Effect of COVID-19 Pandemic on Hepatocellular Carcinoma Diagnosis: Results from a Tertiary Care Center in North-West Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. Comparison between the Different Periods of Enrollment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, T.; Zhang, Y.; Petherick, A. A year of living distantly: Global trends in the use of stay-at-home orders over the first 12 months of the COVID-19 pandemic. Interface Focus 2021, 11, 20210041. [Google Scholar] [CrossRef]
- Actis, G.C.; Pellicano, R.; Ribaldone, D.G. SARS-CoV-2: Impacts and Echoes. Rev. Recent Clin. Trials 2021. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Windner, Z.; Dowell, A.; Toop, L.; Savage, R.; Hudson, B. Navigating the health system during COVID-19: Primary care perspectives on delayed patient care. N. Z. Med. J. 2021, 134, 17–27. [Google Scholar] [PubMed]
- Actis, G.C.; Ribaldone, D.G.; Fagoonee, S.; Pellicano, R. COVID-19: A user’s guide, status of the art and an original proposal to terminate viral recurrence. Minerva Med. 2021, 112, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Harber, I.; Zeidan, D.; Aslam, M.N. Colorectal Cancer Screening: Impact of COVID-19 Pandemic and Possible Consequences. Life 2021, 11, 1297. [Google Scholar] [CrossRef]
- Jazieh, A.R.; Akbulut, H.; Curigliano, G.; Rogado, A.; Alsharm, A.A.; Razis, E.D.; Mula-Hussain, L.; Errihani, H.; Khattak, A.; De Guzman, R.B.; et al. Impact of the COVID-19 Pandemic on Cancer Care: A Global Collaborative Study. JCO Glob. Oncol. 2020, 6, 1428–1438. [Google Scholar] [CrossRef]
- Fitzmaurice, C.; Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.C.; Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 2013, 58, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Ascione, A.; Fontanella, L.; Imparato, M.; Rinaldi, L.; De Luca, M. Mortality from cirrhosis and hepatocellular carcinoma in Western Europe over the last 40 years. Liver Int. 2017, 37, 1193–1201. [Google Scholar] [CrossRef]
- Kuo, S.C.; Lin, C.N.; Lin, Y.J.; Chen, W.Y.; Hwang, J.S.; Wang, J. Der Optimal Intervals of Ultrasonography Screening for Early Diagnosis of Hepatocellular Carcinoma in Taiwan. JAMA Netw. Open 2021, 4, e2114680. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Martínez, S.; Sapena, V.; Forner, A.; Nault, J.C.; Sapisochin, G.; Rimassa, L.; Sangro, B.; Bruix, J.; Sanduzzi-Zamparelli, M.; Hołówko, W.; et al. Assessing the impact of COVID-19 on liver cancer management (CERO-19). JHEP Rep. 2021, 3, 100260. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Ling, W.-H.; Chen, C.-H.; Lee, J.H.; Kudo, M.; Chanwat, R.; Strasser, S.I.; Zhu, X.; Lai, S.-H.; Chow, P.K.-H. Impact of COVID-19 on Hepatocellular Carcinoma Management: A Multicountry and Region Study. J. Hepatocell. Carcinoma 2021, 8, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Iavarone, M.; Antonelli, B.; Ierardi, A.M.; Topa, M.; Sangiovanni, A.; Gori, A.; Oggioni, C.; Rossi, G.; Carrafiello, G.; Lampertico, P. Reshape and secure HCC managing during COVID-19 pandemic: A single centre analysis of four periods in 2020 versus 2019. Liver Int. 2021, 41, 3028–3032. