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Abstract: This manuscript evaluates the U.S. Recreational Water Quality Criteria (RWQC) 

of 2012, based upon discussions during a conference held 11–13 March 2013,  

in Honolulu, Hawaii. The RWQC of 2012 did not meet expectations among the research 

community because key recommended studies were not completed, new data to assess risks 

to bathers exposed to non-point sources of fecal indicator bacteria (FIB) were not developed, 

and the 2012 RWQC did not show marked improvements in strategies for assessing health 

risks for bathers using all types of recreational waters. The development of the 2012 RWQC 

was limited in scope because the epidemiologic studies at beach sites were restricted to 

beaches with point sources of pollution and water samples were monitored for only 

enterococci. The vision for the future is development of effective RWQC guidelines based 

on epidemiologic and quantitative microbial risk assessment (QMRA) studies for sewage 

specific markers, as well as human enteric pathogens so that health risks for bathers at all 

recreational waters can be determined. The 2012 RWQC introduced a program for states and 
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tribes to develop site-specific water quality criteria, and in theory this approach can be used 

to address the limitations associated with the measurements of the traditional FIB. 

Keywords: recreational water quality criteria; recreational water quality standards; nonpoint 

source pollution; traditional fecal indicator bacteria; extra-enteric fecal indicator bacteria; 

alternate indicators; microbial source tracking 

 

1. Consent Decree and Recommendations to Implement the 2012 Recreational Water Quality 

Criteria (RWQC) 

Shuval [1] estimated that swimming in contaminated beach waters causes over 120 million cases of 

gastrointestinal (GI) disease and 50 million cases of acute respiratory diseases world-wide. Shifts in 

rainfall and temperatures driven by climate change are expected to exaggerate microbial contamination 

issues and increase risk of water-borne disease in our coastal and inland regions [2,3]. Since most of the 

world’s population is distributed along the coasts, contaminated beach water has far reaching impacts 

on public health and ecosystem services, including a safe recreational experience. 

To protect bathers in the US from contracting GI illness, the Beaches Environmental Assessment and 

Coastal Health Act (BEACH Act) [4] mandated through the U.S. Clean Water Act (CWA) that coastal 

beaches, including the Great Lakes, be monitored and the public notified when water quality does not 

comply with the regulatory standards. In 2006, The Natural Resources Defense Council (NRDC) filed a 

lawsuit against United States Environmental Protection Agency (USEPA) for not publishing revised 

recreational water quality criteria (RWQC) by 2005 as mandated by the BEACH Act. To avoid the 

expected cost and time for a trial, both parties agreed to a Consent Decree [5], under which USEPA 

agreed to complete the following key tasks: 

1. Publication of the revised RWQC by October of 2012.  

2. Provide timely progress reports and workshops for stakeholders.  

3. Conduct epidemiological studies in temperate waters contaminated with urban runoff and at a tropical 

region (i.e., Hawaii, Puerto Rico, Guam or south Florida).  

4. Determine applicability of data obtained from coastal freshwater sites to inland waters.  

5. Evaluate molecular methods, such as quantitative polymerase reaction (qPCR), and evaluate 

quantitative microbial risk assessment (QMRA) for water quality assessment. 

6. Organize an expert’s scientific workshop to provide recommendations for USEPA. 

In 2007, USEPA organized the “Experts Scientific Workshop”, which directed 43 expert scientists to 

provide science-based recommendations for the development of the revised 2012 RWQC. Three of the 

key recommendations of this Expert Workshop [6] are listed below: 

1. Conduct epidemiological/water quality studies at beaches known to be characterized by point source 

and non-point sources of pollution, to include tropical beaches as well as inland recreational  

water sites. 

2. Reassess the reliability of linking concentrations of fecal indicator bacteria (FIB) (Escherichia coli, 

enterococci) at all recreational water sites with human health effects.  
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3. Assess reliability of alternative sewage indicators, such as Clostridium perfringens, coliphages, and 

Bacteroides, in epidemiological and water quality studies. 

Boehm et al. [7] reviewed the findings of the 2007 USEPA workshop and concluded that the major 

short coming of the 1986 RWQC was the uncertainty of monitoring data for fecal indicator bacteria 

(FIB) to determine health risks to bathers. Correlations have not been established between FIB 

concentrations and GI illness at beaches characterized by non-point sources of FIB. In this regard, 

Boehm et al. [7] discussed extra-enteric sources of FIB, which have been reported to multiply in 

environmental habitats (soil, sediments, sand, plants, algae) in tropical [8,9], as well as temperate, 

climates [10–12]. It should be noted that since extra-enteric FIB multiplied in environmental habitats, 

such as soil rather than intestinal habitats of humans or animals, these bacteria are not indicators of fecal 

contamination. As a result, the numbers of extra-enteric FIB in environmental water samples are not 

related to degree of sewage contamination or degree of animal fecal contamination. 

Previously, The BEACH Act focused on determining the quality of water at coastal beaches but not 

for inland waters. However, since the 2012 RWQC has been extended to all recreational waters, the 

Water Environment Research Foundation [13] organized an inland water quality workshop. For this 

workshop, 31 expert scientists characterized differences between coastal and inland waters.  

