Cutaneous Melanoma in Alpine Population: Incidence Trends and Clinicopathological Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context and Data Sources
2.2. Statistics
2.3. Ethics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forsea, A.M.; Del Marmol, V.; de Vries, E.; Geller, A.C. Melanoma incidence and mortality in Europe: New estimates, persistent dis-parities. Br. J. Dermatol. 2012, 167, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.P., Jr.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, M.V.; Richardson, L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982-2030. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar] [PubMed]
- Rossi, S.; Crocetti, E.; Capocaccia, R.; Gatta, G.; Buzzoni, C.; Giacomin, A.; Zanetti, R.; Bisanti, L.; Tessandori, R.; Crosignani, P.; et al. Estimates of cancer burden in Italy. Tumori J. 2013, 99, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, S.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality world-wide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef]
- Kandel, M.; Allayous, C.; Dalle, S.; Mortier, L.; Dalac, S.; Dutriaux, C.; Leccia, M.; Guillot, B.; Saiag, P.; Lacour, J.; et al. Update of survival and cost of metastatic melanoma with new drugs: Estimations from the MelBase cohort. Eur. J. Cancer 2018, 105, 33–40. [Google Scholar] [CrossRef]
- Elliott, T.M.; Whiteman, D.C.; Olsen, C.M.; Gordon, L.G. Estimated healthcare costs of melanoma in Australia over 3 years post-diagnosis. Appl. Health Econ. Health Policy 2017, 15, 805–816. [Google Scholar] [CrossRef]
- Buja, A.; Sartor, G.; Scioni, M.; Vecchiato, A.; Bolzan, M.; Rebba, V.; Sileni, V.C.; Pallozzo, A.C.; Montesco, M.; Del Fiore, P.; et al. Estimation of direct melanoma-related costs by disease stage and by phase of diagnosis and treatment according to clinical guidelines. Acta Derm. Venereol. 2018, 98, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014, 28, 1005–1011. [Google Scholar]
- Murray, H.C.; Maltby, V.E.; Smith, D.W.; Bowden, N.A. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp. Hematol. Oncol. 2016, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Karran, P.; Brem, R. Protein oxidation, UVA and human DNA repair. DNA Repair 2016, 44, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, G.H.; Neale, R.E.; Barnes, P.W.; Neale, P.J.; Zepp, R.G.; Wilson, S.R.; Andrady, A.L.; Bais, A.F.; McKenzie, R.L.; Aucamp, P.J.; et al. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef]
- United Nations Environment Programme, Environmental Effects Assessment Panel. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016. Photochem. Photobiol. Sci. 2017, 16, 107–145. [Google Scholar] [CrossRef]
- Damian, D.; Matthews, Y.; Phan, T.; Halliday, G. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2011, 164, 657–659. [Google Scholar] [CrossRef]
- Martínez-Lozano, J.A.; Utrillas, M.P.; Núñez, J.A.; Tamayo, J.; Marin, M.J.; Esteve, J.; Canada, J.C.M. Ozone mini-holes over Valencia (Spain) and their influence on the UV ery-themal radiation. Int. J. Climatol. 2011, 31, 1554–1566. [Google Scholar] [CrossRef] [Green Version]
- Luk’Yanova, N.F.; Lyudchik, A.M. Statistics of anomalous events in the ozonosphere over Europe. Russ. Meteorol. Hydrol. 2008, 33, 491–498. [Google Scholar] [CrossRef]
- Haluza, D.; Simic, S.; Moshammer, H. Temporal and Spatial Melanoma Trends in Austria: An Ecological Study. Int. J. Environ. Res. Public Health 2014, 11, 734–748. [Google Scholar] [CrossRef] [Green Version]
- Radiation: Ultraviolet (UV) Radiation. Available online: https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv) (accessed on 5 June 2021).
