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Abstract: This research aims to explore the spatial pattern of vulnerability and resilience to natural 
hazards in northeastern Taiwan. We apply the spatially explicit resilience-vulnerability model 
(SERV) to quantify the vulnerability and resilience to natural hazards, including flood and debris 
flow events, which are the most common natural hazards in our case study area due to the topog-
raphy and precipitation features. In order to provide a concise result, we apply the principal com-
ponent analysis (PCA) to aggregate the correlated variables. Moreover, we use the spatial autocor-
relation analysis to analyze the spatial pattern and spatial difference. We also adopt the geograph-
ically weighted regression (GWR) to validate the effectiveness of SERV. The result of GWR shows 
that SERV is valid and unbiased. Moreover, the result of spatial autocorrelation analysis shows that 
the mountain areas are extremely vulnerable and lack enough resilience. In contrast, the urban re-
gions in plain areas show low vulnerability and high resilience. The spatial difference between the 
mountain and plain areas is significant. The topography is the most significant factor for the spatial 
difference. The high elevation and steep slopes in mountain areas are significant obstacles for soci-
oeconomic development. This situation causes consequences of high vulnerability and low resili-
ence. The other regions, the urban regions in the plain areas, have favorable topography for socio-
economic development. Eventually, it forms a scenario of low vulnerability and high resilience. 

Keywords: vulnerability; resilience; spatially explicit resilience-vulnerability model (SERV); spatial 
autocorrelation analysis; geographically weighted regression (GWR); spatial difference 
 

1. Introduction 
The concept of vulnerability and resilience to natural hazards has been applied in the 

field of disaster management. Multiple models and indicators have been developed and 
applied to investigate the vulnerability and resilience to natural hazards [1,2]. However, 
most of the models and indicators neglect the spatial difference and spatial pattern. There-
fore, the result of most of the studies cannot offer a spatial viewpoint. Spatial differences 
and spatial patterns are unneglectable factors because human is one of the important sub-
jects of disaster events. Characteristics of humans, such as age, wealth, and occupation, 
are highly variable spatially. Consequently, humans create a spatial difference to affect 
the vulnerability and resilience to natural hazards [3,4]. The spatial difference signifi-
cantly influences the vulnerability and resilience to natural hazards. Moreover, environ-
mental factors, such as topography, have a significant influence on humans and spatial 
differences [4]. 

The vulnerability to natural hazards means the potential for loss when facing natural 
hazards [5,6]. It is created by exposure to stresses associated with environmental and so-
cial fabrics [6,7]. Environmental fabrics, such as the elevation and slope, create biophysical 
vulnerability. Social fabrics, such as experience and socioeconomic conditions, generate 
social vulnerability. Recently study shows that the essences of vulnerability are far more 
complex and cannot be limited to the identification of deficiencies [8]. Although it should 
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not be limited to a certain identification, there still exists some consensus of vulnerability. 
In general, it includes four key factors, which are exposure, susceptibility, lack of resili-
ence or response, and hazard [8–14]. Moreover, vulnerability is also involved in six di-
mensions, which are social, economic, physical, cultural, environmental, and institutional 
[8–14]. In our research, we integrate the social and economic dimensions and regard it as 
the social aspect of vulnerability [6,7]. The concept of social vulnerability is highly variable 
and changing from place to place and over time since it is an interdisciplinary topic with 
the characteristic of multidimensional and highly dynamic [15–17]. In short, social vulner-
ability topically refers to certain pre-existing conditions of some people, groups and, and 
organizations when facing environmental stress [18–21]. These pre-existing conditions are 
a kind of incapability, which will reduce the preparedness and jeopardize them when fac-
ing the impact brought by environmental disturbance [21–23]. As for the resilience to nat-
ural hazards, the meaning is also still under discussion. Studies show that even resilience 
to natural hazards still under debate; it contains two major characteristics, which are cop-
ing and adaptation [24]. These two characteristics have very different essences. The coping 
focuses on the current situation of the system and institution while concentrating on con-
stantly learning for a longer period [25,26]. Take the relationship between resilience, vul-
nerability, and adaptive capacity as an example. Different scholars have different opinions 
on the linkages between resilience, vulnerability, and adaptive capacity [27,28]. For exam-
ple, some of the researchers regard vulnerability and resilience as different but link com-
ponents [29]. Simultaneously, another scholar views resilience as a part of vulnerability 
[30]. Moreover, some studies define the vulnerability and the adaptive capacity as sepa-
rate but link components within the resilience [31]. 