Dorevitch et al. [14] summarized the results of this workshop and reached two conclusions. First, inland 

waters are characteristically different from coastal waters based on their lower volume, higher sediment 

load, unidirectional flow through multiple land use areas, and many potential sites for contamination by 

numerous sources of FIB as well as pathogens. Second, the health risks, developed by epidemiological 

studies conducted at coastal beach sites, are not likely to be applicable to inland waters because the ratios 

between FIB and pathogens at inland water sites differ from those at coastal water sites. Dorevitch et al. 

[14] recommended that epidemiological studies as well as quantitative microbial risk assessment 

(QMRA) studies be conducted at inland water sites so that illness rates among bathers can be correlated 

with specific sources of FIB (e.g., birds, livestock, wildlife mammals) or with specific pathogens. 

2. Limitations and Issues of the 2012 RWQC 

In the development of the 1986 and 2012 RWQC, USEPA used similar epidemiological study designs 

and selected beaches, which were known to be contaminated with point source sewage discharges. In 

the development of the 1986 RWQC, USEPA used highly credible gastrointestinal intestinal symptoms 

(HCGI) as a stringent measurement of waterborne disease transmission, which were observed 7–10 days 

after exposure to beach waters (see Table 1). Distinctive and appropriate RWQC were established for 

fresh versus marine recreational waters. In the development of the 2012 RWQC, USEPA conducted the 

National Epidemiological and Environmental Assessment of Recreational Water (NEEAR), and used 

NEEAR gastrointestinal illness (NGI) symptoms (see Table 1) as the measurement for water-borne 

disease transmission, which were observed 10–12 days after exposure to beach waters. The NGI 

endpoint is less stringent than HCGI endpoint and might be more sensitive to detect illness from viral 

(e.g., noroviruses) and protozoan (e.g., Crytosporidium) infections. The 2012 RWQC were set at 

geometric means of 30 and 35 CFU/100 mL of enterococci, which statistically detected swimming 

associated illness rates at 32 or 36 illness rate per 1000 people exposed to either fresh or marine 

recreational waters (see Table 1). 
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Table 1. Comparison of illness measurements, water quality criteria and illness rates between 

the 1986 and 2012 RWQC. 

Illness  

Measurement 
Symptoms 

Water Quality Criteria 

Geometric Mean 

Enterococci/100 mL 

Illness Rate 

(Per 1000 Bathers) 

1986 RWQC [15]    

Highly credible gastrointestinal 

illness (HCGI)  

Vomiting or diarrhea; nausea 

or stomach ache with fever  

33 (freshwater)  

35 (marine water) 

8 (freshwater) 

19 (marine water) 

2012 RWQC [16]    

NEEAR gastrointestinal illness 

(NGI)  

Vomiting or diarrhea; nausea 

or stomach ache, that 

interefere with usual activity  

30 or 35 (freshwater)  

30 or 35 (marine water) 

32 or 36 (freshwater) 

32 or 36 (marine 

water) 

For stakeholders who are charged with implementation of the 2012 RWQC, the following are some 

limitations and issues to be considered: 

1. Since data to determine health risks were restricted to waters with point source (sewage) 

contamination, the 2012 health risk data are applicable to water sites with point source contamination 

but not at sites with non-point sources of contamination.  

2. The recommended study to assess health risks at a water site with non-point sources of FIB did not 

generate data that were used to develop the 2012 RWQC. As a result, concentrations of non-point 

sources of FIB have not yet been correlated to GI illness rates.  

3. The recommended study to evaluate the effectiveness of alternative sewage indicators  

(Clostridium perfringens, some coliphages, Bacteroides), did not generate data that were used to 

develop the 2012 RWQC. As a result, the reliability of using these alternative and more sewage specific 

indicators to overcome the uncertainty of monitoring data for FIB has not been  

properly evaluated.  

4. Although the site-specific criteria program of the 2012 RWQC was announced, there is insufficient 

information for its implementation by states and tribes.  

5. Since environmental conditions and ratio of FIB to sewage-borne pathogens were reported to differ at 

coastal and inland water sites, it remains unclear why the 2012 RWQC are uniformly applied at all 

recreational water sites.  

6. In the application of molecular methods, states and tribes will require more funding and resources for 

training of laboratory personnel and costs to upgrade facilities.  

7. Interpreting data from molecular methods such as qPCR for public health assessment will require 

careful analysis because of two issues. First, some water samples contain substances that interfere 

with molecular assays. Second, molecular methods measure both dead and viable microorganisms 

and only viable microorganisms can cause infections and water-borne diseases. Since, molecular 

methods do not provide infectivity information, these data alone should not be used to predict health 

risks to swimmers and these data will not likely detect reduced health risks due to disinfection of 

sewage effluents [17]. 