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Touscoz, G.A.; Smedile, A.; Pellicano, R. Noninvasive assessment of liver fibrosis: Key messages for clinicians. Pol. Arch. Med. Wewn. 2014, 124, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Gaia, S.; Campion, D.; Evangelista, A.; Spandre, M.; Cosso, L.; Brunello, F.; Ciccone, G.; Bugianesi, E.; Rizzetto, M. Non-invasive score system for fibrosis in chronic hepatitis: Proposal for a model based on biochemical, FibroScan and ultrasound data. Liver Int. 2015, 35, 2027–2035. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Caviglia, G.P.; Ciruolo, M.; Abate, M.L.; Carucci, P.; Rolle, E.; Rosso, C.; Olivero, A.; Troshina, G.; Risso, A.; Nicolosi, A.; et al. Alpha-fetoprotein, protein induced by vitamin K absence or antagonist II and glypican-3 for the detection and prediction of hepatocellular carcinoma in patients with cirrhosis of viral etiology. Cancers 2020, 12, 3218. [Google Scholar] [CrossRef]
- Rao, A.; Rich, N.E.; Marrero, J.A.; Yopp, A.C.; Singal, A.G. Diagnostic and Therapeutic Delays in Patients With Hepatocellular Carcinoma. J. Natl. Compr. Cancer Netw. 2021, 19, 1063–1071. [Google Scholar] [CrossRef]
- Pomej, K.; Scheiner, B.; Hartl, L.; Balcar, L.; Meischl, T.; Mandorfer, M.; Reiberger, T.; Müller, C.; Trauner, M.; Pinter, M. COVID-19 pandemic: Impact on the management of patients with hepatocellular carcinoma at a tertiary care hospital. PLoS ONE 2021, 16, e0256544. [Google Scholar] [CrossRef]
- Amaddeo, G.; Brustia, R.; Allaire, M.; Lequoy, M.; Hollande, C.; Regnault, H.; Blaise, L.; Ganne-Carrié, N.; Séror, O.; Larrey, E.; et al. Impact of COVID-19 on the management of hepatocellular carcinoma in a high-prevalence area. JHEP Rep. Innov. Hepatol. 2021, 3, 100199. [Google Scholar] [CrossRef] [PubMed]
- Perisetti, A.; Kaur, R.; Thandassery, R. Increased Diagnosis of Hepatocellular Carcinoma in Hospitalized Patients with Alcohol Related Hepatitis after the COVID-19 Outbreak: A Global Multi-Center Propensity Matched Analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 2450–2451.e1. [Google Scholar] [CrossRef]
- Desai, A.; Sandhu, S.; Lai, J.P.; Sandhu, D.S. Hepatocellular carcinoma in non-cirrhotic liver: A comprehensive review. World J. Hepatol. 2019, 11, 1–18. [Google Scholar] [CrossRef]
- Perisetti, A.; Goyal, H.; Yendala, R.; Thandassery, R.B.; Giorgakis, E. Non-cirrhotic hepatocellular carcinoma in chronic viral hepatitis: Current insights and advancements. World J. Gastroenterol. 2021, 27, 3466–3482. [Google Scholar] [CrossRef] [PubMed]
- Grgurevic, I.; Bozin, T.; Mikus, M.; Kukla, M.; O’beirne, J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers 2021, 13, 5844. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall | March 2020– December 2020 | March 2020– December 2020 | January 2021– October 2021 | p Value A | p Value B | p Value C | p Value D |
---|---|---|---|---|---|---|---|---|
Patients (n) | 247 | 106 | 69 | 72 | ||||
Age (years), median (IQR); (247) | 64.0 (56.0–71.8) | 64.0 (55.0–73.0) | 63.0 (56.0–69.5) | 64.5 (58.0–70.0) | 0.600 | 0.439 | 0.316 | 0.850 |