Generally speaking, we can regard resilience to natural hazards as a “bouncing-for-
ward” trajectory [9]. This trajectory not only focuses on recovery but also learning through 
the experience of natural hazard events [32,33]. Under the circumstance of climate change, 
merely recovery is not enough because the intensity and frequency of natural hazards will 
continuously increase. In other words, if we take the resilience to natural hazards as a 
“bouncing-back” trajectory, it will lead the situation into a devastating outcome in the 
long run [34,35]. Consequently, in our research, we address the “bouncing-forward” con-
cept as the core concept. 

Our research defines adaptive capacity as an element of vulnerability and resilience 
to natural hazards simultaneously. Because according to the disaster resilience of place 
(DROP) model, the resilience to natural hazards also includes the concept of adaptive ca-
pacity [29]. The system will attempt to adapt and absorb the impact with adaptive capacity 
when it encounters natural hazards [29]. According to another model, the hazards-of-
place model, the vulnerability to natural hazards comprises adaptive capacity. The resili-
ence to natural hazards also contains the positive elements that will decrease social vul-
nerability [5,36–38]. Generally speaking, both vulnerability and resilience to natural haz-
ards are significantly related to adaptive capacity. 

The approach to inspecting the vulnerability and resilience to natural hazards can be 
separated into several types according to the method, spatial scale, and aim [39]. We aim 
to explore the spatial pattern and difference between vulnerability and resilience to natu-
ral hazards at the community scale. As a result, a top-down and quantified approach will 
be ideal for this research. The spatially explicit resilience-vulnerability (SERV) model is 
highly modifiable and flexible [40]. The SERV model allows us to quantify vulnerability 
and resilience for further spatial analysis. We will also use the principal component anal-
ysis (PCA) to extract the important factors. Then, we will apply the spatial autocorrelation 
analysis, which is one of the most idealist statistical approaches, to detect the spatial dis-
tribution pattern. Several studies had applied this approach [31,41]. Through the distribu-
tion pattern of vulnerability and resilience to natural hazards, we can analyze the spatial 
difference. For example, under different topography and socioeconomic condition, the 
vulnerability and resilience to natural hazards could change spatially. In addition, the 
spatial relationship between vulnerability and resilience to natural hazards could also be 
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different. It is essential to validate whether the result of the SERV model can reflect the 
ground truth. Therefore, we apply the geographically weighted regression (GWR) to ver-
ify the SERV according to the previous studies [31,42]. 

2. Materials and Methods 
2.1. Yilan County 

Our case study area is located in northeastern Taiwan, which comprises mountain 
and plain areas (Figure 1). The elevation of the mountain areas rises up to 3589 m with a 
very steep slope. Simultaneously, the plain areas are the largest in eastern Taiwan. Yilan 
County is also the most prosperous county in eastern Taiwan due to the close connectivity 
with Taipei City. Moreover, the plain areas in Yilan County can be separated into urban 
and rural regions. The urban regions lay in the center of the plain areas. The industrial 
structure of the urban regions is mainly the tertiary industrial sector. The industrial struc-
tures of the rural and the mountain areas are mostly the primary industrial sector. Yilan 
County is also extremely vulnerable to natural hazards. Because of the location and dis-
tribution of mountain and plain areas, Yilan County is wide-open to typhoons and tropi-
cal cyclones coming from the Pacific Ocean. The number of typhoons and tropical cy-
clones that strike Taiwan is 3 to 4 annually. Over 30% of them will directly influence Yilan 
County. Furthermore, climate change enhances the intensity and frequency of typhoons 
and tropical cyclones. This situation increases the amount of precipitation dramatically 
and the probability of flood and debris flow events in Yilan County. 

 
Figure 1. Case study area. 