In December of 2011, the draft final report for the 2012 RWQC (EPA-HQ-OW-2011-0466) [18] was 

published. On 25 January 2012, USEPA organized a webinar to answer questions and to receive written 
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comments that stakeholders may have for this draft final report. Stakeholders submitted nearly 10,000 

comments and USEPA published an 87 page document to respond to all written comments [19]. Based on 

stakeholders comments, the following three needs were identified: (1) Since stakeholders experienced 

difficulty in understanding many details in the final report, the first identified need was for a detailed 

scientific explanation on the theory as well as limitations in the methods used to develop the 2012 

RWQC; (2) Since the final report introduced the methods but not the detailed procedure to develop site-

specific criteria, the second identified need was for more detailed explanation on how the available 

methods can be used to develop site-specific criteria; (3) Since the final report did not include discussions 

on experimental methods to assess water quality, the third identified need was to discuss these 

experimental methods and their potential to be approved for use in developing future RWQC. To address 

these three needs, The Water Resources Research Center (WRRC) of the University of Hawaii organized 

a conference titled, “U.S. Recreational Water Quality Criteria:  

A Vision for the Future” in Honolulu (11–13 March 2013). The three identified needs were the themes 

for each day of the conference. For this conference 17 scientists were selected as speakers (Table 2) 

based on their knowledge and expertise in the application of various microbiological methods to assess 

risks to bathers. The discussions by these expert scientists at the 2013 WRRC conference provided the 

basic information and motivation for this manuscript. However, in the synthesis of this manuscript, 

critical analyses of ideas and research findings from more recent publications were included. The goals 

of this manuscript are: (a) to provide an independent, critical evaluation of the major scientific issues 

related to development and implementation of the 2012 Recreational Water Quality Criteria; and (b) to 

synthesize a vision for the future in the development of RWQC. The specific objectives of this 

manuscript are to evaluate the following three needs of the 2012 RWQC: (1) Theory, assumptions and 

interpretation of the 2012 RWQC; (2) Evaluation of the 2012 proposed program to develop site-specific 

criteria; (3) Evaluation of alternate and experimental methods to determine health risks to bathers for the 

purpose of improving RWQC in the future. 

Table 2. List of 19 experts in the field of recreational water quality, who were invited to the 

WRRC 2013 “U.S. Recreational Water Quality Criteria: A Vision for the Future” 

conference, Honolulu, Hawaii. 

Alexandria B. Boehm 
Stanford University 

Dr. Sandra L. McLellan 
University of Wisconsin-Milwaukee 

Muruleedhara N. Byappanahalli 
U.S. Geological Survey 

Mr. John E. Ravenscroft 
U.S. Environmental Protection Agency 

John M. Colford 
School of Public Health  
University of California, Berkeley 

Dr. Joan B. Rose 
Michigan State University 
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Table 2. Cont. 

Roger S. Fujioka 
University of Hawaii 

Mr. Watson Okubo 
Hawaii Department of Health 

Dr. Hyatt C. Green 
U.S. Environmental Protection Agency 

Dr. Michael J. Sadowsky 
University of Minnesota 

Dr. Daniel Y.C. Fung 
Kansas State University 

Dr. Mitchell L. Sogin 
Marine Biological Laboratory at Woods Hole 

Dr. Charles P. Gerba 
University of Arizona 

Dr. Helena Solo-Gabriele 
University of Miami 

Dr. John F. Griffith 
Southern California Coastal Water 
Research Project 

Mr. Kenneth Tenno 
City and County of Honolulu 

Dr. Valerie J. Harwood 
University of South Florida 

Dr. Gary A. Toranzos  
University of Puerto Rico 

Dr. Marek Kirs 
University of Hawaii 

 

3. Theory, Assumptions and Interpretation of 2012 RWQC 

The theory used by USEPA to establish the 1986 and 2012 RWQC is based on a cohort and 

prospective epidemiological study design. The studies measured GI illness rates in a population of 

bathers, who were engaged in primary contact recreational activities (e.g., wading, swimming) at a given 

beach, and compared to a similar population at the same beach, who were not exposed to the water. 

During the water exposure period, water samples were collected and assayed for concentrations of 

enterococci as indicators of sewage contamination. In the development of the 1986 RWQC [15] and the 

2012 RWQC [16], the beach sites selected were characterized by contamination with point source 

discharges of sewage from publicly owned treatment works (POTW). As a result, these sites were 

impacted by point sources of human fecal pollution. The validity of this situation was supported by the 

results, which showed a correlation between increasing incidences of GI illness among bathers, who 

were exposed to waters with increasing concentrations of FIB. USEPA then established the 2012 RWQC 

based on geometric mean concentrations of enterococci, which predicted a target level of GI illness 

among exposed swimmers. However, Colford et al. [20] used the same USEPA epidemiological study 

design, and reported that at beaches that were contaminated with non-point sources of FIB,  

no correlation between FIB densities and GI illness rates were observed. In addition, two other 

epidemiological studies by Calderon et al. [21] and Fleisher et al. [22] at beaches contaminated by non-

point sources of FIB also concluded that concentrations of FIB at these sites did not predict GI illness 

rates. It should be noted that the experimental designs of these two additional epidemiological studies 

were not identical to the USEPA study design and they used a smaller sample size. Since  

60%–80% of the impaired waters in the US, are due to non-point sources of FIB [23–25], these results 

indicate that the health effects predicted by the 2012 RWQC will not be applicable to the majority of the 

recreational water sites in the US. In this regard, Gooch-Moore et al. [26] reported their concern that the 

2012 RWQC may not be applicable to beaches in the Gulf of Mexico, where non-point sources of FIB 
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and environmental conditions differ from those beaches that were selected for the development of the 

2012 RWQC. 

The explanation for why human fecal discharges, represented by sewage sources of FIB, are reliable 

predictors of GI illness rate and non-point sources of FIB are unreliable predictors of GI illness rate is 

based on the principle of the species barrier, which is demonstrated by susceptibility of humans to one 

set of disease causing pathogens and various other animals being susceptible to their own set of disease 

causing pathogens. Based on this principle, WHO [27] concluded that water, which has been contaminated 

by human feces or sewage effluent, has the greatest potential for transmitting diseases to humans.  

