Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. EO Content
2.2. EO Components Analysis
2.3. Classification of the H. persicum Populations
2.4. Environmental Factors Affecting the Chemical Variability
2.5. Correlation Results
3. Materials and Methods
3.1. Plant Materials
3.2. Preparation of the EO
3.3. GC-MS Analysis
3.3.1. Gas Chromatography (GC)
3.3.2. Gas Chromatography/Mass Spectroscopy (GC-MS)
3.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pimenov, M.G.; Leonov, M.V. The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk. J. Botany 2004, 28, 139–145. [Google Scholar]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcántara, C.; Collado, M.C.; Garcia-Perez, J.V.; Saraiva, J.A.; Lopes, R.P.; Barba, F.J.; do Prado Silva, L.; Sant’Ana, A.S.; Fierro, E.M.; et al. Ethnopharmacology, phytochemistry and biological activity of Erodium species: A review. Food Res. Int. 2019, 126, 108659. [Google Scholar] [CrossRef]
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Mousavi Khaneghah, A.; Barba, F.J.; Munekata, P.E.S.; Lorenzo, J.M. Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Nabi, S.; Toktam, M.; Afshin, A.; Issa, M.; Mehran, S.; Mohammad, R. Antibacterial Properties of Essential Oil of Heracleum persicum (Golpar) and Foodborne Pathogens. Int. J. Enteric. Pathog. 2017, 5, 41–44. [Google Scholar]
- Lanciotti, R.; Gianotti, A.; Patrignani, F.; Belletti, N.; Guerzoni, M.E.; Gardini, F. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci. Technol. 2004, 15, 201–208. [Google Scholar] [CrossRef]
- Maggi, F.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Papa, F.; Vittori, S. Composition and biological activities of hogweed [Heracleum sphondylium L. subsp. ternatum (Velen.) Brummitt] essential oil and its main components octyl acetate and octyl butyrate. Nat. Prod. Res. 2014, 28, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Vokou, D.; Kokkini, S.; Bessiere, J.M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Mirza, M.; Najafpour Navaei, M. Comparative Study on Chemical Composition of Fruit Essential Oil of Heracleum Gorganicum Rech. F. in Different Altitudes. Iran. J. Med. Aromat. Plants 2012, 28, 324–329. [Google Scholar]
- Radjabian, T.; Rahmani, N.; Salimi, A.; Shahiri Tabarestani, F. Essential Oil Composition of Heracleum Gorganicum Rech. F. from Four Wild Populations Growing in Iran. Iran. J. Med. Aromat. Plants 2014, 27, 82–90. [Google Scholar]
- Gharachorloo, M.; Honarvar, M.; Mardani, S. Chemical compositions and antioxidant activity of Heracleum persicum essential oil. Braz. J. Pharm. Sci. 2018, 53, 260. [Google Scholar] [CrossRef]
- Mirza, M.; Najafpour Navaei, M.; Behrad, Z. Essential Oil Composition of Heracleum Pastinasifolium C. Koch. Seed in Different Altitudes of Arasbaran Region. Iran. J. Med. Aromat. Plants 2014, 2, 26–30. [Google Scholar]