2.2. SERV, Variables Selection, and PCA 
The SERV model is an integrated model, which provides us a framework to incorpo-

rate vulnerability and resilience together. It composes three main components, which are 
exposure, sensitivity, and adaptive capacity [3]. Exposure can be regarded as a certain unit 
that falls within the physical scope of hazard events, which affects not only human sys-
tems and social systems but also specific resources and practices [24]. That is, exposure 
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involves spatial and temporal patterns eventually [24]. Sensitivity stands for social vul-
nerability. Adaptive capacity represents part of resilience. This model focuses on the scale, 
especially the sub-county level. The following equation demonstrates the relationship be-
tween the three main components. 

SERV = [E + S] − AC (1)

E: Exposure, S: Sensitivity, AC: Adaptive Capacity 
The variables of SERV can be divided into socioeconomic data and the potential of 

natural hazards. We obtained the socioeconomic data from the National Geographic In-
formation System (NGIS) Socioeconomic Database. The potential of natural hazards was 
inquired from the National Science and Technology Center for Disaster Reduction 
(NCDR) and the Soil and Water Conservation Bureau (SWCB). According to the hazards-
of-place model, the vulnerability to natural hazards is the combination of physical (expo-
sure) and social (sensitivity) vulnerability [6]. Consequently, we can regard the [E + S] part 
as the vulnerability to natural hazards. 

We standardized all the variables by the following equation because of the different 
measurements of all data. This approach can alter the various measurements into the same 
scale and allows us for further analysis. After standardizing the variables, we classified 
the values into five categories, which are very high (>1.5 SD), high (1.5 SD–0.5 SD), me-
dium (0.5 SD–−0.5 SD), low (−0.5 SD–−1.5 SD), and very low (<−1.5 SD). 

Standardization = (X − തܺ)/ߪ௑ (2)

X: The value of the variable, തܺ: The mean value of the variables, ߪ௑: The standard 
deviation of the variable 

The most common natural hazards in our case study area are flood and debris flow. 
In order to properly reflect the authentic exposure, we applied the potential of these two 
natural hazards inquired from the NCDR and SWCB databases. After the standardization, 
we combined the potential of these two natural hazards together. Figure 2 demonstrates 
the spatial distribution of the potential of flood and debris flow hazards. 

Subsequently, we selected 12 socioeconomic variables of sensitivity according to the 
previous research. Table 1 illustrates the socioeconomic variables we adopted. Population 
density is one of the most cited variables. The population density can depict potential 
exposure to natural hazards under a certain area [38]. Consequently, scholars consider 
population density the most effective and general empirical indicators for evaluating so-
cial vulnerability [6,43,44]. Studies show the population density is highly correlated to 
social vulnerability and might be one essential factor for social vulnerability since the 
higher population density represents a higher requirement during the environmental dis-
turbance [45–47]. Some previous research also adopts sex as an important variable [48,49]. 
Research shows the standardized female population is a significant variable for exploring 
social vulnerability due to sex inequalities, social responsibility, and limited access to re-
sources [50]. Financial ability is highly related to the ability to cope with natural hazards 
and evacuation [51]. Generally, insufficient financial ability equal to the inadequate ability 
to cope with natural hazards [51–53]. Accordingly, the middle/low-income (MLI) house-
hold is also an important factor [40,52,53]. Moreover, the ratio of dependency has been 
regarded as a crucial variable. The dependency ratio represents the proportion of the in-
capacitated population who depend on others [37]. In other words, the dependency ratio 
means the ratio of population that lacks the ability to facing natural hazards [54]. In addi-
tion, the language and culture barriers are also crucial when encountering natural hazards 
since these abilities exceptionally important for information inquire [40,55]. Conse-
quently, ethnicity is also a significant variable [56]. Therefore, we adopted the indigenous 
population ratio and foreign residents and laborers to stand for the variables of and eth-
nicity. According to the previous research conducted in Sarasota County, U.S., the elderly 
person living alone is extremely vulnerable to natural hazards [51]. Therefore, we fol-
lowed this concept and took the solitary elderly population as a variable. The physically 
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and mentally challenged population demands extra resources for their special needs 
[44,57]. Simultaneously, insufficient mobility will also augment the difficulty of evacua-
tion and increase the probability of encountering the obstacle [58,59]. Age is one of the 
most effective and general variables for social vulnerability, similar to population density 
[5,60]. The children < 5 years old, elderly > 65 years old, and the aging index all have been 
widely applied in previous research [57,61,62]. These factors can represent the population 
proportion of lacking financial and information resources. Education level significantly 
connects to the ability of information understanding. It also has a direct effect on the po-
tential resources for coping with natural hazards [21,44,48,52,53,61]. Thus, we adopted the 
population without a high school diploma as a variable. 

