Renin-Angiotensin System Single Nucleotide Polymorphisms Are Associated with Bladder Cancer Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genomic DNA Extraction
2.3. SNP Genotyping
2.4. Restriction Fraction Length Polymorphism (RFLP) Assay
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knowles, M.A.; Hurst, C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef]
- Wu, X.R. Urothelial tumorigenesis: A tale of divergent pathways. Nat. Rev. Cancer 2005, 5, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M.D. Bladder cancer: A review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Mollica, V.; Rizzo, A.; Montironi, R.; Cheng, L.; Giunchi, F.; Schiavina, R.; Santoni, M.; Fiorentino, M.; Lopez-Beltran, A.; Brunocilla, E.; et al. Current strategies and novel therapeutic approaches for metastatic urothelial carcinoma. Cancers 2020, 12, 1449. [Google Scholar] [CrossRef]
- Donmez, G.; Sullu, Y.; Baris, S.; Yildiz, L.; Aydin, O.; Karagoz, F.; Kandemir, B. Vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and thrombospondin-1 (TSP-1) expression in urothelial carcinomas. Pathol. Res. Pract. 2009, 205, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.H.; Lee, S.J.; Chang, S.G. Clinical significance of urinary vascular endothelial growth factor in patients with superficial bladder tumors. Oncol. Rep. 2001, 8, 1265–1267. [Google Scholar] [CrossRef]
- Pei, N.; Mao, Y.; Wan, P.; Chen, X.; Li, A.; Chen, H.; Li, J.; Wan, R.; Zhang, Y.; Du, H.; et al. Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. J. Exp. Clin. Cancer Res. 2017, 36, 77. [Google Scholar] [CrossRef] [Green Version]
- Yuge, K.; Miyajima, A.; Tanaka, N.; Shirotake, S.; Kosaka, T.; Kikuchi, E.; Oya, M. Prognostic value of renin-angiotensin system blockade in non-muscle-invasive bladder cancer. Ann. Surg. Oncol. 2012, 19, 3987–3993. [Google Scholar] [CrossRef] [PubMed]
- Blute, M.L., Jr.; Rushmer, T.J.; Shi, F.; Fuller, B.J.; Abel, E.J.; Jarrard, D.F.; Downs, T.M. Renin-angiotensin inhibitors decrease recurrence after transurethral resection of bladder tumor in patients with nonmuscle invasive bladder cancer. J. Urol. 2015, 194, 1214–1219. [Google Scholar] [CrossRef]
- Kim, S.J.; Nam, W.; You, D.; Jeong, I.G.; Song, C.; Hong, B.; Kim, C.S.; Ahn, H.; Hong, J.H. Prognostic factors related to recurrence-free survival for primary carcinoma in situ of the bladder after bacillus Calmette-Guérin: A retrospective study. Urol. Int. 2018, 101, 269–276. [Google Scholar] [CrossRef]
- Yoshida, T.; Kinoshita, H.; Fukui, K.; Matsuzaki, T.; Yoshida, K.; Mishima, T.; Yanishi, M.; Komai, Y.; Sugi, M.; Inoue, T.; et al. Prognostic impact of renin-angiotensin inhibitors in patients with bladder cancer undergoing radical cystectomy. Ann. Surg. Oncol. 2017, 24, 823–831. [Google Scholar] [CrossRef]
- Do, A.N.; Zhao, W.; Baldridge, A.S.; Raffield, L.M.; Wiggins, K.L.; Shah, S.J.; Aslibekyan, S.; Tiwari, H.K.; Limdi, N.; Zhi, D.; et al. Genome-wide meta-analysis of SNP and antihypertensive medication interactions on left ventricular traits in African Americans. Mol. Genet. Genom. Med. 2019, 7, e00788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohman, M.S.; Dewi Satiti, I.A.; Widodo, N.; Lukitasari, M.; Sujuti, H. Genetic variants of C-5312T REN increased renin levels and diastolic blood pressure response to angiotensin receptor blockers. Int. J. Hypertens. 