against animal multiresistant bacteria. Lucr. Ştinłifice Med. Vet. 2009, 42, 170–175. [Google Scholar]
  153. Moghaddam, A.M.D.; Shayegh, J.; Sharaf, J.D. Comparison between Two Groups of Pathogenic Bacteria under Different Essential Oil Extract of Ocimum basilicum L. J. Med. Plants By-Prod. 2017, 6, 241–245. [Google Scholar] [CrossRef]
  154. Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
  155. Ighodaro, O.; Agunbiade, S.; Akintobi, O. Phytotoxic and anti-microbial activities of flavonoids in Ocimum gratissimum. Life Sci. J. 2010, 7, 45–48. [Google Scholar]
  156. Katara, A.; Pradhan, C.K.; Singh, P.; Singh, V.; Ali, M. Volatile Constituents and Antimicrobial Activity of Aerial parts of Ocimum gratissimum Linn. J. Essent. Oil Bear. Plants 2013, 16, 283–288. [Google Scholar] [CrossRef]
  157. De Aguiar, F.C.; Solarte, A.L.; Tarradas, C.; Luque, I.; Maldonado, A.; Galán-Relaño, Á.; Huerta, B. Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. MicrobiologyOpen 2018, 7, e00613. [Google Scholar] [CrossRef]
  158. Herdiyati, Y.; Astrid, Y.; Shadrina, A.A.N.; Wiani, I.; Satari, M.H.; Kurnia, D. Potential Fatty Acid as Antibacterial Agent against Oral Bacteria of Streptococcus mutans and Streptococcus sanguinis from Basil (Ocimum americanum): In vitro and In silico Studies. Curr. Drug Discov. Technol. 2021, 18, 532–541. [Google Scholar] [CrossRef]
  159. Phanthong, P.; Lomarat, P.; Chomnawang, M.T.; Bunyapraphatsara, N. Antibacterial activity of essential oils and their active components from Thai spices against foodborne pathogens. ScienceAsia 2013, 39, 472. [Google Scholar] [CrossRef]
  160. Koche, D.; Kokate, P.; Suradkar, S.; Bhadange, D. Preliminary phytochemistry and antibacterial activity of ethanolic extract of Ocimum gratissimum L. Biosci. Discov. 2012, 3, 20–24. [Google Scholar]
  161. Shadrina, A.A.N.; Herdiyati, Y.; Wiani, I.; Satari, M.H.; Kurnia, D. Prediction Mechanism of Nevadensin as Antibacterial Agent against S. sanguinis: In vitro and In silico Studies. Comb. Chem. High Throughput Screen. 2022, 25, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
  162. Yamani, H.A.; Pang, E.C.; Mantri, N.; Deighton, M.A. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria. Front. Microbiol. 2016, 7, 681. [Google Scholar] [CrossRef] [PubMed]
  163. Onyebuchi, C.; Kavaz, D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci. Rep. 2020, 10, 21760. [Google Scholar] [CrossRef]
  164. Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Rhourri-Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I.C. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum). Antioxidants 2020, 9, 369. [Google Scholar] [CrossRef] [PubMed]
  165. Ejele, A.; Duru, I.; Ogukwe, C.; Iwu, I. Phytochemistry and antimicrobial potential of basic metabolites of Piper umbellatum, Piper guineense, Ocimum gratissimium and Newbouldia laevis extracts. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 309–314. [Google Scholar]
  166. Pandey, A.K.; Singh, P.; Palni, U.; Tripathi, N. In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis) and Pseudomonas putida (Kris Hamilton). J. Serb. Chem. Soc. 2012, 77, 313–323. [Google Scholar] [CrossRef]
  167. Maffei, M.E.; Gertsch, J.; Appendino, G. Plant volatiles: Production, function and pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [CrossRef]
  168. Bhattacharjya, D.; Adhikari, S.; Biswas, A.; Bhuimali, A.; Ghosh, P.; Saha, S. Ocimum Phytochemicals and Their Potential Impact on Human Health. In Phytochemicals in Human Health; IntechOpen: London, UK, 2020. [Google Scholar]
  169. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
  170. El-Shenawy, M.A.; Baghdadi, H.H.; El-Hosseiny, L.S. Antibacterial activity of plants essential oils against some epidemiologically relevant food-borne pathogens. Open Public Health J. 2015, 8, 30–34. [Google Scholar] [CrossRef]
  171. Faleiro, M.L. The mode of antibacterial action of essential oils. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 1143–1156. [Google Scholar]
  172. Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
  173. Akthar, M.S.; Degaga, B.; Azam, T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Biol. Sci. Pharm. Res. 2014, 2, 1–7. [Google Scholar]
  174. Turgis, M.; Han, J.; Caillet, S.; Lacroix, M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009, 20, 1073–1079. [Google Scholar] [CrossRef]
  175. Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in Membrane Fatty Acids Composition of Microbial Cells Induced by Addiction of Thymol, Carvacrol, Limonene, Cinnamaldehyde, and Eugenol in the Growing Media. J. Agric. Food Chem. 2006, 54, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
  176. Calsamiglia, S.; Busquet, M.; Cardozo, P.; Castillejos, L.; Ferret, A. Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
  177. Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci. 2006, 73, 236–244. [Google Scholar] [CrossRef]
  178. Rassem, H.H.; Nour, A.H.; Yunus, R.M. Techniques for extraction of essential oils from plants: A review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
  179. Ugbogu, O.C.; Emmanuel, O.; Agi, G.O.; Ibe, C.; Ekweogu, C.N.; Ude, V.C.; Uche, M.E.; Nnanna, R.O.; Ugbogu, E.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon 2021, 7, e08404. [Google Scholar] [CrossRef]
Table 1. The Chemical Constituents of O. americanum.