 

 
Figure 2. The spatial distribution of exposure to natural hazards. 

Table 1. Indicators and variables of sensitivity. 

Indicators and Variables of Sensitivity Moran’s I p-Value 
Population Density 0.634 <0.05 

Standardized Female Population  0.582 <0.05 
Middle/Low-income (MLI) Household 0.488 <0.05 

Dependency Ratio 0.420 <0.05 
Foreign Residents and Laborers 0.244 <0.05 

Indigenous Population Ratio 0.650 <0.05 
Solitary Elderly Population 0.197 <0.05 

Physically and Mentally Challenged Population 0.198 <0.05 
Children < 5 Years Old 0.433 <0.05 
Elderly > 65 Years Old 0.337 <0.05 

Aging Index 0.107 <0.05 
Population without High School Diploma 0.706 <0.05 
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The adaptive capacity component in SERV represents part of resilience, which is also 
aggregated by socioeconomic variables. We selected 12 most cited variables according to 
the previous studies and demonstrated in Table 2. The financial resource is an essential 
variable for adaptive capacity [63]. Income is a direct variable that can measure financial 
ability [64]. Therefore, our research took the annual income as the variable. According to 
previous research, adaptive capacity is significantly related to learning and acquiring in-
formation [10]. Several studies take the population with a college diploma as a variable 
[65,66]. As a result, we adopted the population with a college diploma as a variable. More-
over, previous research shows that the working population can attract political support 
and secure economic resources for recovery [63,65]. In other words, the working popula-
tion has a positive influence on resilience and adaptive capacity. Subsequently, political 
engagement has a positive relationship with economic recovery [67]. Our study applied 
the voter to represent political engagement. Furthermore, community engagement repre-
sents the social bonds and the connections within the community. Community engage-
ment also has a positive correlation to self-help when facing natural hazards [67]. The 
number of social-civic groups is significantly related to community engagement and rel-
evant to adaptive capacity [44,68]. Moreover, studies regard the capacity of emergency 
shelters as an element of resilience and adaptive capacity [27,65,69,70]. Therefore, we 
adopted the capacity of emergency shelters as the variable. Numerous studies suggest 
that medical resources and capacity are essential for resilience and adaptive capacity 
[27,40,53,65,71,72]. Accordingly, we adopted four different variables. These variables are 
the number of healthcare facilities, number of licensed medical personnel, number of hos-
pital beds, and number of pharmacies. Moreover, studies show that emergency services 
and ambulances are also crucial variables [29,65]. Undoubtedly, emergency response is a 
central element for adaptive capacity. Consequently, we adopted the number of emer-
gency service stations and the number of ambulances as our variables. 

Table 2. Indicators and variables of adaptive capacity. 

Indicators and Variables of Adaptive Capacity Moran’s I p-Value 
Annual Income 0.365 <0.05 

Population with a College Diploma 0.556 <0.05 
Working Population 0.277 <0.05 

Voter 0.388 <0.05 
Number of Social-Civic Groups 0.124 <0.05 
Capacity of Emergency Shelters 0.063 0.10 
Number of Healthcare Facilities 0.407 <0.05 

Number of Licensed Medical Personnel 0.017 0.41 
Number of Hospital Beds −0.013 0.81 

Number of Pharmacies 0.283 <0.05 
Number of Emergency Services Stations −0.068 0.12 

Number of Ambulances −0.018 0.69 

The variables in this research have multicollinearity, which would create redundancy 
for our analysis. Therefore, we used PCA to aggregate the correlated variables. We used 
two kinds of statistical tests to examine the result of PCA. The first kind is the Kaiser-
Meyer-Olkin (KMO) Test. The value of KMO can evaluate the correlations between vari-
ables. The acceptable threshold is 0.6. Subsequently, Bartlett’s test of sphericity can exam-
ine whether a few principal components can represent the redundancy of the dataset. The 
threshold of this test is whether the p-value less than 0.05 or not. After examining the result 
of PCA, there are two approaches to determine the number of principal components. One 
of the approaches is according to the starting point of the curve’s elbow in the scree plot. 
The other one is according to the eigenvalue. We applied the Varimax rotation with Kaiser 
normalization to extract the principal component, which eigenvalue is larger than 1. 
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2.3. Spatial Pattern Analysis and GWR 
In order to explore the spatial difference, we must first detect the spatial pattern. 