2015, 2015, 930631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konoshita, T.; Genomic Disease Outcome Consortium (G-DOC) Study Investigators. Do genetic variants of the Renin-Angiotensin system predict blood pressure response to Renin-Angiotensin system-blocking drugs? A systematic review of pharmacogenomics in the Renin-Angiotensin system. Curr. Hypertens. Rep. 2011, 13, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, S.; Narang, R.; Sreenivas, V.; Bhatia, J.; Saluja, D.; Srivastava, K. Association of angiotensin II type 1 receptor (A1166C) gene polymorphism and its increased expression in essential hypertension: A case-control study. PLoS ONE 2014, 9, e101502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.J.; Nakura, J.; Wu, Z.; Yamamoto, M.; Abe, M.; Chen, Y.; Tabara, Y.; Yamamoto, Y.; Igase, M.; Bo, X.; et al. Association of angiotensin II type 2 receptor gene variant with hypertension. Hypertens. Res. 2003, 26, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Williams, J.S.; Pojoga, L.; Chamarthi, B.; Lasky-Su, J.; Raby, B.A.; Hopkins, P.N.; Jeunemaitre, X.; Brown, N.J.; Ferri, C.; et al. Renin gene polymorphism: Its relationship to hypertension, renin levels and vascular responses. J. Renin Angiotensin Aldosterone Syst. 2011, 12, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Purkait, P.; Halder, K.; Thakur, S.; Ghosh Roy, A.; Raychaudhuri, P.; Bhattacharya, S.; Sarkar, B.N.; Naidu, J.M. Association of angiotensinogen gene SNPs and haplotypes with risk of hypertension in eastern Indian population. Clin. Hypertens. 2017, 23, 12. [Google Scholar] [CrossRef] [Green Version]
- Pignot, G.; Bieche, I.; Vacher, S.; Güet, C.; Vieillefond, A.; Debré, B.; Lidereau, R.; Amsellem-Ouazana, D. Large-scale real-time reverse transcription-PCR approach of angiogenic pathways in human transitional cell carcinoma of the bladder: Identification of VEGFA as a major independent prognostic marker. Eur. Urol. 2009, 56, 678–688. [Google Scholar] [CrossRef]
- Crew, J.P.; Fuggle, S.; Bicknell, R.; Cranston, D.W.; de Benedetti, A.; Harris, A.L. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br. J. Cancer 2000, 82, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, P.; Goswami, A.K.; Joshi, K.; Sharma, S.K. Cyclooxygenase-2 expression increases with the stage and grade in transitional cell carcinoma of the urinary bladder. Int. Urol. Nephrol. 2005, 37, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Huhn, S.; Bevier, M.; Rudolph, A.; Pardini, B.; Naccarati, A.; Hein, R.; Hoffmeister, M.; Vodickova, L.; Novotny, J.; Brenner, H.; et al. Shared ancestral susceptibility to colorectal cancer and other nutrition related diseases. BMC Med. Genet. 2012, 13, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickel, L.; Matsuzuka, T.; Doi, C.; Ayuzawa, R.; Maurya, D.K.; Xie, S.X.; Berkland, C.; Tamura, M. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol. Ther. 2010, 9, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiguro, S.; Yoshimura, K.; Tsunedomi, R.; Oka, M.; Takao, S.; Inui, M.; Kawabata, A.; Wall, T.; Magafa, V.; Cordopatis, P.; et al. Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): A novel AT2R agonist effectively attenuates growth of PDAC grafts in mice. Cancer Biol. Ther. 2015, 16, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Pei, N.; Jie, F.; Luo, J.; Wan, R.; Zhang, Y.; Chen, X.; Liang, Z.; Du, H.; Li, A.; Chen, B.; et al. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. PLoS ONE 2014, 9, e92253. [Google Scholar] [CrossRef]
- Moreno-Muñoz, D.; de la Haba-Rodríguez, J.R.; Conde, F.; López-Sánchez, L.M.; Valverde, A.; Hernández, V.; Martínez, A.; Villar, C.; Gómez-España, A.; Porras, I.; et al. Genetic variants in the renin-angiotensin system predict response to bevacizumab in cancer patients. Eur. J. Clin. Investig. 2015, 45, 1325–1332. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Ballman, K.A.; Halabi, S.; Atherton, P.J.; Mortazavi, A.; Sweeney, C.; Stadler, W.M.; Teply, B.A.; Picus, J.; Tagawa, S.T.; et al. Randomized phase III trial of gemcitabine and cisplatin with bevacizumab or placebo in patients with advanced urothelial carcinoma: Results of CALGB 90601 (Alliance). J. Clin. Oncol. 2021, 39, 2486–2496. [Google Scholar] [CrossRef]
- Jain, R.K.; Skelton Iv, W.P.; Pond, G.R.; Naqvi, M.; Kim, Y.; Curran, C.; Freeman, D.; Nuzzo, P.V.; Alaiwi, S.A.; Nassar, A.H.; et al. Angiotensin blockade modulates the activity of PD1/L1 inhibitors in metastatic urothelial carcinoma. Clin. Genitourin. Cancer 2021. preprint, S1558-7673(21)00087-2. [Google Scholar] [CrossRef]
