Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Selection of Studies
3.2. Study Characteristics and Quality Assessment
3.3. Efficacy of TACE Combined with Different TKI Agents
3.3.1. Efficacy of Combination Therapy vs. Monotherapy
3.3.2. Efficacy of TACE+Lenvatinib vs. TACE+Sorafinib
3.3.3. Adverse Reactions
3.3.4. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatol. (Baltim. Md.) 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.C.; Xia, A.L.; Xu, Y.; Lu, X.J. Comprehensive treatments for hepatocellular carcinoma with portal vein tumor thrombosis. J. Cell. Physiol. 2019, 234, 1062–1070. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raoul, J.L.; Forner, A.; Bolondi, L.; Cheung, T.T.; Kloeckner, R.; de Baere, T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev. 2019, 72, 28–36. [Google Scholar] [CrossRef]
- Labeur, T.A.; Takkenberg, R.B.; Klümpen, H.J.; van Delden, O.M. Reason of Discontinuation After Transarterial Chemoembolization Influences Survival in Patients with Hepatocellular Carcinoma. Cardiovasc. Interv. Radiol. 2019, 42, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Al Tameemi, W.; Dale, T.P.; Al-Jumaily, R.M.K.; Forsyth, N.R. Hypoxia-Modified Cancer Cell Metabolism. Front. Cell Dev. Biol. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Sergio, A.; Cristofori, C.; Cardin, R.; Pivetta, G.; Ragazzi, R.; Baldan, A.; Girardi, L.; Cillo, U.; Burra, P.; Giacomin, A.; et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): The role of angiogenesis and invasiveness. Am. J. Gastroenterol. 2008, 103, 914–921. [Google Scholar] [CrossRef]
- Moon, H.; Ro, S.W. MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers 2021, 13, 3026. [Google Scholar] [CrossRef]
- Dimri, M.; Satyanarayana, A. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers 2020, 12, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, A.; Thadi, A.; Shailubhai, K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J. Clin. Exp. Hepatol. 2019, 9, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Wei, X.; Xu, X. Is the era of sorafenib over? A review of the literature. Ther. Adv. Med. Oncol. 2020, 12, 1758835920927602. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, T.; Kudo, M.; Ikeda, K.; Izumi, N.; Tateishi, R.; Ikeda, M.; Aikata, H.; Kawaguchi, Y.; Wada, Y.; Numata, K.; et al. REFLECT-a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: An analysis of Japanese subset. J. Gastroenterol. 2020, 55, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, G.; Miao, H.; Song, Z.; Zhang, X.; Fan, W.; Wang, Y.; Li, J.; Chen, Y. Apatinib treatment may improve survival outcomes of patients with hepatitis B virus-related sorafenib-resistant hepatocellular carcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937422. [Google Scholar] [CrossRef]
- General Office of National Health Commission. Standardization for diagnosis and treatment of hepatocellular carcinoma (2022 edition). Zhonghua Gan Zang Bing Za Zhi Zhonghua Ganzangbing Zazhi Chin. J. Hepatol. 2022, 30, 367–388. [Google Scholar]
- Xin, H.; Zhang, C.; Ding, Z.; Zhang, M.; Ding, G.; Li, N. TACE plus PD-1 inhibitor (Camrelizumab) treatment for bridging to tumor resection in HCC: Case reports. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101777. [Google Scholar] [CrossRef]
- Zhu, C.; Dai, B.; Zhan, H.; Deng, R. Neoadjuvant transarterial chemoembolization (TACE) plus PD-1 inhibitor bridging to tumor resection in intermediate-stage hepatocellular carcinoma patients. Ir. J. Med. Sci. 2022, 23, 1–7. [Google Scholar] [CrossRef]