Therefore, we apply two different scales of spatial pattern analysis approach. The global 
Moran’s I can detect the spatial pattern of vulnerability and resilience. According to the 
result of Moran’s I, the distribution pattern will be classified into random (Moran’s I ≅ 
0), clustered (Moran’s I > 0), or dispersed (Moran’s I < 0). Equation (3) illustrates how the 
global Moran’s I was calculated [73,74]. 

Moran’s I = ே
∑ ∑ ௐij

ಿ
ೕసభ

ಿ
೔సభ

×
∑ ∑ ௐij(ಿ

ೕసభ
ಿ
೔సభ ௑೔ି௑ത)(௑ೕି௑ത)

∑ (௑೔ି௑ത)మಿ
೔సభ

 (3)

After detecting the distribution pattern through the global Moran’s I, we can visual-
ize the pattern by a local indicator of spatial autocorrelation (LISA). The results of LISA 
can distinguish four different patterns. High-High (H-H) clustered means all the spatial 
units of a specific area have a high value. In contrast, the Low-Low (L-L) clustered repre-
sents all the units in a particular area that has a low value. The High-Low and Low-High 
outliers stand for the situation in which a high-value unit surround by low-value units 
and a low-value unit surround by high-value units, respectively. Equation (4) demon-
strates how LISA was calculated [75]. 

LISA = (௑೔ି௑ത)
∑ (௑೔ି௑ത)మಿ

೔సభ
∑ ܹij൫ ௝ܺ − തܺ൯ே

௝ୀଵ  (4)

It is crucial to ensure the SERV can reflect the ground truth. Therefore, we used the 
Spatial Multivariable Regression and the authentic natural hazard events to validate the 
SERV. GWR is one of the modified models of spatial ordinary least squares (OLS). The 
original OLS regards the entire area as a single unit [76]. However, the spatial difference 
among the spatial units is unneglectable. The spatial difference will create a spatial non-
stationary that will bias the result [77]. The GWR can solve the spatial nonstationary by 
creating several kernels with different bandwidths in the study area [54]. Equations (5)–
(8) will illustrate how GWR was calculated [78,79]. 

GWR: ݕ௜(ݑ) = (ݑ)መ଴௜ߚ + (ݑ)መଵ௜ߚ ଵܺ௜ + ଶ௜ܺ(ݑ)መଶ௜ߚ + ଷ௜ܺ(ݑ)መଷ௜ߚ + ⋯ + ௠௜ܺ(ݑ)መ௠௜ߚ  (5)

(ݑ)መ௠௜ߚ = (6) ݕ(ݑ)ଵ்ܹܺି(ܺ(ݑ)்ܹܺ) 

(ݑ)ܹ = ൦

(ݑ)ଵݓ 0 0 0
0 (ݑ)ଶݓ 0 0
0
0

0
0

⋱ 0
0 (ݑ)௡ݓ

൪ (7)

(ݑ)௡ݓ = ݁ି଴.ହ൤ௗ೙(௨)
௛ ൨

మ

 (8)

3. Results 
3.1. Spatial Pattern of SERV 

The SERV and its components (exposure, sensitivity, and adaptive capacity) are ag-
gregated by several variables. In order to provide a more comprehensive explanation, we 
have to analyze the spatial pattern of all variables. We notice that most of the variables are 
correlated. Therefore, we apply the PCA to reduce the redundancy. The effectiveness test 
of the PCA is demonstrated in Table 3. The result of the PCA is acceptable according to 
the KMO and Bartlett’s test of sphericity. Both sensitivity and adaptive capacity are even-
tually aggregated into four principal components by PCA. 

In the sensitivity part (Table 4), the principal component (a) is made up of the popu-
lation without a high school diploma, aging index, standardized female population, soli-
tary elderly population, physically and mentally challenged population, and elderly > 65 
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years old. The principal component (b) of the sensitivity contains the indigenous popula-
tion ratio, MLI households, and children < 5 years old. The principal component (c) in-
cludes population density and dependency ratio. The principal component (d) of the sen-
sitivity includes the foreign residents and laborers only. 