- Radjabian, T.; Salimi, A.; Rahmani, N.; Shockravi, A.; Mozaffarian, V. Essential Oil Composition of Some Wild Populations of Heracleum persicum Desf. Ex Fischer Growing in Iran. J. Essent. Oil Bear. Plants 2013, 16, 841–849. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Pouyanfar, E.; Hadian, J.; Akbarzade, M.; Hatami, M.; Kanani, M.R.; Ghorbanpour, M. Analysis of phytochemical and morphological variability in different wild-and agro-ecotypic populations of Melissa officinalis L. growing in northern habitats of Iran. Ind. Crops Prod. 2018, 112, 262–273. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Maghsoudi, H.; Sabzalian, M.R.; Ghasemi Pirbalouti, A. Variability of Essential Oil Content and Composition of Different Iranian Fennel (Foeniculum vulgare Mill.) Accessions in Relation to Some Morphological and Climatic Factors. J. Agric. Sci. Technol. 2014, 16, 1365–1374. [Google Scholar]
- Haider, F.; Dwivedi, P.; Singh, S.; Naqvi, A.A.; Bagchi, G. Influence of transplanting time on essential oil yield and composition in Artemisia annua plants grown under the climatic conditions of sub-tropical north India. Flavour Fragr. J. 2004, 19, 51–53. [Google Scholar] [CrossRef]
- Hanover, J.W. Applications of terpene analysis in forest genetics. New For. 1992, 6, 159–178. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of essential oil components by gas chromatography/mass spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom. 1997, 8, 671–672. [Google Scholar] [CrossRef] [Green Version]
KIa | KIC | Chemotexype I | Mean | Chemotype II | Mean | Chemotype III | Mean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sabzevar | Torghabeh | Khanghah | Kaleibar | Shebeilo | Showt | Mahdasht | Amin Abbad | Masuleh | Sari | |||||||
Isopropyl isovalerate | 874 | 870 | 0.15 | 0.22 | 0.18 | 0.33 | 0 | 0.53 | 0.87 | 0.85 | 0.22 | 0.46 | 0.11 | 0 | 0.05 | ns |
Isopropyl 2-methylbutyrate | 960 | 959 | 0.83 | 0.88 | 0.85 b | 0.59 | 0.32 | 0.78 | 0.95 | 0.62 | 1.61 | 0.81 b | 2.01 | 2.25 | 2.13 a | ** |
Isobutyl 2-methylbutyrate | 985 | 983 | 0.21 | 0.14 | 0.17 | 0.52 | 0 | 0.67 | 0.82 | 0.19 | 0.14 | 0.39 | 0 | 0 | 0 | ns |
Butyl butyrate | 993 | 990 | 2.22 | 2.4 | 2.31 | 1.89 | 1.24 | 1.72 | 1.48 | 0.82 | 1.2 | 1.39 | 1.77 | 1.1 | 1.43 | ns |
Isobutyl butyrate | 994 | 994 | 0.12 | 0.89 | 0.50 | 0.21 | 0.12 | 0.27 | 0.33 | 0 | 0.13 | 0.17 | 0 | 0 | 0 | ns |
Hexyl acetate | 1007 | 1006 | 1.34 | 1.23 | 1.28 | 1.31 | 1.35 | 0.61 | 1.37 | 0.11 | 0.41 | 0.86 | 0.72 | 0.35 | 0.53 | ns |
O-cymene | 1022 | 1021 | 0.15 | 0.32 | 0.23 | 1.35 | 1.23 | 0.81 | 0.74 | 0 | 2.5 | 1.11 | 0.28 | 0.37 | 0.32 | ns |
Limonene | 1024 | 1022 | 0.36 | 0.21 | 0.28 | 0.25 | 0 | 0.35 | 0.44 | 0.24 | 0.02 | 0.21 | 0.22 | 0.34 | 0.28 | ns |