In contrast, water contaminated by various animal feces represents variable and generally lower risks to 

bathers. As discussed at the WRRC conference, the theory for the reliability of FIB as indicators of 

sewage-borne pathogens is based on their site of multiplication and the probability that all, some or none 

of the sewage-borne pathogens can be expected to multiply in that given habitat or source. In this regard, 

the relative risks for bathers in contracting GI illness are based on the following sources of FIB: (1) 

Expect highest risk when the source of FIB is sewage because it includes fecal discharge from human 

intestinal tract, which is the site of multiplication for FIB and all human enteric pathogens;  

(2) Expect moderate risk when the source of FIB is not sewage but due to contamination of fecal 

discharges of some animals (cattle, pig, chicken, gulls) because some human enteric pathogens can 

multiply in the intestinal tract of some animals; (3) Expect lower risk when the source of FIB is from 

fecal discharge from other animal species (including wildlife) because such animals are generally not 

carriers of human enteric pathogens; (4) Expect lowest risk when the source of FIB is due to 

multiplication in environmental habitats because most of the human enteric pathogens (e.g., human 

viruses, protozoa) do not multiply outside of the intestinal tracts of humans or animals. In summary, 

since we assume that the specific source of FIB determines the health risks to bathers and monitoring 

methods cannot determine their specific source, health risks cannot be determined based only on the 

measured concentrations of FIB in recreational water samples. One possibility is to use molecular 

methods to determine the specific source of the measured FIB using microbial source tracking 

technology [28–30]. Another possibility is to evaluate the effectiveness of alternative sewage markers 

(Clostridium perfringens, coliphages, Bacteroides) in recreational waters because they have been 

reported to be more specific markers of sewage than FIB [7]. In this regard, information on molecular 

methods and alternate sewage markers are discussed in Section 6. 

4. Assessing Regional Water Quality Issues in the Implementation of 2012 RWQC 

Water quality issues at popular beach sites, located in four different locations (Hawaii, Southern 

California, Great Lakes, Southern Florida) of the US were compared to determine if regional differences 

in climate, hydrogeology, distribution of animals and plants, frequency of rain, coastal marine waters 

versus inland lakes will affect the implementation of the 2012 RWQC. Despite obvious climatic, 

physical and biological differences at recreational waters at these four locations, three common water 

quality issues were identified as an outcome of the March 2013 meeting in Hawaii. 

The first issue was how to interpret water quality data when the recreational waters are contaminated 

with non-point sources of FIB and especially when these FIB multiplied in environmental sources (soil, 

sediment, sand, algae mat). The concentrations of these extra-enteric FIB in recreational waters no longer 
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represent the degree of sewage contamination and correlative concentrations of sewage-borne pathogens. 

Therefore, state agencies are currently faced with a situation where they need to implement water quality 

standards that may not be indicative of actual health risk; yet the agencies need to be able to communicate 

to the general public what the standard means and provide meaningful explanations as to why the 

warning signs are posted. Polluted runoff that drains from land with rain, snowmelt and irrigation, was 

identified as the major source of microbial contaminants and responsible for regional water quality 

challenges at Hawaii, Great Lakes, Florida and California [8,31–33]. Due to these non-point sources of 

FIB, some recreational water sites in these four regions exceed the 2012 RWQC. 

The second issue is related to overcoming the limitations of determining the risk to bathers based only 

on monitoring data for FIB. The most promising sewage-specific markers were identified as  

C. perfringens, various coliphages, Bacteroides, as well as human enteric viruses [7,34]. Ecology and 

physiology, as well as sensitivity to treatment processes, of indicator bacteria varies vastly from those 

of many pathogens, such as viruses and protozoa. Therefore, there is a need at state and national levels 

for supplemental indicator organisms that would be indicative of risk for a wide array of human 

pathogens and to provide better protection of public health. In Hawaii, due to ambient growth and high 

elevated concentrations of FIB in soil and streams, C. perfringens is used as a secondary water quality 

standard because it is a more reliable marker of sewage contamination than FIB. This is supported by 

recent QMRA study of 22 streams in Hawaii where positive significant correlation between  

C. perfringens concentrations and health risk was observed [35]. 

The third issue is identification of beach sand as an unregulated source of FIB as well as some 

pathogens. Recent studies have demonstrated that sand can harbor various pathogenic viruses,  

bacteria, protozoa, helminthes and fungi, which can pose direct health risk and impact adjacent water  

quality [36,37]. Currently there are no microbiological criteria for beach sand, as the association between 

the health risk and microbial pathogens in sand is poorly understood. Beach sand has been implicated as 

source of FIB in coastal water by studies conducted in Hawaii [38], California [39], Great Lakes [40–44], 

Florida [45,46], and in other regions, hence quality of beach sand needs to be considered in projects 

intending to evaluate and improve adjacent water quality. In Florida, recent extensive beach renovation 

projects conducted on Hobie Cat Beach, which included beach sand replenishment, application of 

appropriate stormwater management practices and bacterial containment methods. This project resulted 

in a 50% decrease of observable enterococci loads and led to less frequent beach closures [47]). 