Regarding the adaptive capacity part (Table 4), the principal component (e) composes 
of annual income, voter, number of social-civic groups, population with a college di-
ploma, and working population. The principal component (f) of adaptive capacity in-
cludes the capacity of emergency shelters, the number of healthcare facilities, number of 
pharmacies. The principal component (g) of adaptive capacity consists of the number of 
licensed medical personnel and the number of hospital beds. The principal component (h) 
of adaptive capacity comprises the number of ambulances and the number of emergency 
service stations. The Moran’s I of most principal components are larger than 0. In addition, 
most of the p-value reach a statistically significant threshold. In other words, the pattern 
of most variables is a statistically significant cluster. 

Table 3. Effectiveness test of PCA. 

Component KMO 
p-Value of Bartlett’s 

Test of Sphericity 
Total Variables 

Explained 
Sensitivity 0.647 <0.05 77% 

Adaptive capacity 0.622 <0.05 65% 

Table 4. Spatial autocorrelation result of the principal components. 

Sensitivity 
Component Moran’s I p-Value Domain 

Principal component (a) 0.335 <0.05 Demographic 
Principal component (b) 0.584 <0.05 Economic 
Principal component (c) 0.594 <0.05 Social 
Principal component (d) 0.224 <0.05 Foreign Labor 

Adaptive capacity 
Component Moran’s I p-Value Domain 

Principal component (e) 0.563 <0.05 Socioeconomic 
Principal component (f) 0.286 <0.05 Medical 
Principal component (g) 0.002 0.83 Institutional 
Principal component (h) −0.052 0.18 Infrastructure 

Figure 3 illustrates the spatial cluster for each principal component. In the sensitivity 
part, L-L clusters are mostly located in the plain areas for components (a), (b), and (c), 
while they are located in the mountain areas for component (d). On the contrary, H-H 
clusters are mainly located in the coastal harbor areas for components (a) and (d), and 
they are also located in the mountain areas for component (b). This result reveals that the 
coastal harbor areas have higher sensitivity in demographic and foreign labor domains, 
but the mountain areas have relatively high sensitivity in the economic domain. The prin-
cipal component (d) represents nursing, fishery, and maritime laborers. It shows L-L clus-
ters in mountain areas and H-H clusters in coastal areas for component (d). One of the 
reasons is that most of the fishery and maritime laborers congregate in the surrounding 
areas of north Toucheng and south Su’ao Harbors. Nevertheless, foreign nursing laborers 
distribute dispersedly throughout the entire Yilan County. As a result, the foreign nursing 
labor creates no spatial cluster. 
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Figure 3. LISA results of all principal components. 
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In the adaptive capacity part (Figure 3), we notice that the urban regions in the plain 
areas have H-H clusters for components (e) and (f), which represent the socioeconomic 
and medical domains, respectively. However, the mountain areas show the opposite re-
sult. The mountain areas have lower socioeconomic and medical domains of adaptive ca-
pacities. In addition, regarding the principal component (g) and (h), both Moran’s I and 
LISA show no significant spatial cluster. This means the distributions of the institutional 
and infrastructure domains are random. 

We aggregate principal components into sensitivity and adaptive capacity, respec-
tively. Subsequently, we apply Moran’s I and LISA to detect the spatial pattern. Table 5 
demonstrates the result of global spatial autocorrelation analysis. The results show that 
exposure, sensitivity, adaptive capacity, and SERV have significant clusters. Additionally, 
all p-values indicate the cluster is statistically significant. Then, we use LISA to visualize 
the location of clusters in Figure 4. 

(a) Exposure (c) Adaptive Capacity  

  
(b) Sensitivity (d) SERV 

 

 
Figure 4. Results of LISA. 
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Table 5. Spatial autocorrelation result of the exposure, sensitivity, adaptive capacity, and SERV. 