Gender (M/F), n (%); (247) | 199 (80.6%) | 79 (74.5%) | 57 (82.6%) | 63 (87.5%) | 0.029 ^ | 0.211 | 0.416 | 0.035 ^ |
BMI (kg/m2), median (IQR); (247) | 26.1 (23.3–29.4) | 25.5 (22.7–28.8) | 26.1 (23.1–29.1) | 26.9 (23.8–30.5) | 0.074 | 0.429 | 0.170 | 0.025 ^ |
Etiology, n (%); (247) * | ||||||||
HCV | 116 (47.0%) | 51 (48.1%) | 34 (49.3%) | 31 (43.1%) | 0.539 | 0.881 | 0.461 | 0.508 |
HBV | 34 (13.8%) | 16 (15.1%) | 6 (8.7%) | 12 (16.7%) | 0.880 | 0.213 | 0.158 | 0.778 |
Alcohol | 96 (38.9%) | 42 (39.6%) | 27 (39.1%) | 27 (37.5%) | 0.781 | 0.948 | 0.843 | 0.776 |
NAFLD | 65 (26.3%) | 18 (17.0%) | 18 (26.1%) | 29 (40.3%) | <0.001 ^ | 0.147 | 0.075 | 0.001 ^ |
Other | 19 (7.7%) | 10 (9.4%) | 8 (11.6%) | 1 (1.4%) | 0.069 | 0.647 | 0.014 ^ | 0.029 |
Viral etiology, n (%); (247) | 142 (57.5%) | 64 (60.4%) | 40 (58.0%) | 38 (52.8%) | 0.600 | 0.752 | 0.538 | 0.316 |
Platelet count (×109/L), median (IQR); (241) | 126 (84–85) | 125 (86–184) | 113 (74–181) | 141 (103–193) | 0.180 | 0.275 | 0.073 | 0.312 |
Albumin (g/dL), median (IQR); (190) | 4.0 (3.4–4.4) | 3.8 (3.3–4.4) | 4.1 (3.5–4.4) | 4.0 (3.4–4.3) | 0.446 | 0.240 | 0.658 | 0.409 |
Total bilirubin (mg/dL), median (IQR); (232) | 1.0 (0.7–1.7) | 1.0 (0.6–1.6) | 1.2 (0.7–1.8) | 1.0 (0.7–1.9) | 0.382 | 0.173 | 0.720 | 0.400 |
AFP (ng/mL), median (IQR); (196) | 7.6 (3.3–101.5) | 5.8 (3.6–122.6) | 8.1 (2.8–105.7) | 9.2 (3.1–75.1) | 0.930 | 0.843 | 0.787 | 0.737 |
Cirrhosis, n (%); (247) | 238 (96.4%) | 101 (95.3%) | 67 (97.1%) | 70 (97.2%) | 0.475 | 0.550 | 0.966 | 0.515 |
Semestral surveillance, n (%); (238) ** | 77 (32.4%) | 37 (36.6%) | 24 (35.8%) | 16 (22.9%) | 0.070 | 0.915 | 0.097 | 0.056 |
Child–Pugh score, n (%); (237) | 0.968 | 0.777 | 0.922 | 0.925 | ||||
A | 179 (75.5%) | 78 (77.2%) | 48 (72.7%) | 53 (75.7%) | ||||
B | 52 (21.9%) | 21 (20.8%) | 16 (24.2%) | 15 (21.4%) | ||||
C | 6 (2.5%) | 2 (2.0%) | 2 (3.0%) | 2 (2.9%) | ||||
HCC diagnostic test, n (%); (245) | 0.692 | 0.462 | 0.970 | 0.454 | ||||
Liver biopsy | 21 (8.6%) | 8 (7.6%) | 6 (8.7%) | 7 (9.9%) | ||||
Magnetic resonance | 76 (31.0%) | 28 (26.7%) | 24 (34.8%) | 24 (33.8%) | ||||
Computed tomography | 148 (60.4%) | 69 (65.7%) | 39 (56.5%) | 40 (56.3%) | ||||
HCC nodules, n (%); (247) | 0.331 | 0.105 | 0.722 | 0.227 | ||||
1 | 147 (59.5%) | 56 (52.8%) | 43 (62.3%) | 48 (66.7%) | ||||
2 | 31 (12.6%) | 15 (14.2%) | 11 (15.9%) | 5 (6.9%) | ||||
3 | 27 (10.9%) | 14 (13.2%) | 7 (10.1%) | 6 (8.3%) | ||||
>3 | 42 (17.0%) | 21 (19.8%) | 8 (11.6%) | 13 (18.1%) | ||||
Major HCC nodule (mm), median (IQR); (244) | 29.5 (18.0–42.5) | 27.0 (16.5–45.5) | 28.0 (20.0–39.3) | 30.0 (18.0–50.0) | 0.887 | 0.933 | 0.657 | 0.675 |
Extrahepatic spread, n (%); (247) | 8 (3.2%) | 3 (2.8%) | 2 (2.9%) | 3 (4.2%) | 0.637 | 0.979 | 0.685 | 0.629 |
BCLC, n (%); (247) | 0.665 | 0.375 | 0.642 | 0.707 | ||||
0 | 44 (17.8%) | 17 (16.0%) | 12 (17.4%) | 15 (20.8%) | ||||
A | 101 (40.9%) | 44 (41.5%) | 32 (46.4%) | 25 (34.7%) | ||||
B | 50 (20.2%) | 19 (17.9%) | 14 (20.3%) | 17 (23.6%) | ||||
C | 48 (19.4%) | 25 (23.6%) | 9 (13.0%) | 14 (19.4%) | ||||
D | 4 (1.6%) | 1 (0.9%) | 2 (2.9%) | 1 (1.4%) |