Table 1. The Chemical Constituents of O. americanum.
Class of Chemical
Constituents
Chemical ConstituentsRT (min)References
Fatty acids3-Hydroxy-3-methl pentanoic acid (1)4.71[26,29,30,31]
Citronellic acid (2)-
Stearic acid (3)29.32
Linoleic acid (4)30.40
α-Linolenic acid (5)31.49
Stearidonic acid (6)-
Palmitoleic acid (7)26.70
Fatty alcohols2-Hexyl-1-decanol (8)21.67[29]
Octyl acetate (9)10.48[29]
Organic acidsChicoric acid (10)-[26,31]
Ketones2-Hydroperoxyheptane (11)5.27[29,30]
3-Hepten-2-one (12)6.53
Pulegone (13)-
Carvone (14)-
EnoneMesityl oxide (15)5.52[29]
AldehydesOctanal (16)6.14[29,30]
Citral (17)11.79
Citronellal (18)5.96
Perillaldehyde (19)nd
EsterHexyl acetate (20)6.32[29]
Organic nitroNitrocyclohexane (21)7.05[29]
Alcohols1-Octanol (22)7.54[26,29,30,32]
Quinic acid (23)-
Menthol (24)-
4-Carvomenthol (25)-
Safrole (26)-
Carveol (27)-
Verbenol (28)-
Dialkyldisulfides2-Methyl-7-octadecyne (29)21.91[29]
Unsaturated hydrocarbons9-Eicosyne (30)22.14[29]
PhenolicVanillin (31)6.72[26,30]
Ellagic acid (32)-
Eugenol (33)20.36
Monoterpenoidsα-Thujone (34)-[29,30,33,34]
Neral (35)11.19
Geranyl acetate (36)21.3
Linalool (37)7.41
β-Myrcene (38)-
Geraniol (39)5.76
Linalyl acetate (40)-
α-Pinene (41)4.87
Fenchone (42)-
Verbenone (43)-
Verbenol (44)-
p-Cymene (45)-
α-Terpinene (46)-
α-Phellandrene (47)-
β-Phellandrene (48)-
Limonene (49)10.60%
Carvacrol (50)-[29,30,33,34]
Borneol (51)-
Thymol (52)-
1-Menthone (53)-
DiterpenoidsPhytol (54)24.80[29]
Phytene-2 (55)21.51
Sesquiterpenoidsβ-Bisabolene (56)16.45[29]
Humulene (57)15.54
(E)-β-Famesene (58)-
TriterpenoidsVerbascoside (59)-[26]
PhenylpropanoidsCinnamic acid (60)-[26,30]
Fertaric acid (61)-
FlavonoidsVicenin-2 (62)-[26,35]
Eriodictyol-7-O-glucoside (63)-
Vitexin (64)-
Rutin (65)4.55
Genkwanin (66)-
Dihydroxy-tetramethoxy(iso)flavone (67)-
Cirsilineol (68)-
Cirsimaritin (69)-
Pilosin (70)-
Alloxazines and isoalloxazinesRiboflavin (71)-[26]
(-) = Test not performed; RT = Retention Time; RI = Retention Index.