Component Moran’s I p-value 
Exposure (E) 0.477 <0.05 
Sensitivity (S) 0.584 <0.05 

Adaptive Capacity (AC) 0.406 <0.05 
SERV ([E+S]-AC) 0.414 <0.05 

Figure 4a shows the spatial clusters of the exposure (physical vulnerability). There 
are two H-H clusters in the plain areas. The elevation is one of the main reasons. The 
elevation of the plain areas is lower in Yilan County. Moreover, a major river flows 
through the center of the plain areas. Most of the runoff will gather in the plain areas 
before entering the Pacific Ocean. This situation leads the plain areas to become higher 
exposed to flood hazards. For another area, the center of the mountain areas is also H-H 
cluster. Because of the high elevation and steep slope in the mountain areas, the intensive 
precipitation during the typhoon season often triggers serious soil erosion and sediment 
loads. Consequently, mountain areas have high exposure to debris flow hazards. Moreo-
ver, the rural regions and the part of the southern coastal areas are the L-L clusters of the 
exposure. The rural regions lay between the mountain areas and the plain areas. These 
areas have relatively mild elevation and gentle slopes. Therefore, both the potentials of 
flood and debris flow are lower. 

Figure 4b,c demonstrate the clusters of sensitivity (social vulnerability) and adaptive 
capacity (resilience). For the sensitivity, most of the H-H clusters gather in mountain areas 
and coastal harbors. Most of the plain areas are the L-L clusters of sensitivity. As for the 
adaptive capacity, mountain areas gather most of the L-L clusters of adaptive capacity. In 
the center of the plain areas, urban regions show H-H clusters of the adaptive capacity. 
Subsequently, Figure 4d demonstrates the spatial distribution pattern of the SERV. The 
mountain areas are H-H clusters of SERV. In contrast, the urban regions in the plain areas 
are the L-L clusters of the SERV. The results of SERV reveal that there are higher exposure 
and sensitivity in mountain areas with lower adaptive capacity. In contrast, the adaptive 
capacity in urban regions is higher, but the exposure and sensitivity are relatively low. 
According to the result of LISA, it is obvious that there is a significant difference between 
mountain and plain areas in Yilan County. 

3.2. GWR 
In order to understand the effectiveness of the SERV model, we apply the GWR to 

analyze this result. The authentic natural hazards, including flood and debris flow events 
extracted from the national database, are used to validate the SERV. Figure 5a shows the 
result of the standardized value of GWR prediction to natural hazards. We compare the 
spatial distributions of the predicted value in Figure 5a and real natural hazard events in 
Figure 5b to examine whether the SERV can reflect the ground truth. Both spatial distri-
butions are mostly identical to each other. In addition, based on the result of GWR in Table 
6, the R2 and adjusted R2 are 0.696 and 0.501, respectively. This result shows that the SERV 
we built is acceptable. 
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Figure 5. The standardized value of GWR prediction and real natural hazard events. 

Although it seems the SERV has the acceptable explanatory ability, the evaluation 
we had mentioned above fails to prove the SERV is unbiased. The spatial pattern of the 
standardized residual is an indicator for evaluating the model bias. Therefore, we apply 
the global spatial autocorrelation to examine the distribution pattern of standardized re-
siduals. According to Table 6, the Moran’s I of the standardized residuals is -0.055. Simul-
taneously, the p-value is 0.194, which does not reach a statistically significant threshold. 
The result of global spatial autocorrelation shows that the distribution pattern of the 
standardized residuals is random. In other words, the SERV we built is unbiased and has 
acceptable explanatory ability and effectiveness. 

Table 6. Summary of GWR. 

Neighbors R2 Adjusted R2 Moran’s I of StdResid The p-value of Moran’s I 
31 0.696 0.501 −0.055 0.194 

4. Discussion 
Our research aims to explore the spatial relationship between vulnerability and resil-

ience to natural hazards, including flood and debris flow events. In order to achieve the 
goal, we apply the SERV model. According to the R2 and adjusted R2, the SERV is valid. 
Through the spatial distribution of the standardized residual of GWR, the SERV is unbi-
ased. Subsequently, the PCA generates four principal components for sensitivity and 
adaptive capacity, respectively. The results of PCA and LISA show that mountain areas 
are higher sensitivity and lower adaptive capacity. Mountain areas are H-H clusters of 
component (b) and L-L clusters of components (e) and (f). This spatial distribution indi-
cates that mountain areas have relatively inferior development in the socioeconomic do-
main. The results of PCA and LISA indicate that the urban regions in plain areas are lower 
sensitivity and higher adaptive capacity. Urban regions in plain areas are L-L clusters of 
component (a), (b), and (c) and H-H clusters of components (e) and (f). These spatial pat-
terns indicate that urban regions in plain areas have relatively favorable socioeconomic 
development. The results of PCA and LISA indicate that the situation in the urban regions 
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is the opposite situation to mountain areas. A significant spatial difference exists between 
mountain and plain areas. 