Time Period | Observed HCC Diagnosis (n) | Gender (M/F) | Viral Etiology n (%) | HCV n (%) | HBV n (%) | Etiology * Alcohol n (%) | NAFLD n (%) | Other n (%) | Expected HCC Diagnosis (n) ** |
---|---|---|---|---|---|---|---|---|---|
January 2011–October 2011 | 105 | 81/24 | 70 (66.7%) | 59 (56.2%) | 14 (13.3%) | 37 (35.2%) | 7 (6.7%) | 7 (6.7%) | |
November 2011–August 2012 | 120 | 95/25 | 87 (72.5%) | 67 (55.8%) | 26 (21.7%) | 38 (31.7%) | 6 (5.0%) | 11 (9.2%) | |
September 2012–June 2013 | 105 | 82/23 | 76 (72.4%) | 65 (61.9%) | 15 (14.3%) | 33 (31.4%) | 10 (9.5%) | 5 (4.8%) | |
July 2013–April 2014 | 115 | 86/29 | 84 (73.0%) | 67 (58.3%) | 17 (14.8%) | 44 (38.3%) | 11 (9.6%) | 2 (1.7%) | |
May 2014–February 2015 | 118 | 93/25 | 87 (73.7%) | 72 (61.0%) | 18 (15.3%) | 38 (32.2%) | 14 (11.9%) | 6 (5.1%) | |
March 2015–December 2015 | 144 | 111/33 | 114 (79.2%) | 94 (65.3%) | 27 (18.8%) | 60 (41.7%) | 14 (9.7%) | 5 (3.5%) | |
January 2016–October 2016 | 114 | 86/28 | 80 (70.2%) | 70 (61.4%) | 10 (8.8%) | 32 (28.1%) | 18 (15.8%) | 5 (4.4%) | |
November 2016–August 2017 | 140 | 114/26 | 93 (66.4%) | 83 (59.3%) | 16 (11.4%) | 59 (42.1%) | 24 (17.1%) | 3 (2.1%) | |
September 2017–June 2018 | 150 | 117/33 | 99 (66.0%) | 81 (54.0%) | 18 (12.0%) | 62 (41.3%) | 35 (23.3%) | 9 (6.0%) | |
July 2018–April 2019 | 119 | 93/26 | 85 (71.4%) | 69 (58.0%) | 16 (13.4%) | 52 (43.7%) | 28 (23.5%) | 5 (4.2%) | |
May 2019–February 2020 | 106 | 79/27 | 64 (60.4%) | 51 (48.1%) | 16 (15.1%) | 42 (39.6%) | 18 (17.0%) | 10 (9.4%) | |
March 2020–December 2020 | 69 | 57/12 | 40 (58.0%) | 34 (49.3%) | 6 (8.7%) | 27 (39.1%) | 18 (26.1%) | 8 (11.6%) | 131 |
January 2021–October 2021 | 72 | 63/9 | 38 (52.8%) | 31 (43.1%) | 12 (16.7%) | 27 (37.5%) | 29 (40.3%) | 1 (1.4%) | 133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribaldone, D.G.; Caviglia, G.P.; Gaia, S.; Rolle, E.; Risso, A.; Campion, D.; Brunocilla, P.R.; Saracco, G.M.; Carucci, P. Effect of COVID-19 Pandemic on Hepatocellular Carcinoma Diagnosis: Results from a Tertiary Care Center in North-West Italy. Curr. Oncol. 2022, 29, 1422-1429. https://doi.org/10.3390/curroncol29030119
Ribaldone DG, Caviglia GP, Gaia S, Rolle E, Risso A, Campion D, Brunocilla PR, Saracco GM, Carucci P. Effect of COVID-19 Pandemic on Hepatocellular Carcinoma Diagnosis: Results from a Tertiary Care Center in North-West Italy. Current Oncology. 2022; 29(3):1422-1429. https://doi.org/10.3390/curroncol29030119
Chicago/Turabian StyleRibaldone, Davide Giuseppe, Gian Paolo Caviglia, Silvia Gaia, Emanuela Rolle, Alessandra Risso, Daniela Campion, Paola Rita Brunocilla, Giorgio Maria Saracco, and Patrizia Carucci. 2022. "Effect of COVID-19 Pandemic on Hepatocellular Carcinoma Diagnosis: Results from a Tertiary Care Center in North-West Italy" Current Oncology 29, no. 3: 1422-1429. https://doi.org/10.3390/curroncol29030119
APA StyleRibaldone, D. G., Caviglia, G. P., Gaia, S., Rolle, E., Risso, A., Campion, D., Brunocilla, P. R., Saracco, G. M., & Carucci, P. (2022). Effect of COVID-19 Pandemic on Hepatocellular Carcinoma Diagnosis: Results from a Tertiary Care Center in North-West Italy. Current Oncology, 29(3), 1422-1429. https://doi.org/10.3390/curroncol29030119