- Zink, A.; Thome, F.; Schielein, M.; Spinner, C.D.; Biedermann, T.; Tizek, L. Primary and secondary prevention of skin cancer in mountain guides: Attitude and motivation for or against participation. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2153–2161. [Google Scholar] [CrossRef]
- Asadian, A.; Fattahi Ardakani, M.; Sotoudeh, A.; Zareipour, M.; Movahed, E. Determinants of sailors’ protective behaviors in fish-ing spots against the risks of sunlight and skin cancer: A qualitative study in Iran. J. Skin Cancer 2021, 2021, 9954946. [Google Scholar] [CrossRef]
- Ambrosini-Spaltro, A.; Dal Cappello, T.; Deluca, J.; Carriere, C.; Mazzoleni, G.; Eisndle, K. Melanoma incidence and Breslow tumour thickness development in the central Alpine region of South Tyrol from 1998 to 2012: A population-based study. J. Eur. Acad. Dermatol. Venereol. JEADV 2015, 29, 243–248. [Google Scholar] [CrossRef]
- De Martino, E.; Brunetti, D.; Canzonieri, V.; Conforti, C.; Eisendle, K.; Mazzoleni, G.; Nobile, C.; Rao, F.; Zschocke, J.; Jukic, E.; et al. The Association of Residential Altitude on the Molecular Profile and Survival of Melanoma: Results of an Interreg Study. Cancers 2020, 12, 2796. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.E.; Barnhill, R.L.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. Melanocytic tumour classification and the pathway concept of melanoma pathogenesis. In WHO Classification of Skin Tumours, 4th ed.; Elder, D.E., Massi, D., Scolyer, R.A., Willemze, R., Eds.; World Health Organization Classification of Tumours; IARC: Lyon, France, 2018; Volume 11, pp. 66–71. [Google Scholar]
- ISTAT. Demo-Geodemo. Mappe, Popolazione, Statistiche. Available online: demo.istat.it (accessed on 21 December 2020).
- Toniolo, F.; Mantoan, D.; Maresso, A. Veneto Region, Italy. Health system review. Health Syst. Transit. 2012, 14, i–xix, 1–138. [Google Scholar]
- Registrazione ad Alta Risoluzione dei Melanomi e Monito—Raggio del PDTA della Regione Veneto. Available online: https://www.registrotumoriveneto.it/it/pubblicazioni/convegni/comunicazioni-orali/100-2018/210-registrazione-ad-alta-risoluzione-dei-melanomi-e-monito-raggio-del-pdta-della-regione-veneto (accessed on 9 July 2021).
- Joinpoint Regression Program. Available online: https://surveillance.cancer.gov/joinpoint/ (accessed on 9 July 2021).
- Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dubl. Philosoph. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Student. The probable error of a mean. Biometrika 1908, VI, 1–25. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 3 February 2022).
- Núñez-González, S.; Bedoya, E.; Simancas-Racines, D.; Gault, C. Spatial clusters and temporal trends of malignant melanoma mortality in Ecuador. SAGE Open Med. 2020, 8, 2050312120918285. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Thompson, J.; Pandeya, N.; Whiteman, D.C. Evaluation of Sex-Specific Incidence of Melanoma. JAMA Dermatol. 2020, 156, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Aceituno-Madera, P.; Buendía-Eisman, A.; Olmo, F.; Jimenez-Moleon, J.J.; Serrano-Ortega, S. Melanoma, altitud y radiación UVB. Actas Dermosifil. 2011, 102, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.; Bannister, P.; Rogers, I.; Sundin, J.; Al-Ayadhy, B.; James, P.W.; McNally, R.J. Changing epidemiology and age-specific incidence of cutaneous malignant melanoma in England: An analysis of the national cancer registration data by age, gender and anatomical site, 1981–2018. Lancet Reg. Health Eur. 2021, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M. Gastric cancer risk: Between genetics and lifestyle. Lancet Oncol. 2020, 21, 1258–1260. [Google Scholar] [CrossRef]