According to previous studies, the topography is one significant factor affecting the 
spatial distribution of vulnerability and resilience to natural hazards [4,27,37,66]. Regard-
ing the vulnerability, the previous study indicates that the mountain areas have higher 
sensitivity than plain areas [4]. The plain areas have better socioeconomic development 
than mountain areas [4]. The mountain areas have inferior socioeconomic development 
[37]. Regarding the adaptive capacity, the previous research has also shown a similar re-
sult [8]. The majority of states in the mountains have the lowest resilience and adaptive 
capacity [8,66]. Indeed, situations of the different countries might not be similar to each 
other, and the development level might have significant differences from place to place 
and from time to time. Thus, it shows that the topography has influenced the spatial pattern. 

The distribution patterns of the component (e) and (f) are remarkable. The compo-
nent (e) and (f) in our research represent the socioeconomic and medical domains of adap-
tive capacity. These distribution patterns should follow the concept of “equally distrib-
ute”, which allows the civilian to have an equal chance to access these resources. Never-
theless, the spatial distributions of components (e) and (f) fail to focus on the mountain 
areas where most needed. Consequently, these resources cannot equally support these 
areas with inferior socioeconomic development. This means those vulnerable areas do not 
obtain enough resources to mitigate their disadvantages. In other words, the distribution 
of socioeconomic and medical aspects of adaptive capacity somehow jeopardizes the 
mountain areas instead of helping. 

In summary, we discover that mountain areas have a higher sensitivity and lower 
adaptive capacity. For another part of our case study area, plain areas are the opposite 
situation. The plain areas have a lower sensitivity and higher adaptive capacity. The une-
qual distributions of socioeconomic advantages and healthcare resources increase the vul-
nerability of the mountain areas. 

5. Conclusions 
Compared to other administrative areas in eastern Taiwan, our case study area has 

more opportunities for socioeconomic development because it is closely adjacent to Taipei 
City. Nevertheless, the development of Yilan County is significantly uneven. The result 
of the spatial autocorrelation analysis shows a significant difference between the plain and 
mountain areas. The plain areas have better socioeconomic development than the moun-
tain areas. One of the most noticeable spatial differences is the distinct topography condi-
tions. The topography plays an essential role in the distribution of exposure, sensitivity, 
and adaptive capacity. Most of the traffic nodes gather only in plain areas. The mountain 
areas have low connectivity to main traffic nodes. The topography becomes an obstacle 
for people to travel into mountain areas. Another drawback created by the topography is 
the higher cost for industrial development. The steep slopes in the mountain areas will 
undoubtedly augment the difficulty and cost. All these disadvantages make the mountain 
areas into higher sensitivity and lower adaptive capacity. Moreover, the mountain areas 
also have high exposure to the potential of debris flows. Accordingly, mountain areas are 
extremely vulnerable. In contrast, plain areas have relatively favorable conditions for liv-
ing and socioeconomic development. The advantage leads the plain areas into a lower 
vulnerability and higher adaptive capacity. Despite the fact that parts of the plain areas 
have higher exposure to the potential of floods, their higher adaptive capacity can com-
pensate for this disadvantage. Therefore, situations between mountain and plain areas are 
significantly different. Although there is a significant spatial difference in our case study 
area, some previous studies indicate a different result. It shows that not all the urban re-
gions have a higher level of adaptive capacity, and not all rural regions have a lower level 
of adaptive capacity. The domains of adaptive capacity are various in different places. 
Urban regions dominate the economy; however, the rural regions still have other ad-
vantages such as social bonds and community engagement. According to previous studies 
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and our research, topography is an important factor. The topography highly affects the 
spatial distribution of vulnerability and resilience to natural hazards. The result shows 
that the situation varies from place to place. 
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