Table 2. The chemical constituents of O. basilicum.
Table 2. The chemical constituents of O. basilicum.
Class of Chemical ConstituentsChemical ConstituentsRT (min)RIReferences
Carboxylic acid esterCyclohexyl formate (72)7.301304[56,57]
Aliphatic aldehydesCitral (16)6.57-[56,58]
Aliphatic alcohol3-Octanol (73)11.64-[59]
AminesPhenylethanolamine (74)8.77-[56,57]
Phenols2,3,5-Trimethylphenol (75)7.10-[56,58]
Eugenol (33)7.19-
Fatty alcohols4-Hexen-1-ol acetate (76)8574.428[56,58,60,61]
1-Octen-3-ol (77)10.78979
Pyrans2,3-Dehydro-1,8-cineole (78)11.18-[57]
Organoheterocyclic compoundscis-Linalool oxide (79)-1070[56,57,58]
3-Methyl-2-phenylindole (80)12.731710
Phenylpropanoidstrans-4-Methoxycinnamaldehyde (81)8.57-[56,57,60,62]
Methyl cinnamate (82)-1338
CycloalkenesMethyl ethyl cyclopentene (83)5.63-[56,58]
Monoterpenoidsα-Terpinol (84)20.16-[56,57,58,60,62,63,64]
1-Menthone (49)5.76-
Levomenthol (85)5.91-
Nerol (86)-1229
Neral (34)-1249
Geraniol (38)-1256
Citral (16)6.571270
β-Myrcene (37)11.38-
p-Menth-3-ene (87)6.74977.5
Bornyl acetate (88)-1286
α-Pinene (40)3.95-
Fenchone (41)-1089
Camphor (89)18.14-
Camphene (90)8.86-
Sabinene (91)10.27-
trans-α-Bergamotene (92)7.73-
β-Pinene (93)10.36-
α-Phellandrene (46)11.94-
α-Terpinene (45)12.52-
γ-Terpinene (94)14.57-
Terpinolene (95)16.00-
Estragole (96)6.06-
1–8-Cineole (97)13.16-
p-Cymene (44)12.88-
cis-β-Terpineol (98)16.30-
Sesquiterpenoidsβ-Copaene (99)8.10-[56,57,58,59,60,62,63,65,66,67,68,69,70]
α-Humulene (57)29.26-
cis-β-Farnesene (100)29.98-
β-Cubebene (101)-1394
α-Cadinene (102)-1537
Aromadendrene (103)-1529
α-Bisabolene (104)-1561
β-Bisabolene (56)8.17-
α-Bisabolol (105)-1642
Neoisolongifolene (106)--
trans-β-Guaiene (107)-1499
cis-Muurola-3,5-diene (108)8.311502
Nerolidol (109)8.47-
Bicyclogermacrene (110)30.60-
β-Elemene (111)-1387
β-Caryophyllene (112)-1419
δ-Cadinene (113)31.45-
Spathulenol (114)32.96-
α-Selinene (115)30.85-
Bicyclosesquiphellandrene (116)29.05-
α-Bergamotene (117)28.79-
Caryopyllene oxide (118)-1550
1,10-Di-epcubenol (119)34.06-
RT = Retention Time; RI = Retention Index.
Table 3. The chemical constituents of O. gratissimum.
Table 3. The chemical constituents of O. gratissimum.