Moreover, studies of beach sand in Florida [48], have demonstrated that concentrations of FIB in sand 

can be used to characterize beach sites as being susceptible or not susceptible to chronic contamination 

sources. 

5. Evaluation of the 2012 Proposed Program to Develop Site-Specific Alternative Criteria 

Although the use of a risk-based methodology for site-specific alternative criteria has been recommended 

since 2000 [6,49], no States or local governments have been successful in developing alternate site-

specific criteria that relaxes the fecal indicator bacteria guideline established through the USEPA. Rather, 

states have generally added monitoring parameters specific to their local concerns (e.g., measurements 

of harmful algae, chemical contaminants, or additional microbiological parameters and microbial source 

tracking tools) or adjusted their sampling programs and policies for issuing advisories, in an effort to 
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work within the USEPA guidelines. For example, Florida modified its policy effective 2004 [50] such 

that beach advisories would be issued only after two consecutive measures of exceedance values, as 

opposed to one measure. Such operational adjustments were possible at the State level; however, much 

more challenging was the substitution of alternative measures in lieu of the recommended fecal indicator 

bacteria. A good example is the state of Hawaii’s use of monitoring data for C. perfringens to determine 

when recreational waters are contaminated with sewage. This change in practice was made because 

monitoring data had shown that the ambient and daily concentrations of FIB in the major streams of 

Oahu, Hawaii greatly exceeded the previous fecal coliform standard [51] and the more recent E. coli and 

enterococci standards [52]. Widespread occurrence and growth of FIB (E. coli, fecal coliforms, 

enterococci) in the soil environment of Hawaii [9,32,53,54] was determined to be the reason for high 

levels of these bacteria in freshwater streams and rivers. Due to high ambient concentrations of FIB in 

the streams of Hawaii, it was not possible to determine when streams and coastal waters, which receive 

stream discharges, were contaminated with sewage or other human fecal sources. However, concentrations 

of C. perfringens, an alternative fecal indicator bacterium, were consistently low in streams [55] but 

increased during a sewage contamination event [56]. As a result, the state of Hawaii adopted  

C. perfringens as a state recreational water quality standard [57]. However, in the USEPA 2000  

guidance document, the use of C. perfringens as an alternate indicator by the State of Hawaii was 

questioned. Specific questions raised by the USEPA have included the ability of C. perfringens to predict 

gastro-intestinal illness, to track recent fecal contamination, and the associated method of analysis.  

The USEPA recommended that Hawaii maintain enterococci as the primary fecal indicator and use C. 

perfringens as a secondary tracer. In summary, mutually agreeable “alternative indicators” were difficult 

to establish based on the 1986 RWQC [15]. 

The new 2012 Recreational Water Quality Criteria expanded the site-specific alternative criteria 

program and provided the following guidelines for its implementation: The proposed criteria must  

(a) result in same risk to GI illness as the existing RWQC; (b) be based on scientifically defensible 

methods; (c) be protective for the designated use of that water site and (d) be approved by USEPA.  

The most likely situation to qualify for site-specific alternative criteria is when the concentrations of 

enterococci at a recreational water site exceed the 2012 RWQC of 30 enterococci/100 mL (geometric 

mean). In addition there must be strong evidence that the source of enterococci at that recreational water 

site is not from a sewage discharge and therefore the predictable risks to bathers will differ from those 

determined by the 2012 RWQC. To expedite the process for site-specific alternative criteria, USEPA 

announced the planned publication of three Technical Support Materials (TSMs) which will provide 

guidance on evaluating site information and on helping States and local governments decide which tools 

would best support the development of site-specific alternative water quality criteria that are 

scientifically defensible and protective of the recreational designated use [58]. Since the TSM will play 

a key role in this program, each of the three TSMs will be described. 

The TSM for Alternative Indicators and Enumeration Method describes the process for comparing 

alternative methods of enumeration against the current USEPA approved enumeration method for 

enterococci. It is suitable to use this TSM when the applicant wants to establish a more feasible 

alternative indicator or alternative enumeration method instead of measuring for enterococci as specified 

in the 2012 RWQC. At the writing of this manuscript, this was the only published TSM [59].  

The drawback of this TSM is that it requires the comparison of the alternative indicator to an established 
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method/indicator such as enterococci. Moreover, the established method/indicator and risk are based 

upon water bodies impacted by point sources of fecal contamination. As a result, this  TSM might be 

less useful for water sites that are contaminated with non-point sources of enterococci. 

The TSM for Alternative Health Relationships describes approaches that can be used to document 

potential health effects from exposure to various feces-contaminated waters, with health impacts 

evaluated through epidemiologic studies (the method of choice). This TSM is suitable when the 

applicants want to show a site-specific enterococci and bather health relationship, which differs from 

that determined by the 2012 RWQC. This TSM is suitable when the applicant believes that health risks 

to bathers based on concentrations of enterococci as determined by the NEEAR studies do not apply to 

their recreational water sites. This TSM has not yet been published. It should be noted that 

epidemiological studies require measurements of the environment and also concurrent measurements of 

human health impacts. For example, for the recent epidemiologic studies conducted in California 

(Doheny Beach [60], Avalon and Malibu Beaches [61]) and Florida (Hobie Cat Beach [22,62,63]),  

the results showed that increased risks were observed for swimmers relative to non-swimmers. Illnesses 

measured included gastro-intestinal, dermatological, respiratory, and other non-specific ailments. 