Butyl 2-methylbutyrate | 1033 | 1033 | 2.12 | 1.85 | 1.98 | 1.39 | 1.14 | 1.91 | 1.47 | 1.02 | 0.74 | 1.27 | 1.53 | 1.51 | 1.52 | ns |
γ.-Terpinene | 1054 | 1051 | 0.14 | 0 | 0.07 | 0.71 | 1.52 | 0.28 | 0.31 | 0.81 | 0.81 | 0.74 | 0.12 | 0.5 | 0.31 | ns |
Linalool | 1095 | 1093 | 0.1 | 0.24 | 0.17 | 0.32 | 0.24 | 0.31 | 0.41 | 0.34 | 0.27 | 0.31 | 0.08 | 1.32 | 0.7 | ns |
Hexyl isobutyrate | 1147 | 1150 | 3.06 | 4.13 | 3.59 | 7.8 | 6.43 | 3.05 | 3.89 | 5.62 | 5.35 | 5.35 | 5.08 | 4.87 | 4.97 | ns |
Hexyl butanoate | 1191 | 1190 | 1.11 | 0.93 | 1.02 | 1.29 | 0.93 | 1.51 | 1.32 | 1.04 | 0.11 | 1.03 | 0.22 | 1.22 | 0.72 | ns |
n-Decanal | 1201 | 1201 | 3.14 | 2.78 | 2.96 | 1.42 | 2.62 | 0.36 | 1.95 | 0.27 | 2.61 | 1.53 | 2.35 | 2.3 | 2.32 | ns |
Octyl acetate | 1211 | 1208 | 19 | 20.3 | 19.65 a | 15.2 | 13.9 | 12.7 | 15.6 | 11.2 | 12.5 | 13.51 b | 18.9 | 18.6 | 18.75 a | ** |
Hexyl-2-methylbutyrate | 1236 | 1239 | 5.78 | 4.95 | 5.36 | 4.84 | 5.9 | 5.14 | 5.75 | 4.81 | 8.64 | 5.84 | 6.17 | 6.71 | 6.44 | ns |
Hexyl butyrate | 1238 | 1240 | 33.9 | 35.3 | 34.6 a | 41.6 | 44.7 | 40.9 | 37.6 | 38.6 | 35.6 | 39.83 a | 25.8 | 20.9 | 23.35 b | ** |
Hexyl isovalerate | 1241 | 1243 | 1.16 | 0.87 | 1.01 a | 0.47 | 0.42 | 0.42 | 0.84 | 0.46 | 0.62 | 0.53 b | 0.63 | 1.04 | 0.83 ab | * |
Thymol | 1289 | 1287 | 0.39 | 0.36 | 0.37 | 0.13 | 0 | 0.22 | 0.11 | 0.34 | 0.57 | 0.22 | 0.43 | 0 | 0.21 | ns |
Octyl isobutyrate | 1330 | 1329 | 1.85 | 2.02 | 1.93 b | 3.66 | 4.21 | 2.87 | 2.34 | 2.3 | 3.42 | 3.13 b | 5.85 | 4.32 | 5.08 a | * |
n-Octyl butyrate | 1372 | 1376 | 3.42 | 3.85 | 3.63 | 4.91 | 3.34 | 2.33 | 3.24 | 3.23 | 4.13 | 3.53 | 5.65 | 4.14 | 4.85 | ns |
n-hexyl hexanoate | 1382 | 1380 | 4.9 | 4.31 | 4.61 b | 4.75 | 3.43 | 3.68 | 3.32 | 4.31 | 3.7 | 3.86 b | 7.98 | 4.91 | 6.44 a | * |
Octyl 2-methyl butyrate | 1436 | 1440 | 6.5 | 6.21 | 6.35 | 4.42 | 3.41 | 5.09 | 6.78 | 8.91 | 5.22 | 5.63 | 6.85 | 6.84 | 6.84 | ns |
Traits | Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Isopropyl 2-methylbutyrate | 0.719 | 0.445 | −0.384 | 0.031 |
Isopropyl isovalerate | −0.652 | −0.233 | −0.478 | −0.370 |
Hexyl butanoate | −0.811 | 0.063 | −0.195 | 0.521 |
Isobutyl butyrate | −0.453 | 0.281 | 0.502 | −0.145 |
Butyl butyrate | −0.281 | 0.629 | 0.653 | −0.139 |
Isobutyl 2-methylbutyrate | −0.760 | −0.099 | −0.085 | −0.054 |
Hexyl acetate | −0.368 | 0.185 | 0.776 | 0.263 |
O-cymene | 0.293 | −0.628 | 0.364 | −0.084 |
Limonene | −0.553 | 0.595 | −0.443 | 0.143 |
Butyl 2-methylbutyrate | −0.465 | 0.774 | 0.180 | 0.125 |
γ-Terpinene | 0.202 | −0.867 | 0.083 | 0.326 |
Linalool | 0.173 | 0.118 | −0.560 | 0.665 |
Hexyl isobutyrate | 0.370 | −0.594 | 0.155 | 0.283 |
Hexyl butyrate | −0.585 | −0.678 | 0.410 | −0.121 |
n-Decanal | 0.454 | 0.420 | 0.601 | 0.117 |
Octyl acetate | 0.185 | 0.893 | 0.301 | 0.220 |