- Hori, A.; Ueda, S.; Hori, S.; Dejima, I.; Nakamura, T.; Kennoki, N.; Toei, H.; Sonomura, T. Microsphere TACE with Arterial Infusion of Bevacizumab for Portal Vein Tumor Thrombus by Hepatocellular Carcinoma. Gan Kagaku Ryoho. Cancer Chemother. 2021, 48, 1389–1392. [Google Scholar]
- Ueda, S.; Hori, S.; Hori, A.; Makitani, K.; Wan, K.; Sonomura, T. Retrospective Study of the Efficacy and Safety of Chemoembolization with Drug-Eluting Microspheres Combined with Intra-Arterial Infusion of Bevacizumab for Unresectable Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2022, 9, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Ben Khaled, N.; Seidensticker, M.; Ricke, J.; Mayerle, J.; Oehrle, B.; Rössler, D.; Teupser, D.; Ehmer, U.; Bitzer, M.; Waldschmidt, D.; et al. Atezolizumab and bevacizumab with transarterial chemoembolization in hepatocellular carcinoma: The DEMAND trial protocol. Future Oncol. 2022, 18, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yu, H.M.; Xiang, Y.J.; Cheng, Y.Q.; Ni, Q.Z.; Guo, W.X.; Shi, J.; Feng, S.; Zhai, J.; Cheng, S.Q. Transcatheter arterial chemoembolization plus atezolizumab and bevacizumab for unresectable hepatocellular carcinoma: A single-arm, phase II trial. Future Oncol. 2022, 18, 3367–3375. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Zhao, K.; Liu, X.; Li, C.; Liu, B.; Hu, L.; Shen, D.; Wang, D.; Liu, Z. Fluorescent COFs with a Highly Conjugated Structure for Combined Starvation and Gas Therapy. ACS Appl. Mater. Interfaces 2022, 14, 46201–46211. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, D.; Zhao, K.; Wu, Y.; Zhang, P.; Liu, J.; Yang, G.; Gong, P.; Liu, Z. Donor-acceptor structured photothermal COFs for enhanced starvation therapy. Chem. Eng. J. 2022, 442, 135963. [Google Scholar] [CrossRef]
- Peng, J.; Gong, P.; Li, S.; Kong, F.; Ge, X.; Wang, B.; Guo, L.; Liu, Z.; You, J. A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery. Chem. Eng. J. 2020, 391, 123619. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clin. Res. Ed.). 2021, 372, n71. [Google Scholar]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials. 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Yuan, G.; Fan, H.; Li, F.; Wu, Y.; Zhao, Y.; Yao, W.; Wang, Y.; Xue, M.; Yang, J.; et al. Apatinib Combined With Transarterial Chemoembolization in Patients With Hepatocellular Carcinoma and Portal Vein Tumor Thrombus: A Multicenter Retrospective Study. Clin. Ther. 2019, 41, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Chen, S.; Qiu, Z.; Qi, H.; Yuan, H.; Cao, F.; Xie, L.; Chen, Q.; Li, W.; Fan, W. Transarterial chemoembolization combined with apatinib versus transarterial chemoembolization alone for hepatocellular carcinoma with macroscopic vascular invasion: A propensity score matching analysis. J. Cancer Res. Ther. 2020, 16, 1063–1068. [Google Scholar]
- Sun, T.; Chen, L.; Kan, X.; Ren, Y.; Cao, Y.; Zhang, W.; Lu, H.; Zheng, C. A Comparative Analysis of Efficacy of Apatinib Combined with Transarterial Chemoembolization and Transarterial Chemoembolization Alone in the Treatment of Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. J. Oncol. 2022, 2022, 1255133. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, W.X.; Chen, M.S.; Mao, Y.L.; Sun, B.C.; Shi, J.; Zhang, Y.J.; Meng, Y.; Yang, Y.F.; Cong, W.M.; et al. Multimodality Treatment for Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Large-Scale, Multicenter, Propensity Mathching Score Analysis. Medicine 2016, 95, e3015. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Yin, X.; Tang, B.; Ma, H.; Zhang, L.; Li, L.; Chen, R.; Xie, X.; Ren, Z. Transarterial Chemoembolization (TACE) Combined with Sorafenib in Treatment of HBV Background Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Propensity Score Matching Study. BioMed Res. Int. 2019, 2019, 2141859. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Chen, J.; Lai, L.; Meng, X.; Zhou, B.; Huang, W.; Cai, M.; Shan, H. Hepatocellular carcinoma with portal vein tumor thrombus: Treatment with transarterial chemoembolization combined with sorafenib—A retrospective controlled study. Radiology 2014, 272, 284–293. [Google Scholar] [CrossRef]