Environmental measures included a large number of indicators and pathogens plus basic environmental 

conditions, such as a nearby river berm as opened or closed for one of the study sites (Doheny Beach) or 

whether it had rained in the prior 24 h (Hobie Cat Beach). Results of these studies provided strong evidence 

for considering environmental characteristics, such as the berm open versus closed to assess the 

relationships between health outcomes and FIB for the Doheny study. For the Florida study, prior rainfall 

could serve as a means of predicting human health outcomes associated with recreational bathing. 

The TSM for Alternative Fecal Sources describes the process that can be used to document non-human 

sources of enterococci, to include non-point sources of FIB, which degrades the quality of that 

waterbody. By using QMRA as the method of choice, risk of illness among bathers can be estimated. 

This TSM has not yet been published. It should be noted that alternative fecal sources can be addressed 

through microbial source tracking (MST) methods, which can determine the source of enterococci from 

various animals, such as coastal birds [62], ruminants and cattle [64], canines [65], as well as human 

sources [66]. In this regard, QMRA could serve as a less costly alternative to epidemiologic  

studies [67–69]. QMRA is based on measurements of pathogens in recreational waters as a means to 

estimate risk to bathers due to exposure to these pathogens. The analysis requires the identification of an 

exposure route for the measured pathogen, knowledge about typical human behavior associated with that 

exposure route (e.g., amount of water ingested during swimming), coupled with dose-response 

relationships for the pathogen considered. Fortunately, there is now increased training and availability of 

QMRA technologies. Work is currently ongoing for a QMRA Wikipedia web site [70] that provides 

instructions for site-specific QMRA studies. Additional needs for the future are predictive risk modeling 

that takes into account fate and transport, where dose varies with time depending upon the hydrodynamics 

of the system. Ideally, a model can be developed to identify when to open and close beaches, for example, 

along a river after a combined sewer overflow event. Ideally, on-line applications would be available with 

built-in risk determination tools that would incorporate a transport model along with a variation in sources 

to determine the overall probability of illness given the time variation of sources contributing to a particular 

site (Joan Rose, Michigan State University, personal communication). 
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One example of an approach for development of a site-specific alternative criteria program can be 

illustrated by the work of Viau et al. [71] for stream impacted beaches within the State of Hawaii. 

Samples were collected from Hawaiian streams before sunrise and at noon and analyzed for human 

pathogens (Salmonella, Campylobacter), as well as for indicators and source specific markers 

(enterococci, E. coli, C. perfringens, human-Bacteroides, pig-Bacteroides, and bovine-Bacteroides). 

The link to human health was established through a QMRA, which evaluated the risk for each stream. 

Comparisons were then made between risk and concurrent measures of FIB. Results showed that there 

was no relationship between health risk and enterococci levels. A correlation was observed, however, 

between C. perfringens levels and health risk. As for the ultimate cause of human health risk, the study 

found that septic tank density related to norovirus levels and to levels of human-source Bacteroides 

(BacHum) [71]. Apparently, C. perfringens appears to track human source Bacteroides and norovirus, 

all of which appear to originate from septic tanks. In conclusion this study supported the State of 

Hawaii’s long standing conclusion that C. perfringens can serve as an alternate indicator of human health 

risk [35]. 

6. Scientific Assessment of Experimental Methods and Approaches to Improve or Revise RWQC 

Current Assessment to Improve RWQC. The limitations of the 2012 RWQC were previously 

discussed (Section 2). In this regard, the major limitation was the uncertainty in correlating health risks 

to bathers based on monitoring data for traditional FIB (E. coli, enterococci) at all recreational water 

sites. As a result, in developing new and improved RWQC, monitoring data should no longer be based 

on monitoring data for only traditional FIB. In the development of the 2012 RWQC, three alternative 

fecal indicators (C. perfringens, coliphages, Bacteroides) were identified as most likely to overcome the 

limitations of traditional FIB. However, the effectiveness of these three alternative fecal indicators was 

not determined during the development of the 2012 RWQC. As a result, these three alternative fecal 

indicators should be identified as the primary candidates for water quality assessment during the 

development of new RWQC. In addition, other possible fecal indicator such as human enteric viruses or 

new genomic approaches (e.g., metagenomics) should also be evaluated in developing new RWQC.  

In preparation for new RWQC, detailed and relevant information on the potential indicators and methods 

expected to be evaluated are presented below. 

Culturable versus Molecular Methods of Assay. In assessing new methods to be used in the 

development of future RWQC, the traditional culturable methods should be compared with the newer 

molecular methods. The main advantage of culture-based method is that it measures the viable 

population of the target microorganism (e.g., FIB, C. perfringens, bacteriophages, viruses) in water 

samples. Since only the viable populations of pathogens in water are involved in the transmission of 

diseases to bathers, culturable levels of sewage indicators, such as FIB, are generally more representative 

of sewage-borne pathogens and GI illness rates [72], although one study [73] found that the molecular 

signal was more sensitive. The major disadvantages with culture based methods are length of time, cost, 

insensitivity of method and method limitation such as inability to feasibly culture some water-borne 

pathogen such as norovirus [74,75]. In contrast, molecular methods can overcome most of the limitations 

of culturable methods because they rely primarily on detecting unique sequences of the genetic 

composition of each microorganism. As a result, molecular methods do not require the development of 
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specific growth medium and theoretically any microorganism can be detected by this method. For public 

health assessment, molecular methods have one disadvantage because they measure both live and dead 

populations in the sample. Since only live organisms are involved in disease transmission and the ratio 

of dead to live populations vary with each sample, many assumptions need to be made to correlate 

concentrations of microbial population determined by molecular methods to the potentially infectious 

population in that water sample. 

