Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 2014, 119, 5949–5965. [Google Scholar] [CrossRef]
- Zoulia, I.; Santamouris, M.; Dimoudi, A. Monitoring the effect of urban green areas on the heat island in Athens. Environ. Monit. Assess. 2009, 156, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef]
- Swamy, G.; Nagendra, S.M.S.; Schlink, U. Urban heat island (UHI) influence on secondary pollutant formation in a tropical humid environment. J. Air Waste Manag. Assoc. 2017, 67, 1080–1091. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Guhathakurta, S.; Gober, P. The impact of the phoenix urban heat island on residential water use. J. Am. Plan. Assoc. 2007, 73, 317–329. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate 2016, 4, 42. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An observational and modeling study of characteristics of urban heat island and boundary layer structures in beijing. J. Appl. Meteor. Climatol. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R.; Stefano, N.; Partridge, S.; Quesenberry, S.; Robinson, D.A. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 2003, 75, 29–42. [Google Scholar] [CrossRef]
- Merlone, A.; Al-Dashti, H.; Faisal, N.; Cerveny, R.S.; AlSarmi, S.; Bessemoulin, P.; Brunet, M.; Driouech, F.; Khalatyan, Y.; Peterson, T.C.; et al. Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0 °C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017. Int. J. Climatol. 2019. [Google Scholar] [CrossRef]
- Pal, J.S.; Eltahir, E.A.B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2015, 6, 197–200. [Google Scholar] [CrossRef]
- Alahmad, B.; Shakarchi, A.; Alseaidan, M.; Fox, M. The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis. Environ. Res. 2019, 171, 278–284. [Google Scholar]
- Alahmad, B.; Khraishah, H.; Shakarchi, A.F.; Albaghdadi, M.; Rajagopalan, S.; Koutrakis, P.; Jaffer, F. Cardiovascular mortality and exposure to heat in an inherently hot region: Implications for climate change. Circulation 2020, 141, 1271–1273. [Google Scholar] [CrossRef]
- Alshalfan, S. The Right to Housing in Kuwait: An Urban Injustice in a Socially Just System. Available online: http://eprints.lse.ac.uk/55012/ (accessed on 26 April 2020).
- Hulley, G.C.; Ghent, D.; Göttsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. Land Surface Temperature. In Taking the Temperature of the Earth; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–127. [Google Scholar]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.; Wang, Z.; Song, J. Spatio-Temporal Modeling of the Urban Heat Island in the Phoenix Metropolitan Area: Land Use Change Implications. Remote Sens. 2016, 8, 185. [Google Scholar] [CrossRef]
- Nasrallah, H.A.; Brazel, A.J.; Balling, R.C. Analysis of the Kuwait city urban heat island. Int. J. Climatol. 1990, 10, 401–405. [Google Scholar] [CrossRef]
- Al-Awadhi, J.M.; Al-Helal, A.; Al-Enezi, A. Sand drift potential in the desert of Kuwait. J. Arid Environ. 2005, 63, 425–438. [Google Scholar] [CrossRef]
- PACI. The Public Authority for Civil Information; Government of Kuwait: Kuwait City, Kuwait, 2017.
- Omar, S.A.S.; Misak, R.; Minkarah, H. Land-use mapping for the State of Kuwait using the Geographical Information System (GIS). Arab Gulf J. Sci. Res. 2001, 19, 59–65. [Google Scholar]
- Kuwait Meteorological Department Climate of Kuwait; Directorate General of Civil Aviation, Government of Kuwait: Kuwait City, Kuwait, 2019.
- Wan, S.H.Z. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC 2015. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, T.; Wang, T.; Zhou, X. Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sens. 2018, 10, 1852. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wang, X.; Ma, W.; Zhang, H. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complex. 2009, 6, 413–420. [Google Scholar] [CrossRef]
- Freitas, E.D.; Rozoff, C.M.; Cotton, W.R.; Dias, P.L.S. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound. Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brennan, D.; Brazel, A.J. Urban heat island research in phoenix, arizona: Theoretical contributions and policy applications. Bull. Am. Meteor. Soc. 2012, 93, 517–530. [Google Scholar] [CrossRef]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E. Urban radiation balance of two coastal cities in a hot and dry environment. Int. J. Remote Sens. 2007, 28, 2695–2712. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Met. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Sudairawi, M.; Al-Rashidi, M.; Behbehani, W.; Al-Khayat, A. Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate. Nat. Hazards 2019, 97, 139–155. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y. Water bodies’ cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect. Sustainability 2019, 11, 787. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Akbari, H.; Konopacki, S. Energy effects of heat-island reduction strategies in Toronto, Canada. Energy 2004, 29, 191–210. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