Class of Chemical ConstituentsChemical ConstituentsRT (min)Percentage (%)References
AlcoholsChlorogenic acid (120)--[83]
Fatty acidsMethyl acetate (121)30.55-[84]
Palmitic acid (122)28.35-[84]
FlavonoidsLuteolin (123)9.06-[47,84,85,86,87,88]
Apigenin (124)12.36-
Quercetin (125)--
Epicatechin (126)--
Nevadensin (127)18.45-
Salvigenin (128)25.13-
Morin (129)--
Xanthomicrol (130)18.23-
Apigenin dimethyl ether (131)27.46-
PhenolsEugenol (33)-74.83[38]
Methyl eugenol (132)6.36-
PhenylpropanoidsSinapic acid (133)2.72-[36,89]
Rosmarinic acid (134)3.82-
Nepetoidin A (135)17.34-
MonoterpenoidsMethyl carvacrol (136)-1.19[89,90,91,92]
Carvacrol (50)-0.20–8.40
1–8-cineole (97)-0.30–23.04
Sesquiterpenoidstrans-α-Bergamotene (92)-0.20–0.70[83,84,86,90,91,92,93,94]
δ-Cadinene (113)-0.30–3.00
β-selinene (148)-0.82–7.96
β-Caryophyllene (112)-0.39–7.23
Humulene (57)-4.40
β-Bergamotene (149)-1.03–2.29
δ-Cadinene (113)-0.30
γ-Cadinene (150)-0.61
Caryopyllene oxide (118)-0.50–3.02
τ-Cadinol (151)-3.5
α-Panasinsene (152)--
β-Chamigrene (153)-1.61–2.84
β-Copaene (99)-0.27
Germacrene-D (154)-0.10–29.9
β-Bisabolol (155)--
β-Cubebene (101)-0.08
Epi-Cubebol (156)-0.21
Epi-Cubenol (157)-0.23
Copaene (158)-0.30–7.20
β-Bourbonene (159)-0.21–0.89
β-Selinene (160)-0.85–7.96
Bicyclogermacrene (110)-0.40–2.90
Calamenene (161)-0.38
α-Thujone (33)-0.1
β-Myrcene (37)-0.14
Camphene (90)-0.10–0.60
Sabinene (91)-0.18–0.90
2-Carene (137)--
Camphor (89)-0.10–0.60
β-Pinene (93)-0.11–2.22
trans-Longipinocarveol (138)--
γ-Terpinene (94)-8.23–22.90
4-Carene (139)--
β-(E)-Ocimene (140)-0.10–0.43
β-(Z)-Ocimene (141)-0.21–4.00
Allo-Ocimene (142)--
4-Methylstyrene (143)--
Styrene (144)--
Limonene (48)-1.25–5.27
p-Cymene (44)-12.04–25.00
Terpinene-4-ol (145)-1.90–4.35
Borneol (51)-0.20–0.55
Umbellulone (146)--
α-Terpineol (147)-0.10–0.92
Estragole (96)-0.20–1.50
Thymol (29)-8.50–46.99
α-Pinene (40)-0.24–2.66
α-Curcumene (162)-0.26
Isolongifolol (163)-0.10
Isopinocamphone (164)-0.40
Longifolene (165)-3.00
γ-Muuroline (166)-0.16–3.88
α-p-Dimethyl styrene (167)-1.19
β-Ylangene (168)-2.7
TriterpenoidsOleanolic acid (169)33.60-
StigmastanesBasilimoside (170)29.12-
(-) = Test not performed; RT = Retention Time; RI = Retention Index.
Table 4. The chemical constituents of O. campechianum.
Table 4. The chemical constituents of O. campechianum.
Class of Chemical
Constituents
Chemical ConstituentsKIPercentage (%)References
Aliphatic alcohol3-Octanol (73)988-[99]
Fatty alcohol1-Vinylhexanol (77)974-[99]
(3Z)-Hexenol (171)850-[99]
Monocyclic ketoneCarvone (13)1239-[99]
BenzenoidsBenzene acetaldehyde (172)1036-[99]
PhenolsEugenol (33)-9.00[99]
Methyl eugenol (132)-12.00
Polymethoxyflavones5-Demethylnobiletin (173)--[99,103]
5-Demethylsinensetin (174)--
Organooxygen compounds(2E)-Hexenal (175)846-[99]
3-Octanone (176)979-
Carboxylic acid esters(3E)-Hexenyl acetate (177)1001-[104]
Monoterpenoidsδ-3-Carene (178)1008-[99,104,105]
α-Terpinene (45)1014-
p-Cymene (44)1020-
β-(E)-Ocimene (139)1044-
β-(Z)-Ocimene (140)1032-
Neoalloocimene (179)1140-
Terpinolene (95)1086-
Limonene (48)-0.30
α-Terpinol (84)-0.30
Estragole (96)--
1,8-Cineole (97)-3.30
Isoborneol (180)1155-
(+)-4-Terpinol (144)1174-
Linalool (36)-2.90
Myrcene (37)-0.20
β-Pinene (93)-0.80
α-Thujene (181)924-
Tricyclene (182)921-
Cis-sabinen hydrate (183)1065-
α-Pinene (40)-0.20
Camphene (90)-0.40
trans-α-Bergamotene (92)1432-
Sabinene (91)-0.10
Camphor (89)1141-
Sesquisabinene (184)-0.20
SesquiterpenoidsHumulene epoxide II (185)1608-[99,105]
β-Bisabolene (56)1505-
Germacrene-D (154)-10.10
Bicyclogermacrene (110)1500-
Germacrene-B (186)1559-
α-Humulene (57)-2.80
Aromadendrene (103)1439-
α-Copaene (158)-1.90
β-Bourbonene (159)1387-
α-Gurjunene (187)1409-
Viridiflorol (188)1592-
β-Eudesmol (189)1649-
3,7(11)-Eudesmadiene (190)--
α-Guaiene (191)-5.60
γ-Muurolene (192)-0.30
α-Bulnesene (193)-7.10
Spathulenol (114)-0.40
τ-Cadinol (151)--
Junenol (194)1618-
β-elinene (148)--
δ-Cadinene (113)-2.00
Caryophyllene oxide (195)-0.40
E-Caryophyllene (112)-4.05
β-Elemene (111)-0.53
γ-Elemene (196)-0.60
Bicycloelemene (197)-0.20
(-) = Test not performed; KI = Kovat’s Index.