Culturable Assay for Clostridium perfringens. C. perfringens, a spore-forming, gram-positive 

bacterium, is consistently present in relatively high concentrations in sewage (103–104 CFU/100 mL) 

and is known to be more stable in environmental waters than sewage-borne pathogens. As a result,  

C. perfringens is often considered as a conservative indicator of sewage and some critics argue that  

C. perfringens should be used as an indicator of past contamination rather than recent contamination 

events [76,77]. In this regard, culturable assay for C. perfringens was used in the original USEPA 

epidemiological studies in the 1970s [78]. In those studies, the concentrations of C. perfringens were not 

correlated to increasing concentrations of GI illness rate. As a result, the value of monitoring for  

C. perfringens was not pursued. However, in 1994 an epidemiological study in Hong Kong did show a 

correlation between increasing concentrations of C. perfringens and illness rate [79]. In Hawaii, using 

ambient concentrations of these bacteria as an index, Fujioka et al. [55,80] have proposed the following 

standards for C. perfringens for freshwater streams and marine beaches: geometric mean of  

<50 CFU/100 mL and <5 CFU/100 mL, respectively. These bacterial standards are currently being used 

in Hawaii as a secondary standard to determine when environmental samples are contaminated with 

sewage and when the contamination event has cleared. As described above, a recent study by Viau et al. 

[35] in Hawaii concluded that detection of C. perfringens was correlated to presence of pathogens in 

Hawaii’s streams. 

Unlike E. coli and enterococci, which are known to grow under environmental conditions  

(see reviews by Ferguson et al. [28]; Byappanahalli and Ishii [81]), there are not many reports of  

C. perfringens growth in non-enteric habitats, aside from a study in temperate lakes (Lake Michigan) where 

these bacteria were shown to grow in decomposing algal matter [82]. More studies are needed to confirm 

such observations since it is not clear whether C. perfringens in temperate lakes originate as environmental 

strains or just residual populations from incidental contaminants from human or animal feces. Because of 

low background levels of C. perfringens in environmental waters (e.g., in Hawaii) [55,56], these bacteria 

seem to work well as an alternate indicator in certain locations. Further, recent progress in 

methodological developments, such as the double-tube method [83], show that C. perfringens colonies 

can be observed after 5 h of incubation. Other studies to support the use of C. perfringens as a reliable 

alternative indicator include use of qPCR methods to detect C. perfringens in drinking water and 

biosolids [84,85]. 

Culturable Assays for Bacteriophages (coliphages, enterophages). Bacteriophages, viruses that infect 

and kill bacteria, have been used in a variety of applications for over 100 years. Coliphages or viruses 

that infect coliform bacteria such as E. coli have been studied as a pollution indicator since the early 

1960s [86–88]. However, coliphages are highly diverse, comprising either RNA or DNA as the genetic 

material. Based on their primary route of infection, they are broadly classified into two groups: somatic 

phages where bacterial infection is initiated through cell wall and male-specific phages with infection 

mediated through pilus (i.e., F+ cell or fertility factor). The specificity of coliphages depends on the host 
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bacteria that they can infect. In this regard, somatic phages infect most E. coli cells while F+ phages 

infect only E. coli cells that are piliated/have fertility factor. Sewage effluent contains high 

concentrations of both somatic and F+ phages and since these phages multiply in specific bacteria 

(bacterial strains) found in sewage, monitoring recreational waters for coliphages is another way to determine 

when water samples are likely contaminated with sewage. As F+ RNA coliphages are similar to human 

enteric viruses (e.g., poliovirus) in structure and morphology, genetic material, and mode of replication, they 

have been used as surrogates for disinfection efficiencies of human enteric viruses in potable (drinking) and 

wastewaters, as well as survival in environmental conditions (see Jofre, et al. [88]). Recent developments 

in serological and PCR techniques show that F+ RNA coliphages can be divided into four broad 

categories of sources, with serogroups I and IV primarily in animals, group III in humans, and group II 

in humans and some animals [89–92]. These results have been used in microbial source tracking studies. 

Since, monitoring data for coliphages were not used in the development of the 2012 RWQC, there is a 

need to determine the feasibility of monitoring water samples for coliphages, especially F+ coliphages 

as a reliable and predictable measurement for GI illness rates among bathers. 

More recently, other bacteriophages, such as those that infect enterococcus bacteria  

(enterophages) [93–95] or those that infect Bacteroides bacteria [96,97], have been reported as 

alternative markers that are sewage-specific. More research is required to determine if these alternative 

phages can provide better data than monitoring for coliphages, especially F+ coliphages. 

Human Pathogenic Viruses and Sewage Specific Human Viruses. It has long been advocated that 

recreational waters should be monitored for human enteric viruses) [34] rather than FIB, because human 

enteric viruses are believed to be the etiological agents responsible for GI illness among bathers. In the 

past, human viruses were traditionally recovered by culture based method.  