Hexyl-2-methylbutyrate | 0.708 | −0.130 | −0.005 | −0.138 |
Hexyl isovalerate | 0.049 | 0.806 | −0.014 | 0.145 |
Thymol | 0.272 | 0.157 | 0.093 | −0.922 |
Octyl isobutyrate | 0.764 | −0.082 | −0.028 | 0.288 |
n-hexyl hexanoate | 0.558 | 0.520 | −0.082 | −0.130 |
n-Octyl butyrate | 0.728 | 0.235 | 0.166 | 0.003 |
Octyl 2-methyl butyrate | −0.041 | 0.407 | −0.723 | −0.362 |
% of Variance | 26.084 | 25.500 | 15.628 | 10.399 |
Cumulative % | 26.084 | 51.584 | 67.212 | 77.612 |
CCA Sets of Environmental | ||||
---|---|---|---|---|
Traits | 1 | 2 | 3 | 4 |
Phytochemical | ||||
Butyl butyrate | −0.12 | −1.56 | −1.47 | −1.86 |
Hexyl isobutyrate | 0.13 | 2.17 | −0.13 | −1.26 |
Hexyl butyrate | 1.07 | −0.04 | −0.16 | 0.03 |
n-Decanal | −1.92 | −1.11 | −3.91 | 0.87 |
Octyl acetate | −0.98 | −0.91 | −0.08 | −0.77 |
Hexyl−2-methylbutyrate | −0.61 | 0.14 | −0.54 | 2.92 |
Octyl isobutyrate | −1.46 | 2.81 | 0.59 | 0.71 |
n-hexyl hexanoate | −1.21 | 0.54 | 0.93 | −0.82 |
n-Octyl butyrate | −0.88 | 1.12 | −0.25 | −0.44 |
Octyl 2-methyl butyrate | −0.31 | −1.17 | 2.62 | 0.75 |
Populations | ||||
Shebeilo | 0.19 | −0.02 | 0.04 | 0.02 |
Khanghah | 0.08 | 0.12 | −0.03 | −0.09 |
Masuleh | −0.28 | 0.08 | 0.06 | −0.04 |
Amin Abbad | 0.02 | 0.06 | −0.07 | 0.14 |
Sabzevar | −0.06 | −0.16 | −0.05 | −0.02 |
Torghabeh | −0.04 | −0.13 | −0.05 | −0.07 |
Kaleibar | 0.13 | 0.11 | −0.12 | 0.01 |
Sari | −0.29 | 0.01 | 0.05 | 0.02 |
Mahdasht | 0.16 | 0.019 | 0.18 | 0.02 |
Showt | 0.06 | −0.08 | 0.01 | 0.03 |
Environmental factors | ||||
Mean annual precipitation (M.A.P) | −0.68 | 0.65 | 0.17 | 0.01 |
Mean annual temperature (M.A.T) | −0.53 | −0.51 | 0.47 | −0.32 |
Elevation (Elev.) | 0.67 | 0.21 | −0.39 | 0.08 |
Soil characteristics | ||||
Available P (ppm) | −0.07 | 0.61 | −0.11 | −0.38 |
Available K (ppm) | 0.21 | 0.47 | 0.05 | 0.17 |
EC (dS/m) | −0.11 | −0.75 | −0.41 | −0.24 |
Eigenvalues | 0.022 | 0.008 | 0.005 | 0.003 |
% | 55.1 | 21.54 | 14.35 | 7.80 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Butyl butyrate | 1 | |||||||||||||||
2 | Hexyl isobutyrate | −0.33 | 1 | ||||||||||||||
3 | Hexyl butyrate | 0.02 | 0.24 | 1 | |||||||||||||
4 | n-Decanal | 0.38 | −0.09 | −0.33 | 1 | ||||||||||||
5 | Octyl acetate | 0.66 * | −0.28 | −0.61 | 0.66 * | 1 | |||||||||||
6 | Hexyl-2-methylbutyrate | −0.34 | −0.005 | −0.37 | 0.47 | −0.07 | 1 | ||||||||||
7 | Octyl isobutyrate | −0.24 | 0.45 | −0.41 | 0.12 | 0.11 | 0.33 | 1 | |||||||||
8 | n-hexyl hexanoate | 0.23 | 0.07 | −0.63 * | 0.17 | 0.52 | −0.003 | 0.62 | 1 | ||||||||
9 | n-Octyl butyrate | 0.14 | 0.51 | −0.49 | 0.36 | 0.44 | 0.23 | 0.68 * | 0.77 * | 1 | |||||||
10 | Octyl 2-methyl butyrate | −0.21 | −0.33 | −0.48 | −0.25 | 0.11 | −0.14 | −0.24 | 0.3 | 0.007 | 1 | ||||||
11 | Elevation | 0.15 | 0.26 | 0.77 ** | −0.11 | −0.51 | 0.01 | −0.22 | −0.34 | −0.11 | −0.45 | 1 | |||||
