Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Primary Exposures
2.3. Environmental Confounders
2.4. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Global Malaria Programme; WHO Global. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Aramburú Guarda, J.; Ramal Asayag, C.; Witzig, R. Malaria reemergence in the Peruvian Amazon region. Emerg. Infect. Dis. 1999, 5, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Okiro, E.A.; Gething, P.W.; Patil, A.P.; Tatem, A.J.; Guerra, C.A.; Snow, R.W. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010, 7, e1000290. [Google Scholar]
- Cotter, C.; Sturrock, H.J.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Grillet, M.E.; Villegas, L.; Oletta, J.F.; Tami, A.; Conn, J.E. Malaria in Venezuela requires response. Science 2018, 359, 528. [Google Scholar] [PubMed]
- Krisher, L.K.; Krisher, J.; Ambuludi, M.; Arichabala, A.; Beltrán-Ayala, E.; Navarrete, P.; Ordoñez, T.; Polhemus, M.E.; Quintana, F.; Rochford, R.; et al. Successful malaria elimination in the Ecuador–Peru border region: Epidemiology and lessons learned. Malar. J. 2016, 15, 573. [Google Scholar]
- Jaramillo-Ochoa, R.J.-O.; Sippy, R.; Farrel, D.F.; Cueva-Aponte, C.; Beltrán-Ayala, E.; Gonzaga, J.L.; Ordoñez-León, T.; Quintana, F.A.; Ryan, S.J.; Stewart-Ibarra, A.M. Effects of political instability in Venezuela on malaria resurgence at Ecuador–Peru border, 2018. Emerg. Infect. Dis. J. CDC 2019, 25, 834–836. [Google Scholar]
- Eliminating Malaria: 21 Countries, a Common Goal. Available online: http://www.who.int/malaria/areas/elimination/e2020/en/ (accessed on 16 August 2020).
- Carrasco-Escobar, G.; Miranda-Alban, J.; Fernandez-Miñope, C.; Brouwer, K.C.; Torres, K.; Calderon, M.; Gamboa, D.; Llanos-Cuentas, A.; Vinetz, J.M. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: Insights into local and occupational mobility-related transmission. Malar. J. 2017, 16, 415. [Google Scholar] [PubMed]
- Carrasco-Escobar, G.; Castro, M.C.; Barboza, J.L.; Ruiz-Cabrejos, J.; Llanos-Cuentas, A.; Vinetz, J.M.; Gamboa, D. Use of open mobile mapping tool to assess human mobility traceability in rural offline populations with contrasting malaria dynamics. Peer J. 2019, 7, e6298. [Google Scholar] [CrossRef] [PubMed]
- Pizzitutti, F.; Mena, C.F.; Feingold, B.; Pan, W.K. Modeling asymptomatic infections and work-related human circulation as drivers of unstable malaria transmission in low-prevalence areas: A study in the Northern Peruvian Amazon. Acta Trop. 2019, 197, 104909. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.T.; Valdivia, H.O.; de Oliveira, T.C.; Alves, J.M.P.; Duarte, A.M.R.C.; Cerutti-Junior, C.; Buery, J.C.; Brito, C.F.A.; de Souza, J.C.; Hirano, Z.M.B.; et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018, 8, 1993. [Google Scholar] [PubMed]
- Carrasco-Escobar, G.; Gamboa, D.; Castro, M.C.; Bangdiwala, S.I.; Rodriguez, H.; Contreras-Mancilla, J.; Alava, F.; Speybroeck, N.; Lescano, A.G.; Vinetz, J.M.; et al. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci. Rep. 2017, 7, 8082. [Google Scholar] [PubMed]
- Cruz Marques, A. Human migration and the spread of malaria in Brazil. Parasitol. Today 1987, 3, 166–170. [Google Scholar] [CrossRef]
- Wolfarth-Couto, B.; da Silva, R.A.; Filizola, N. Variability in malaria cases and the association with rainfall and rivers water levels in Amazonas State, Brazil. CSP 2019, 35, e00020218. [Google Scholar]
- Galardo, A.K.R.; Zimmerman, R.H.; Lounibos, L.P.; Young, L.J.; Galardo, C.D.; Arruda, M.; Couto, A.A.R.D. Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapí River, Amapí, Brazil. Med. Vet. Entomol. 2009, 23, 335–349. [Google Scholar] [PubMed]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar]
- Integrating Earth Observations to Support Malaria Risk Monitoring in the Amazon. Earthzine. Available online: https://earthzine.org/integrating-earth-observations-to-support-malaria-risk-monitoring-in-the-amazon (accessed on 6 March 2020).
- Besag, J. Spatial Interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Fuglstad, G.-A.; Simpson, D.; Lindgren, F.; Rue, H. Constructing priors that penalize the complexity of Gaussian random fields. J. Am. Stat. Assoc. 2019, 114, 445–452. [Google Scholar] [CrossRef]
- Blangiardo, M.; Cameletti, M.; Baio, G.; Rue, H. Spatial and spatio-temporal models with R-INLA. Spat. Spatio-temporal Epidemiol. 2013, 4, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.; Carr, D.; Bilsborrow, R. Migration within the frontier: The second generation colonization in the Ecuadorian Amazon. Popul. Res. Policy Rev. 2009, 28, 291–320. [Google Scholar] [PubMed]
Model | P. vivax | P. falciparum |
---|---|---|
With river connectivity indicator variables | 0.16 | 0.04 |
Without river connectivity indicator variables | 1.26 | 0.88 |
Variable | P. vivax | P. falciparum | ||||
---|---|---|---|---|---|---|
Estimate | Lower UI | Upper UI | Estimate | Lower UI | Upper UI | |
Rainfall (mm) | 1.022 | 0.876 | 1.191 | 2.336 | 1.254 | 4.322 |
Temperature (°C) | 1.501 | 1.054 | 2.137 | 2.924 | 0.374 | 22.01 |
Soil Temperature (°C) | 0.528 | 0.381 | 0.730 | 0.808 | 0.145 | 4.624 |
Soil Moisture | 0.926 | 0.829 | 1.034 | 1.027 | 0.665 | 1.592 |
Border incidence | 1.031 | 1.029 | 1.033 | 1.030 | 1.021 | 1.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunderson, A.K.; Kumar, R.E.; Recalde-Coronel, C.; Vasco, L.E.; Valle-Campos, A.; Mena, C.F.; Zaitchik, B.F.; Lescano, A.G.; Pan, W.K.; Janko, M.M. Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7434. https://doi.org/10.3390/ijerph17207434
Gunderson AK, Kumar RE, Recalde-Coronel C, Vasco LE, Valle-Campos A, Mena CF, Zaitchik BF, Lescano AG, Pan WK, Janko MM. Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. International Journal of Environmental Research and Public Health. 2020; 17(20):7434. https://doi.org/10.3390/ijerph17207434
Chicago/Turabian StyleGunderson, Annika K., Rani E. Kumar, Cristina Recalde-Coronel, Luis E. Vasco, Andree Valle-Campos, Carlos F. Mena, Benjamin F. Zaitchik, Andres G. Lescano, William K. Pan, and Mark M. Janko. 2020. "Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis" International Journal of Environmental Research and Public Health 17, no. 20: 7434. https://doi.org/10.3390/ijerph17207434
APA StyleGunderson, A. K., Kumar, R. E., Recalde-Coronel, C., Vasco, L. E., Valle-Campos, A., Mena, C. F., Zaitchik, B. F., Lescano, A. G., Pan, W. K., & Janko, M. M. (2020). Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. International Journal of Environmental Research and Public Health, 17(20), 7434. https://doi.org/10.3390/ijerph17207434