Table 5. The chemical constituents of O. sanctum.
Table 5. The chemical constituents of O. sanctum.
Class of Chemical
Constituents
Chemical ConstituentsRT (min)RIReferences
Fatty acidsOcimumnaphthanoic acid (198)--[119,120,121]
Methyl 9-methyltetradecanoate (199)--
Ethyl 13-methyl-tetradecanoate (200)--
Methyl 7-Z-hexadecanoate (201)--
Ethyl palmitate (202)--
Ethyl isovalerate (203)--
Carboxylic acids(Z)-3-Hexenil acetate (204)-1005[122]
Aliphatic aldehydeCitronellal (17)--[113]
BenzenoidsProtocatechuic acid (205)--[113,120]
Di-n-2-propylpentylphthalate (206)--
Unsaturated hydrocarbons1,2,4- Trimethylcyclohexane (207)13.36-[113]
Organooxygen compounds1,2-Cyclopentanedione (208)--[119,120]
Citrusin C (209)--
PhenolicVanillin (31)--[113,115,123]
Methylisoeugenol (210)7.50-
Vanillic acid (211)--
Sinapic acid (132)7.20-
p-coumeric acid (212)--
p-hydroxybenzoic acid (213)--
Ferulic acid (214)--
Eugenol (33)-1382
Bieugenol (215)--
FlavonoidsGaluteolin (216)--[113,119]
Isovitexin (217)--
Chrysoeriol (218)--
Cirsilineol (68)--
Isothymunin (219)--
Isothymusin (220)--
Cirsimaritin (221)--
Molludistin (222)--
Vitexin (64)--
Orientin (223)--
Isoorientin (224)--
Vicenin (62)--
Luteolin-5-glucoside (225)--
Esculin (226)--
Esculectin (227)--
PhenylpropanoidsRosmarinic acid (133)6.20-[115,124]
MonoterpenoidsEstragole (96)-1229[113,115,119,120,121,124,125]
Carvacrol (50)--
Linalool (36)-1109
α-Terpinyl acetate (228)--
Terpiniolene (95)--
Bornyl acetate (88)-1289
α-Bergomatene (117)-1469
SesquiterpenoidsSpathulenol (114)-1578
α-Humulene (57)-1482
α-Guaiol (229)--
2-Methylene-4,8,8-trimethyl-4-vinyl- bicyclo[5.2.0]nonane (230)--
TriterpenoidsOleanolic acid (169)--
Ursolic acid (231)8.50-
(-) = Test not performed; RT = Retention Time; RI = Retention Index.
Table 6. Data of inhibition zone of Ocimum species.
Table 6. Data of inhibition zone of Ocimum species.