- Clark, L.N.; Shin, D.B.; Troxel, A.B.; Khan, S.; Sober, A.J.; Ming, M.E. Association between the anatomic distribution of melanoma and sex. J. Am. Acad. Dermatol. 2007, 56, 768–773. [Google Scholar] [CrossRef]
- D’Ecclesiis, O.; Caini, S.; Martinoli, C.; Raimondi, S.; Gaiaschi, C.; Tosti, G.; Queirolo, P.; Veneri, C.; Saieva, C.; Gandini, S.; et al. Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7945. [Google Scholar] [CrossRef]
- Visconti, A.; Ribero, S.; Sanna, M.; Spector, T.D.; Bataille, V.; Falchi, M. Body site-specific genetic effects influence naevus count distribution in women. Pigment Cell Melanoma Res. 2020, 33, 326–333. [Google Scholar] [CrossRef]
- Yuan, T.-A.; Lu, Y.; Edwards, K.; Jakowatz, J.; Meyskens, F.L.; Liu-Smith, F. Race-, Age-, and Anatomic Site-Specific Gender Differences in Cutaneous Melanoma Suggest Differential Mechanisms of Early- and Late-Onset Melanoma. Int. J. Environ. Res. Public Health 2019, 16, 908. [Google Scholar] [CrossRef] [Green Version]
- Laskar, R.; Ferreiro-Iglesias, A.; Bishop, D.T.; Iles, M.M.; Kanetsky, P.A.; Armstrong, B.K.; Law, M.H.; Goldstein, A.M.; Aitken, J.F.; Giles, G.G.; et al. Risk factors for melanoma by anatomical site: An evaluation of aetiological het-erogeneity. Br. J. Dermatol. 2021, 184, 1085–1093. [Google Scholar] [CrossRef]
- Elder, D.E.; Massi, D.; Scolyer, R.A.; Willemze, R. (Eds.) Genomic landscape of melanoma. In WHO Classification of Skin Tumours, 4th ed.; World Health Organization Classification of Tumours; IARC: Lyon, France, 2018; Volume 11, pp. 72–75. [Google Scholar]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [Green Version]
- Schootman, M.; Gomez, S.L.; Henry, K.A.; Paskett, E.D.; Ellison, G.L.; Oh, A.; Taplin, S.H.; Tatalovich, Z.; Berrigan, D.A. Geospatial Approaches to Cancer Control and Population Sciences. Cancer Epidemiol. Biomark. Prev. 2017, 26, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Bayer, R.; Galea, S. Public Health in the Precision-Medicine Era. N. Engl. J. Med. 2015, 373, 499–501. [Google Scholar] [CrossRef]
- Kneale, D.; Lorenc, T.; O’Mara-Eves, A.; Hong, Q.N.; Sutcliffe, K.; Sowden, A.; Thomas, J. Precision Public Health—A Critical Review of the Opportunities and Obstacles; EPPI-Centre, SocialScience Research Unit, UCL Institute of Education, University College London: London, UK, 2020. [Google Scholar]
CMM Patients’ Place of Residence | Age Group | Sex | ||
---|---|---|---|---|
Males | Females | |||
AAPC | ||||
Alpine province of Belluno | All ages | 5.7 ** (95% CI: 4.2–7.1) | 4.4 ** (95% CI: 3.2–5.5) | |
Other Veneto provinces | All ages | 3.5 ** (95% CI: 3.1–4.0) | 2.8 ** (95%CI: 2.4–3.1) | |
Alpine province of Belluno | <49 | 6.9 * (95% CI: 4.2–9.7) | 7.7 * (95% CI: 5.8–9.5) | |
≥50 | 5.1 * (95% CI: 3.6–6.6) | 2.3 * (95% CI: 1.0–3.6) | ||
Other Veneto provinces | <49 | 2.4 * (95% CI: 1.6–3.2) | 2.7 * (95% CI: 2.1–3.3) | |
≥50 | 3.9 * (95% CI: 3.4–4.4) | 2.8 * (95% CI: 2.4–3.3) |