- Vlachostergios, P.J.; Faltas, B.M.; Carlo, M.I.; Nassar, A.H.; Alaiwi, S.A.; Sonpavde, G. The emerging landscape of germline variants in urothelial carcinoma: Implications for genetic testing. Cancer Treat. Res. Commun. 2020, 23, 100165. [Google Scholar] [CrossRef]
Characteristic | Patients | |||
---|---|---|---|---|
N | % | |||
Age | Mean ± SD | 72.2 ± 10.5 | ||
Range | 48–90 | |||
Gender | Males | 66 | 90.4 | |
Females | 7 | 9.6 | ||
Smoking | Never | 15 | 20.5 | |
Former | 35 | 48 | ||
Active | 22 | 30 | ||
Alcohol use | Never | 24 | 33.3 | |
Light | 30 | 41.7 | ||
Heavy | 18 | 25 | ||
Tumor Grade | Low | 1 | 17 | 26 |
High | 2 | 21 | 31.8 | |
3 | 28 | 42.2 | ||
Foci number | 1 | 37 | 57 | |
2–4 | 9 | 13.8 | ||
>4 | 19 | 29.2 | ||
Tumor diameter | <2cm | 33 | 54.1 | |
≥2cm | 28 | 45.9 |
SNP | Genotype | Patients | % | Healthy Subjects | % | χ2 Test | p Value | OR (95% CI) | p Value |
---|---|---|---|---|---|---|---|---|---|
AT1R rs5186 | AA | 34 | 46.6 | 24 | 36.4 | ||||
AC | 36 | 48.6 | 38 | 57.6 | |||||
CC | 3 | 4.1 | 4 | 6.1 | 1.573 | 0.456 | |||
A allele | 104 | 71.2 | 86 | 65.2 | |||||
C allele | 42 | 28.8 | 46 | 34.8 | 0.926 | 0.336 | |||
AT2R rs11091046 | CC | 34 | 52.3 | 15 | 22.7 | ||||
CA | 11 | 16.9 | 44 | 66.7 | |||||
AA | 20 | 30.8 | 7 | 10.6 | 33.42 | <0.001 | 0.268 (0.126–0.57) | 0.0006 | |
C allele | 79 | 60.8 | 77 | 57 | |||||
A allele | 51 | 39.2 | 58 | 43 | 10.26 | 0.381 | 0.86 (0.53–1.4) | 0.53 | |
REN rs12750834 | CC | 2 | 2.8 | 3 | 4.5 | ||||
CT | 12 | 16.9 | 24 | 36.4 | |||||
TT | 57 | 80.3 | 39 | 59.1 | 7.324 | 0.007 | 2.8 (1.3–6.05) | 0.008 | |
C allele | 16 | 13.7 | 30 | 22.7 | |||||
T allele | 126 | 86.3 | 102 | 77.3 | 6.4 | 0.011 | 2.3 (1.2–4.48) | 0.01 | |
ANG rs4762 | CC | 55 | 75.3 | 44 | 66.7 | ||||
CT | 18 | 24.7 | 22 | 33.3 | |||||
TT | 0 | 0 | 0 | 0 | 1.27 | 0.259 | |||
C allele | 128 | 87.7 | 110 | 83.3 | |||||
T allele | 18 | 12.3 | 22 | 16.7 | 1.06 | 0.391 | |||
ANG rs699 | TT | 0 | 0 | 4 | 6.1 | ||||
TC | 11 | 15.1 | 46 | 69.7 | |||||
CC | 62 | 84.9 | 16 | 24.2 | 52.84 | <0.001 | 17.6 (7.5–41.35) | <0.001 | |
T allele | 11 | 7.5 | 78 | 59.1 | |||||
C allele | 135 | 92.5 | 54 | 40.9 | 84.7 | <0.001 | 17.7 (8.8–35.9) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samara, M.; Papathanassiou, M.; Farmakioti, I.; Anagnostou, M.; Satra, M.; Mitrakas, L.; Anastasiou, D.; Chasiotis, G.; Christopoulos, A.; Anagnostou, A.; et al. Renin-Angiotensin System Single Nucleotide Polymorphisms Are Associated with Bladder Cancer Risk. Curr. Oncol. 2021, 28, 4702-4708. https://doi.org/10.3390/curroncol28060396
Samara M, Papathanassiou M, Farmakioti I, Anagnostou M, Satra M, Mitrakas L, Anastasiou D, Chasiotis G, Christopoulos A, Anagnostou A, et al. Renin-Angiotensin System Single Nucleotide Polymorphisms Are Associated with Bladder Cancer Risk. Current Oncology. 2021; 28(6):4702-4708. https://doi.org/10.3390/curroncol28060396
Chicago/Turabian StyleSamara, Maria, Maria Papathanassiou, Ioanna Farmakioti, Maria Anagnostou, Maria Satra, Lampros Mitrakas, Dimitrios Anastasiou, Georgios Chasiotis, Agamemnon Christopoulos, Athanasios Anagnostou, and et al. 2021. "Renin-Angiotensin System Single Nucleotide Polymorphisms Are Associated with Bladder Cancer Risk" Current Oncology 28, no. 6: 4702-4708. https://doi.org/10.3390/curroncol28060396
APA StyleSamara, M., Papathanassiou, M., Farmakioti, I., Anagnostou, M., Satra, M., Mitrakas, L., Anastasiou, D., Chasiotis, G., Christopoulos, A., Anagnostou, A., Christodoulou, A., Daponte, A., Ioannou, M., Koukoulis, G., Tzortzis, V., & Vlachostergios, P. J. (2021). Renin-Angiotensin System Single Nucleotide Polymorphisms Are Associated with Bladder Cancer Risk. Current Oncology, 28(6), 4702-4708. https://doi.org/10.3390/curroncol28060396