MicroorganismExtractInhibition Zone (mm)Positive Control (mm)Reference
12345
Gram-Positive Bacteria
S. mutansEssential oil28-14--1a21[126,127,128]
Methanol-8.30–9.40---2a10.90
Ethyl acetate----245b29.40
L. caseiEssential oil19- - - - -[126]
E. faecalisEssential oil15.67--10--[41,129,130,131]
Methanol-6.90–10.4020–26--2a15.50; 3c20
E. faeciumEssential oil15.67--9--[41,131]
S. aureusEssential oil33.3329.20–30.56-11.6741.502e23.93[41,128,131,132,133,134,135,136]
70% hydroethanol9.33–11.17-----
Hexane----2.36-
Ethyl acetate----305b29.30
Ethanol----12-
B. cereusEthyl acetate10---215b29.30[25,128,132,136,137]
70% hydroethanol9.50–16.33-----
Essential oil-10.66–16.11---2e20.53
Chloroform--12--3f15
Clostradium penfrigensEthyl acetate10-----[138]
S. phyogenesEssential oil-19.00---2g11.00[139,140]
Ethanol--6–10---
Cutibacterium acnesEssential oil-16.78–18.13---2f13.13[141]
Lactococcus garvieaeEthanol-1.90---2i20.00[142]
B. subtilisMethanol-13.58---2d22.01[128,143]
Ethyl acetate----265b28.70
S. sanguinisMethanol-7.80–11.40---2a17.90[129]
S. faecalisEthanol--10---[144]
L. monocytogenesEssential oil1210.60–11.70-8-1j33; 2j33.70[92,131,138]
Ethanol--8–26---
L. ivanoviiEssential oil13.67--12.67--[41,131]
S. epidermidisEssential oil22.67--11--[41,131,135,145]
Ethanol----9-
Bark-15---2k22
M. luteusEssential oil14----1c26[30]
C. perfringensEssential oil----17.505c41.39[25]
Lb. plantarumEssential oil----12.585c15.38[138]
S. agalactiaeEthyl acetate----205b30.40[128]
Gram-Negative Bacteria
P. gingivalisEssential oil30-----[146]
P. intermediaEssential oil30-----
F. nucleatumEssential oil24-----
P. vulgarisEssential oil---11.33 -[41,131]
E. coliEssential oil10.6717.48–23.581211.6715.40-[41,128,131,132,133,134,147]
Ethyl acetate9---15.705b31.30
Hexane----2.26-[25]
Klebsiella pneumoniaEthyl acetate10---15.305b29.30[128,148]
Methanol--16–23---
Salmonella paratyphiEthyl acetate9-----[25]
V. chloreaEssential oil18-----[30]
S. typhimiriumEssential oil13.00–20.1020.00---1j28.80; 2h11.00[92,128,139]
Ethyl acetate----16.705b29.70
S. dysenteriaEssential oil18----1c17[30,145]
Bark-16---2k25
P. aeruginosaEssential oil-Max--122e12.64[128,132,135,149,150]
Leaves--16--3k39
Ethyl acetate----10.305b22.30
Ethanol----11-
A. baumanniiEssential oil-15.30----[151]
Salmonella enteritidisEssential oil-18.00----[152]
S. typhiEssential oil-24.80----[136,153]
Chloroform--14--3c16
P. multocidaEssential oil-13.60–18.40---2h31.10[154]
Listonella anguillarumEthanol-3.90---2i20.00[142]
Yersinia ruckeriEthanol-1.50---2i20.80[142]
P. mirabilisLeaves--11–22--3d15 mm; 3l29 mm[128,148,155]
Methanol--25–32---
Ethyl acetate----15.105b30.30
Shigella gexineriEssential oil--16--3m29[156]
Proteus mirabilisFlavonoids--12–28--3e24[148]
Shigalla sp.Ethanol--8---
Salmonella sp.Ethanol--6---
Shigella dysenteraeChloroform--2--3n14[136]
P. fluorescensEssential oil----205m12.33[135]
Shigella boydiiEthyl acetate----14.305b30.70[128]
Yersinia enterocoliticaEthyl acetate----20.105b28.30
Aeromonas hydrophilaEthanol----15-[135]
Vibrio harveyiEthanol----12-
(-) = Test not performed; 1 = O. americanum, 2 = O. basilicum, 3 = O. gratissimum, 4 = O. campechianum, 5 = O. sanctum. Positive control: a(Chlorhexidine), b(Ciprofloxacin), c(Gentamicin), d(Ciprofloxacin), e(Tetracycline), f(Clindamycin), g(Rifampicin), h(Amoxicilin), i(Oxytetracycline), j(Ampicillin), k(Streptomycin), l(Ketoconazole), m(Penicillin), n(Cloxacillin).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022, 27, 6350. https://doi.org/10.3390/molecules27196350

AMA Style

Dharsono HDA, Putri SA, Kurnia D, Dudi D, Satari MH. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules. 2022; 27(19):6350. https://doi.org/10.3390/molecules27196350

Chicago/Turabian Style

Dharsono, Hendra Dian Adhita, Salsabila Aqila Putri, Dikdik Kurnia, Dudi Dudi, and Mieke Hemiawati Satari. 2022. "Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity" Molecules 27, no. 19: 6350. https://doi.org/10.3390/molecules27196350

Article Metrics

Back to TopTop