- Ding, X.; Sun, W.; Li, W.; Shen, Y.; Guo, X.; Teng, Y.; Liu, X.; Zheng, L.; Li, W.; Chen, J. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line treatment for hepatocellular carcinoma with portal vein tumor thrombus: A prospective randomized study. Cancer 2021, 127, 3782–3793. [Google Scholar] [CrossRef]
- Yang, B.; Jie, L.; Yang, T.; Chen, M.; Gao, Y.; Zhang, T.; Zhang, Y.; Wu, H.; Liao, Z. TACE Plus Lenvatinib Versus TACE Plus Sorafenib for Unresectable Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Prospective Cohort Study. Front. Oncol. 2021, 11, 821599. [Google Scholar] [CrossRef]
- Kudo, M.; Izumi, N.; Kokudo, N.; Matsui, O.; Sakamoto, M.; Nakashima, O.; Kojiro, M.; Makuuchi, M. Management of hepatocellular carcinoma in Japan: Consensus-Based Clinical Practice Guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig. Dis. 2011, 29, 339–364. [Google Scholar] [CrossRef]
- Shi, J.; Lai, E.C.; Li, N.; Guo, W.X.; Xue, J.; Lau, W.Y.; Wu, M.C.; Cheng, S.Q. A new classification for hepatocellular carcinoma with portal vein tumor thrombus. J. Hepato-Biliary-Pancreat. Sci. 2011, 18, 74–80. [Google Scholar] [CrossRef]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Pan, T.; Li, X.S.; Xie, Q.K.; Wang, J.P.; Li, W.; Wu, P.H.; Zhao, M. Safety and efficacy of transarterial chemoembolization plus sorafenib for hepatocellular carcinoma with portal venous tumour thrombus. Clin. Radiol. 2014, 69, e553–e561. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Hou, S.N.; Chen, D.; Jiang, X.Y.; Ni, J.Y.; Chen, Y.T.; Sun, H.L.; Luo, J.H.; Xu, L.F. Analysis of curative and prognostic effects of combined therapy of transarterial chemoembolization and sorafenib in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi Zhonghua Ganzangbing Zazhi Chin. J. Hepatol. 2018, 26, 690–693. [Google Scholar]
- Miksad, R.A.; Ogasawara, S.; Xia, F.; Fellous, M.; Piscaglia, F. Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: The LiverT study. BMC Cancer 2019, 19, 795. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Tian, H.; Xiang, H. Is transcatheter arterial chemoembolization plus sorafenib better than chemoembolization plus placebo in the treatment of hepatocellular carcinoma? Tumori J. 2021, 107, 292–303. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.Y.; Chau, G.Y.; et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahim, M.; Victor, D.; Esmail, A.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N.; et al. Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience. Cancers 2022, 14, 650. [Google Scholar] [CrossRef]
- Luo, J.; Xu, L.; Li, L.; Zhang, J.; Zhang, M.; Xu, M. Comparison of treatments for hepatocellular carcinoma patients with portal vein thrombosis: A systematic review and network meta-analysis. Ann. Transl. Med. 2021, 9, 1450. [Google Scholar] [CrossRef]