12 | Available P | 0.08 | 0.63 * | 0.02 | −0.18 | 0.001 | −0.09 | 0.47 | 0.21 | 0.52 | −0.44 | 0.03 | 1 | ||||
13 | Available K | −0.17 | 0.29 | 0.13 | −0.45 | −0.42 | 0.18 | 0.22 | −0.14 | 0.14 | −0.29 | 0.25 | 0.71 * | 1 | |||
14 | EC | 0.68 * | −0.49 | −0.01 | 0.55 | 0.52 | −0.11 | −0.55 | −0.03 | −0.18 | 0.02 | 0.04 | −0.47 | −0.65 * | 1 | ||
15 | M.A.T | 0.27 | −0.52 | −0.61 | 0.06 | 0.57 | −0.28 | −0.08 | 0.54 | 0.03 | 0.63 * | −0.62 | −0.37 | −0.58 | 0.46 | 1 | |
16 | M.A.P | −0.29 | 0.38 | −0.64 * | 0.11 | 0.22 | 0.37 | 0.93 ** | 0.64 * | 0.71 * | −0.04 | −0.47 | 0.51 | 0.27 | −0.55 | 0.05 | 1 |
Pop. No. | Pop. Name | Site | Latitude (N) | Longitude (E) | Altitude (m) | Available P (ppm) | Available K (ppm) | EC (dS/m) | Mean Annual Temp. [˚C] | Rainfall [mm/Year] |
---|---|---|---|---|---|---|---|---|---|---|
1 | West Azerbaijan | Shebeilo | 37.00191 | 46.13624 | 1298.8 | 15.96 | 432 | 1.56 | 15.4 | 282.2 |
2 | Ardebil | Khanghah | 38.4221 | 48.53571 | 1428.4 | 38.91 | 480 | 1.21 | 11.8 | 493.9 |
3 | Gilan | Masuleh | 37.15694 | 48.99737 | 928.6 | 17.81 | 280 | 1.12 | 17.9 | 831.3 |
4 | Tehran | Amin Abbad | 35.83881 | 51.56348 | 1706.3 | 12..87 | 420 | 1.78 | 10.8 | 426 |
5 | Razavi Khorasan | Sabzevar | 36.21489 | 57.52868 | 957.5 | 4.8 | 110 | 5.8 | 19.5 | 159.6 |
6 | Razavi Khorasan | Torghabeh | 36.30237 | 59.37404 | 1311.6 | 8.7 | 199 | 4.3 | 17.1 | 163.8 |
7 | East Azerbaijan | Kaleibar | 38.86724 | 47.01522 | 1353 | 12.02 | 185 | 1.8 | 11.75 | 418.4 |
8 | Mazandaran | Sari | 36.52126 | 53.03759 | 112.7 | 19.24 | 308 | 1.32 | 18.2 | 789.2 |
9 | Alborz | Mahdasht | 35.71475 | 50.8341 | 1167.8 | 5.29 | 228 | 1.26 | 17.1 | 243.8 |
10 | West Azerbaijan | Showt | 39.24338 | 44.76945 | 967.2 | 11.29 | 351 | 1.18 | 12.5 | 264.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafavi, S.H.; Abbasi, A.; Morshedloo, M.R.; Pateiro, M.; Lorenzo, J.M. Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate. Molecules 2022, 27, 6296. https://doi.org/10.3390/molecules27196296
Mustafavi SH, Abbasi A, Morshedloo MR, Pateiro M, Lorenzo JM. Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate. Molecules. 2022; 27(19):6296. https://doi.org/10.3390/molecules27196296
Chicago/Turabian StyleMustafavi, Seyed Hamid, Amin Abbasi, Mohammad Reza Morshedloo, Mirian Pateiro, and Jose M. Lorenzo. 2022. "Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate" Molecules 27, no. 19: 6296. https://doi.org/10.3390/molecules27196296
APA StyleMustafavi, S. H., Abbasi, A., Morshedloo, M. R., Pateiro, M., & Lorenzo, J. M. (2022). Essential Oil Variability in Iranian Populations of Heracleum persicum Desf. ex Fischer: A Rich Source of Hexyl Butyrate and Octyl Acetate. Molecules, 27(19), 6296. https://doi.org/10.3390/molecules27196296