Governorate | Mean | SD | Median | IQR | Min | Max |
---|---|---|---|---|---|---|
Daytime LST (°C) | ||||||
Rural Governorates | ||||||
Al Ahmadi | 36.91 | 0.89 | 36.93 | 1.08 | 29.9 | 39.32 |
Al Jahrah | 37.24 | 1.10 | 37.30 | 0.90 | 25.56 | 40.25 |
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 37.20 | 1.30 | 37.17 | 1.76 | 34.92 | 40.4 |
Al Kuwait (Capital City) | 33.74 | 3.06 | 33.27 | 3.63 | 28.55 | 40.37 |
Hawalli | 35.10 | 2.74 | 34.69 | 4.03 | 29.12 | 39.72 |
Mubarak Al-Kabeer | 34.86 | 1.05 | 34.93 | 1.02 | 31.27 | 36.92 |
Nighttime LST (°C) | ||||||
Rural Governorates | ||||||
Al Ahmadi | 18.57 | 1.06 | 18.44 | 1.36 | 16.82 | 23.22 |
Al Jahrah | 18.25 | 0.94 | 18.15 | 1.23 | 16.68 | 22.25 |
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 21.52 | 1.02 | 21.61 | 1.72 | 19.67 | 23.50 |
Al Kuwait (Capital City) | 22.40 | 0.52 | 22.38 | 0.81 | 21.14 | 23.38 |
Hawalli | 23.05 | 0.46 | 23.13 | 0.58 | 21.89 | 23.80 |
Mubarak Al-Kabeer | 22.19 | 0.51 | 22.35 | 0.59 | 20.82 | 22.98 |
Rural Governorates | Urban/Suburban Governorates | |||||
---|---|---|---|---|---|---|
Al Ahmadi | Al Jahrah | Al Farwaniyah | Al Kuwait (Captial City) | Hawalli | Mubarak Al−Kabeer | |
Absolute Difference in Daytime LST (°C), row minus column (95% CI) | ||||||
Rural Governorates | ||||||
Al Ahmadi | −0.29 | −0.32 | 3.17 | 1.81 | 2.06 | |
(−0.09, −0.49) | (−0.27, −0.37) | (3.59, 2.75) | (2.20, 1.42) | (2.40, 1.71) | ||
Al Jahrah | 0.32 | 0.03 | 3.49 | 2.13 | 2.38 | |
(0.27, 0.37) | (−0.16, 0.23) | (3.91, 3.08) | (2.52, 1.74) | (2.72, 2.04) | ||
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 0.29 | −0.03 | 3.46 | 2.10 | 2.35 | |
(0.09, 0.49) | (0.16, −0.23) | (3.92, 3.00) | (2.53, 1.67) | (2.74, 1.96) | ||
Al Kuwait (Captial City) | −3.17 | −3.49 | −3.46 | −1.36 | −1.12 | |
(−3.59, −2.75) | (−3.91, −3.08) | (−3.92, −3.00) | (−0.79, −1.93) | (−0.58, −1.65) | ||
Hawalli | −1.81 | −2.13 | −2.10 | 1.36 | 0.25 | |
(−2.20, −1.42) | (−2.52, −1.74) | (−2.53, −1.67) | (0.79, 1.93) | (0.76, −0.27) | ||
Mubarak Al-Kabeer | −2.06 | −2.38 | −2.35 | 1.12 | −0.25 | |
(−2.40, −1.71) | (−2.72, −2.04) | (−2.74, −1.96) | (0.58, 1.65) | (−0.76, 0.27) | ||
Absolute Difference in Nighttime LST (°C), row minus column (95% CI) | ||||||
Rural Governorates | ||||||
Al Ahmadi | −2.95 | 0.32 | −3.82 | −4.48 | −3.62 | |
(−2.77, −3.13) | (0.36, 0.28) | (−3.44, −4.84) | (−4.13, −4.84) | (−3.31, −3.39) | ||
Al Jahrah | −0.32 | −3.27 | −4.14 | −4.8 | −3.94 | |
(−0.36, −0.28) | (−3.45, −3.09) | (−3.76, −4.53) | (−4.45, −5.16) | (−3.63, −4.25) | ||
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 2.95 | 3.27 | −0.87 | −1.53 | −0.67 | |
(2.77, 3.13) | (3.45, 3.09) | (−0.45, −1.29) | (−1.14, −1.93) | (−0.31, −1.02) | ||
Al Kuwait (Capital City) | 3.82 | 4.14 | 0.87 | −0.66 | 0.20 | |
(3.44, 4.84) | (3.76, 4.53) | (0.45, 1.29) | (−0.14, −1.18) | (0.70, −0.29) | ||
Hawalli | 4.48 | 4.8 | 1.53 | 0.66 | 0.86 | |
(4.13, 4.84) | (4.45, 5.16) | (1.14, 1.93) | (0.14, 1.18) | (1.33, 0.39) | ||
Mubarak Al-Kabeer | 3.62 | 3.94 | 0.67 | −0.20 | −0.86 | |
(3.31, 3.39) | (3.63, 4.25) | (0.31, 1.02) | (−0.70, 0.29) | (−1.33, −0.39) |
Difference | 95% CI | p-Value | Urban Effect | |
---|---|---|---|---|
Difference in Daytime LST (°C) | ||||
TUrban/Suburban – TRural | −1.07 | −1.17, −0.96 | <0.001 | Surface urban cool island |
Difference in Nighttime LST (°C) | ||||
TUrban/Suburban – TRural | 3.62 | 3.53, 3.71 | <0.001 | Surface urban heat island |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmad, B.; Tomasso, L.P.; Al-Hemoud, A.; James, P.; Koutrakis, P. Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. Int. J. Environ. Res. Public Health 2020, 17, 2993. https://doi.org/10.3390/ijerph17092993
Alahmad B, Tomasso LP, Al-Hemoud A, James P, Koutrakis P. Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. International Journal of Environmental Research and Public Health. 2020; 17(9):2993. https://doi.org/10.3390/ijerph17092993
Chicago/Turabian StyleAlahmad, Barrak, Linda Powers Tomasso, Ali Al-Hemoud, Peter James, and Petros Koutrakis. 2020. "Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands" International Journal of Environmental Research and Public Health 17, no. 9: 2993. https://doi.org/10.3390/ijerph17092993
APA StyleAlahmad, B., Tomasso, L. P., Al-Hemoud, A., James, P., & Koutrakis, P. (2020). Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. International Journal of Environmental Research and Public Health, 17(9), 2993. https://doi.org/10.3390/ijerph17092993