- Peng, Z.; Fan, W.; Zhu, B.; Li, J.; Kuang, M. Lenvatinib combined with transarterial chemoembolization as first-line treatment of advanced hepatocellular carcinoma: A phase 3, multicenter, randomized controlled trial. J. Clin. Oncol. 2022, 40 (Suppl. 4), 380. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Z.; Zhang, H.; Guo, X.; Jia, X.; Wang, J.; Meng, L.; Xin, Y.; Jiang, X. Efficacy and Safety of Apatinib in Advanced Hepatocellular Carcinoma: A Multicenter Real World Retrospective Study. Front. Pharmacol. 2022, 13, 894016. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; He, Z.; Wang, C.; Wang, Q. The effect of apatinib in the treatment of sorafenib resistant metastatic hepatocellular carcinoma: A case report. Medicine 2018, 97, e13388. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Cao, G.; Sun, B.; Wang, J.; Yan, D.; Xu, H.; Shi, Q.; Liu, Z.; Zhi, W.; Xu, L.; et al. Regorafenib combined with transarterial chemoembolization for unresectable hepatocellular carcinoma: A real-world study. BMC Gastroenterol. 2021, 21, 393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.L.; Li, L.Q. Efficacy comparison of optimal treatments for hepatocellular carcinoma patients with portal vein tumor thrombus. Ann. Hepatol. 2022, 27, 100552. [Google Scholar] [CrossRef] [PubMed]
Study | Journal | Country | Trail | Treatment | Patients | PVTT (I/II/III) | AGE (Year) | Sex (M/F) | Tumor Size (cm) (<5/>5) | Child–Pugh (A/B/C) | ECOG Ps (0/1–2) | Virology (HBV/HC V/Other) | AFP (mg/L) (≤400/ >400) | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fan et al., 2019 [31] | Clinical Therapeutics | China | RT | T+A | 85 | 18/51/16 | 49 (17–71) | 68/17 | 27/58 (<7/≥7) | 73/12/0 | 67/18 | 68/0/15 | 38/47 | 9 |
T | 103 | 19/54/30 | 50 (19–80) | 71/32 | 23/80 (<7/≥7) | 87/16/0 | 90/13 | 78/0/25 | 38/65 | |||||
Shen et al. 2020 [32] | Journal * | China | RT | T+A | 40 | 27/13 (I–II/III–IV) | 17/23 (<50/≥50) | 38/2 | 9/31 | 33/7/0 | NA | 36/0/4 | 18/22 | 7 |
T | 280 | 208/72 (I–II/III–IV) | 134/146 (≤50/>50) | 265/15 | 28/252 | 228/52/0 | NA | 264/0/16 | 127/153 | |||||
Sun et al., 2022 # [33] | Journal of Oncology | China | RT | T+A | 53 | NA | NA | NA | NA | NA | NA | NA | NA | 9 |
T | 56 | NA | NA | NA | NA | NA | NA | NA | NA | |||||
Wang et al., 2016 [34] | Medicine | China | RT | T+S | 113 | 31/45/37 | 58/55 (≤50/>50) | 77/36 | 29/84 | 110/3/0 | NA | 29/0/0 | NA | 7 |
T | 604 | 47/288/269 | 285/319 (≤50/>50) | 534/70 | 79/525 | 567/37/0 | NA | 125/0/0 | NA | |||||
Yuanet al., 2019 [35] | BioMed Research International | China | RT | T+S | 69 | 43/26 (I–II/III–IV) | 51 (21–79) | 59/10 | 8.39 ± 4.45 | NA | NA | NA | 123 ± 202 | 7 |
T | 429 | 182/247 (I–II/III–IV) | 51 (18–84) | 380/49 | 9.65 ± 3.25 | NA | NA | NA | 197 ± 251 | |||||
Zhu et al. 2014 [36] | Radiology | China | RT | T+S | 46 | 17/19/10 | 48.4 ± 8.1 | 39/7 | NA | 39/7/0 | 22/24 | 38/5/3 | NA | 8 |
T | 45 | 13/21/11 | 51.9 ± 12.2 | 38/7 | NA | 39/6 | 20/25 | 40/1/4 | NA | |||||
Ding et al., 2021 [37] | Cancer | China | RCT | T+L | 32 | 21/11 | 57 ± 11 | 25/7 | 25/7 | 22/10 | NA | 30/1/1 | 16/16 | 7 |
T+S | 32 | 25/7 | 56 ± 11 | 22/10 | 23/9 | 28/4 | NA | 29/3/0 | 14/18 | |||||
Yang et al., 2021 [38] | Frontiers in oncology | China | RT | T+L | 59 | 34/16/9 | 54.05 ± 11.35 | 54/5 | 19/40 (<7/>7) | 56/3/0 | 7/42 | 54/1/4 | 26/33 | 8 |
T+S | 57 | 29/17/11 | 56.18 ± 12.16 | 50/7 | 20/37 (<7/≥7) | 55/2/0 | 6/51 | 49/3/5 | 23/34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Liao, Z.; Gao, J. Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis. Curr. Oncol. 2023, 30, 1243-1254. https://doi.org/10.3390/curroncol30010096
Deng J, Liao Z, Gao J. Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis. Current Oncology. 2023; 30(1):1243-1254. https://doi.org/10.3390/curroncol30010096
Chicago/Turabian StyleDeng, Jia, Ziyue Liao, and Jian Gao. 2023. "Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis" Current Oncology 30, no. 1: 1243-1254. https://doi.org/10.3390/curroncol30010096
APA StyleDeng, J., Liao, Z., & Gao, J. (2023). Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis. Current Oncology, 30(1), 1243-1254. https://doi.org/10.3390/curroncol30010096