Veneto Region as a Whole | Veneto Region Excluding Belluno | Alpine Area (Belluno) | p-Value * | |
---|---|---|---|---|
Age Mean (Std) | 60.7 (16.0) | 61.0 (15.8) | 57.8 (18.2) | 0.055 |
Sex N (%) | 0.841 | |||
Male | 726 (53.1) | 672 (53.0) | 54 (54.6) | |
Female | 642 (46.9) | 597 (47.0) | 45 (45.45) | |
Primary site N (%) | 0.028 | |||
Lower back | 516 (39.7) | 478 (39.6) | 38 (40.4) | |
Lower limb | 292 (22.4) | 273 (22.6) | 19 (20.2) | |
Upper limb | 179 (13.8) | 166 (13.75) | 13 (13.8) | |
Trunk | 163 (12.5) | 158 (13.1) | 5 (5.3) | |
Face | 151 (11.6) | 132 (10.9) | 19 (20.2) | |
M. histology Subtype N (%) | 0.044 | |||
Superficial spreading | 948 (69.3) | 878 (69.2) | 70 (70.7) | |
Nodular | 206 (15.0) | 188 (14.8) | 18 (18.2) | |
Lentigo maligna | 32 (2.3) | 26 (2.05) | 6 (6.1) | |
Acral-lentiginous | 23 (1.7) | 23 (1.8) | 0 | |
Desmoplastic | 7 (0.5) | 7 (0.55) | 0 | |
Spitzoid | 30 (2.2) | 29 (2.3) | 1 (1.0) | |
Malignant (NOS) | 122 (8.9) | 118 (9.3) | 4 (4.0) | |
Growth pattern N (%) | 0.350 | |||
Vertical | 804 (74.9) | 743 (75.3) | 61 (70.1) | |
Radial | 270 (25.1) | 244 (24.7) | 26 (29.9) | |
Breslow thickness N (%) | 0.250 | |||
<0.75 mm | 654 (51.05) | 604 (50.8) | 50 (53.8) | |
0.76–1.50 mm | 278 (21.7) | 264 (22.2) | 14 (15.05) | |
1.51–3.99 mm | 202 (15.8) | 188 (15.8) | 14 (15.05) | |
≥4 mm | 147 (11.5) | 132 (11.1) | 15 (16.1) | |
Ulceration N (%) | 1.000 | |||
Absent | 1023 (80.3) | 949 (80.3) | 74 (80.4) | |
Present | 251 (19.7) | 233 (19.7) | 18 (19.6) | |
Tumor regression N (%) | <0.000 | |||
Absent | 630 (60.5) | 601 (63.1) | 29 (32.95) | |
Present | 411 (39.5) | 352 (36.9) | 59 (67.05) | |
TILs N (%) | 0.007 | |||
Present | 862 (73.2) | 791 (72.2) | 71 (86.6) | |
Absent | 315 (26.8) | 304 (27.8) | 11 (13.4) | |
Stage (TNM) N (%) | 0.567 | |||
I | 854 (67.1) | 792 (67.1) | 62 (66.7) | |
II | 215 (16.9) | 202 (17.1) | 13 (13.1) | |
III | 141 (11.1) | 127 (10.8) | 14 (15.05) | |
IV | 63 (4.95) | 59 (5.0) | 4 (4.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buja, A.; Rugge, M.; De Luca, G.; Bovo, E.; Zorzi, M.; De Toni, C.; Cozzolino, C.; Vecchiato, A.; Del Fiore, P.; Spina, R.; et al. Cutaneous Melanoma in Alpine Population: Incidence Trends and Clinicopathological Profile. Curr. Oncol. 2022, 29, 2165-2173. https://doi.org/10.3390/curroncol29030175
Buja A, Rugge M, De Luca G, Bovo E, Zorzi M, De Toni C, Cozzolino C, Vecchiato A, Del Fiore P, Spina R, et al. Cutaneous Melanoma in Alpine Population: Incidence Trends and Clinicopathological Profile. Current Oncology. 2022; 29(3):2165-2173. https://doi.org/10.3390/curroncol29030175
Chicago/Turabian StyleBuja, Alessandra, Massimo Rugge, Giuseppe De Luca, Emanuela Bovo, Manuel Zorzi, Chiara De Toni, Claudia Cozzolino, Antonella Vecchiato, Paolo Del Fiore, Romina Spina, and et al. 2022. "Cutaneous Melanoma in Alpine Population: Incidence Trends and Clinicopathological Profile" Current Oncology 29, no. 3: 2165-2173. https://doi.org/10.3390/curroncol29030175
APA StyleBuja, A., Rugge, M., De Luca, G., Bovo, E., Zorzi, M., De Toni, C., Cozzolino, C., Vecchiato, A., Del Fiore, P., Spina, R., Cinquetti, S., Baldo, V., Rossi, C. R., & Mocellin, S. (2022). Cutaneous Melanoma in Alpine Population: Incidence Trends and Clinicopathological Profile. Current Oncology, 29(3), 2165-2173. https://doi.org/10.3390/curroncol29030175