Cardiovascular In Situ Tissue Engineering
Abstract
Introduction
Approaches to cardiovascular tissue engineering
Cardiovascular in vitro tissue engineering:
The maturation of native-like structures in vitro.
Cardiovascular in situ tissue engineering: Supporting the bodies’ own regenerative capacities.
Experimental in vivo experiences:
From bench to bedside.
Initial clinical experiences:
The first steps to routine use?
The future of cardiovascular in situ tissue engineering: A technology on the cusp of routine clinical use?
Funding / potential competing interests
References
- Weber, B.; Emmert, M.Y.; Hoerstrup, S.P. Stem cells for heart valve regeneration. Swiss Med Wkly. 2012, 16, 142. [Google Scholar]
- Weber, B.; Hoerstrup, S.P. Regnerating heart valves. In Regenerating the Heart: Stem Cells and the Cardiovascular System, 1st ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Yacoub, M.H.; Takkenberg, J.J. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005, 2, 60–61. [Google Scholar] [CrossRef] [PubMed]
- http://www.swissheart.ch/uploads/media/09_05_08_Forschungspreis_ DE_L.pdf.
- Kobayashi, J. Stentless aortic valve replacement: an update. Vasc Health Risk Manag. 2011, 7, 345–351. [Google Scholar] [PubMed]
- Schmidt, D.; Hoerstrup, S.P. Tissue engineered heart valves based on human cells. Swiss Med Wkly. 2006, 136, 618–623. [Google Scholar] [CrossRef]
- Schoen, F.J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008, 118, 1864–1880. [Google Scholar]
- Mol, A.; Bouten, C.V.; Baaijens, F.P.; et al. Review article: Tissue engineering of semilunar heart valves: current status and future developments. J Heart Valve Dis. 2004, 13, 272–280. [Google Scholar]
- Shinoka, T.; Breuer, C.K.; Tanel, R.E.; Zund, G.; Miura, T.; Ma, P.X.; et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995, 60 (Suppl. 6), S513–6. [Google Scholar]
- Hibino, N.; McGillicuddy, E.; Matsumura, G.; Ichihara, Y.; Naito, Y.; Breuer, C.; Shinoka, T. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010, 139, 431–436.e2. [Google Scholar] [CrossRef]
- Dolgin, E. Taking tissue engineering to heart. Nat Med. 2011, 17, 1032–1035. [Google Scholar]
- Vogel, G. Tissue engineering. Mending the youngest hearts. Science. 2011, 333, 1088–1089. [Google Scholar]
- Patterson, J.T.; Gilliland, T.; Maxfield, M.W.; Church, S.; Naito, Y.; Shinoka, T.; et al. Regen Med. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med. 2012, 7, 409–419. [Google Scholar]
- Hoerstrup, S.P.; Sodian, R.; Daebritz, S.; et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000, 102 (Suppl. 3), III44–9. [Google Scholar] [PubMed]
- Matsumura, G.; Miyagawa-Tomita, S.; Shin’oka, T.; Ikada, Y.; Kurosawa, H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation. 2003, 108, 1729–1734. [Google Scholar] [PubMed]
- Roh, J.D.; Sawh-Martinez, R.; Brennan, M.P.; Jay, S.M.; Devine, L.; Rao, D.A.; et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 2010, 107, 4669–4674. [Google Scholar]
- Shin’oka, T.; Matsumura, G.; Hibino, N.; Naito, Y.; Watanabe, M.; Konuma, T.; et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005, 129, 1330–1338. [Google Scholar] [PubMed]
- Weber, B.; Scherman, J.; Emmert, M.Y.; Gruenenfelder, J.; Verbeek, R.; Bracher, M.; et al. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur Heart J. 2011, 32, 2830–2840. [Google Scholar] [CrossRef]
- Kadner, A.; Hoerstrup, S.P.; Zund, G.; et al. A new source for cardiovascular tissue engineer-ing: human bone marrow stromal cells. Eur J Cardiothorac Surg. 2002, 21, 1055–60. [Google Scholar]
- Hoerstrup, S.P.; Kadner, A.; Melnitchouk, S.; et al. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation. 2002, 106 (Suppl. 1), I143–I150. [Google Scholar]
- Sutherland, F.W.; Perry, T.E.; Yu, Y.; et al. From stem cells to viable autologous semilunar heart valve. Circulation 2005, 111, 2783–2791. [Google Scholar] [CrossRef]
- Schmidt, D.; Dijkman, P.E.; Driessen-Mol, A.; Stenger, R.; Mariani, C.; Puolakka, A.; et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 2010, 56, 510–520. [Google Scholar]
- Jux, C.; Bertram, H.; Wohlsein, P.; Brügmann, M.; Wüboldt, P.; Fink, C.; et al. Experimental ASD closure using autologous cell-seeded interventional closure devices. Cardiovasc Res. 2002, 53, 181–191. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weber, B.; Emmert, M.Y.; Behr, L.; Schoenauer, R.; Brokopp, C.; Drögemüller, C.; et al. Prenatally engineered autologous amniotic fluid stem cellbased heart valves in the fetal circulation. Biomaterials. 2012, 33, 4031–4043. [Google Scholar][Green Version]
- Brennan, M.P.; Dardik, A.; Hibino, N.; Roh, J.D.; Nelson, G.N.; Papademitris, X.; et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 2008, 248, 370–377. [Google Scholar][Green Version]
- Hoerstrup, S.P.; Cummings Mrcs, I.; Lachat, M.; Schoen, F.J.; Jenni, R.; Leschka, S.; et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation. 2006, 114 (Suppl. 1), I159–I166. [Google Scholar] [CrossRef]
- Emmert, M.Y.; Weber, B.; Wolint, P.; Behr, L.; Sammut, S.; Frauenfelder, T.; et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc Interv. 2012, 5, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Emmert, M.Y.; Weber, B.; Behr, L.; Frauenfelder, T.; Brokopp, C.E.; Grünenfelder, J.; et al. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc Interv. 2011, 4, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Weber, B. Fetal cell-based cardiovascular tissue engineered constructs for minimally invasive delivery. Ph.D. Dissertation, Faculty of Science, University of Zurich, Switzerland, 2012. [Google Scholar]
© 2012 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Weber, B.; Falk, V.; Hoerstrup, S.P. Cardiovascular In Situ Tissue Engineering. Cardiovasc. Med. 2012, 15, 339. https://doi.org/10.4414/cvm.2012.00134
Weber B, Falk V, Hoerstrup SP. Cardiovascular In Situ Tissue Engineering. Cardiovascular Medicine. 2012; 15(12):339. https://doi.org/10.4414/cvm.2012.00134
Chicago/Turabian StyleWeber, Benedikt, Volkmar Falk, and Simon P. Hoerstrup. 2012. "Cardiovascular In Situ Tissue Engineering" Cardiovascular Medicine 15, no. 12: 339. https://doi.org/10.4414/cvm.2012.00134
APA StyleWeber, B., Falk, V., & Hoerstrup, S. P. (2012). Cardiovascular In Situ Tissue Engineering. Cardiovascular Medicine, 15(12), 339. https://doi.org/10.4414/cvm.2012.00134