Since relatively few laboratories have tissue culture capability, studies to recover viable concentrations 

of human enteric viruses from environmental waters have been limited. However, with the recent 

development of molecular methods, many more laboratories are able to detect and enumerate 

concentrations of human pathogenic viruses from environmental waters (see McQuaig and Noble [98]). 

In this regard, molecular methods are much more feasible than culture based methods and have the added 

advantage of detecting several viruses from the same sample. As a result, when molecular methods are 

used, it is possible to measure for the most likely waterborne pathogen (norovirus) as well as other human 

specific viruses such as poliovirus or adenovirus. Whether one uses culture based or molecular based 

method to assay for human enteric viruses, the major limitation has been the low concentrations of these 

viruses in environmental waters. Therefore, there is a critical need to effectively concentrate and recover 

viruses from large volumes of water (e.g., >10 L). Many of the reported methods to concentrate water 

for virus assays are complex, costly, and/or of low efficiency. Thus, the identified need is for the 

development of an automated system which can efficiently concentrate and recover all microorganisms 

(bacteria, viruses, protozoa) from large volumes of environmental waters into a smaller volume for 

detection of these sewage sources of microorganisms. Recently, the Portable  

Multi-use Automated Concentration System (PMACS) has been reported to meet this need [99,100]. 

However, the PMACS has yet to be field tested by different laboratories to recover human enteric viruses 

from environmental waters. 

In summary, the advantage of monitoring for human enteric viruses is that they are more specific 

markers of sewage contamination than other indicators of sewage contamination, such as C. perfringens, 
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coliphages and Bacteroides. One way to address the low concentrations of human enteric viruses in 

sewage samples is the development of methods to detect human polyomavirus, which is present in higher 

concentrations in sewage than human enteric virus. Although the polyomavirus is normally found in 

human urine, since urine is discharged with wastewater, detection of human polyomavirus is considered 

a human specific sewage virus. As a result, there is greater chance of monitoring waters for human 

specific viruses by assaying for polyomavirus than for human enteric viruses. Despite the potential for 

monitoring recreational waters for human specific viruses, no epidemiological studies have been 

conducted to show that monitoring for human specific viruses is feasible and can be used to predict GI 

illness rates among bathers. However, since human viruses are the most specific markers for sewage 

contamination, this approach should be evaluated in the development of future RWQC. 

Molecular Assays for Bacteroides. Bacteroides are among the most dominant commensal bacteria in 

the human large intestine, with cell densities in excess of 1010/g feces and can exceed the concentrations 

of E. coli by a thousand-fold [101]. While estimates of bacterial abundance in the human gut vary greatly, 

nearly one-third of the microflora is dominated by members belonging to the Bacteroidetes [102]. 

Because of their high abundance in human and animal feces, Bacteroides were recognized as an indicator 

of fecal contamination in the early 1990s [103], which subsequently led to developing assays for 

Bacteroides as sensitive indicator of fecal pollution [103,104]. Most Bacteroides are strict anaerobes and 

seem well adapted to the gut. However, they are difficult to culture and molecular assays are used to 

detect their concentrations. Continued interest in Bacteroides, both as an indicator of fecal contamination 

and as a tool for differentiating contaminant sources, has led to significant improvements in developing 

gene-based assays which can specifically detect human specific Bacteroides. As a result, a number of 

specific Bacteroides assays are currently available to identify fecal sources, such as human, 

cattle/ruminants, dog, and other animals, [104–108]. The assays used include simple endpoint PCR to 

more complex molecular methods: qPCR, T-RFLP, clone libraries and subtractive hybridization. Studies 

have also shown that Bacteroides markers are fairly specific across a range of conditions and wide 

geographical areas [109]. Significantly, epidemiological studies have shown that Bacteroides densities 

correlate well with health outcomes, strongly supporting these bacteria as reliable alternate indicators in 

predicting health risks associated with contaminated recreational waters [110]. A major advantage in the 

application of molecular assay for human specific Bacteroides has been its combination of the high 

sensitivity and specificity for presence of human fecal contamination [104]. As a result, monitoring for 

Bacteroides should be evaluated in developing future RWQC. 

Metagenomics and Gut Microbiota: A new approach to detect sources of fecal contamination. Until 

recently, the extent of richness of the human gut microbiota, diversity, and general population structure 

had remained speculative because culture-dependent methods were not able to measure the large 

population of non-culturable microbes within this system. However, recent advancements in  

culture-independent molecular methods have shown that the gut environment is a vast reservoir of 

microbes representing as much as 1%–3% of body mass [111–113]. In this regard, the gut microbiome 

has become an important discipline since the intestinal microbiota plays a critical role in overall  

human health [114,115]. With advancement in next generation sequencing and metagenomics tools,  

gut microbiota is now being considered as alternate indicators for human and animal fecal contamination 

[91,116–118]. The strategy in the use of monitoring recreational waters using metagenomics technology 

is to characterize and map the different microbial community populations associated with human 
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sewage, and various animal feces. Unlike culture-based assays (C. perfringens, coliphages, Bacteroides) 

which measure for a specific microorganism or groups of closely related microorganisms, metagenomics 

technology can characterize the predominant groups of microorganisms in the gut of humans and a 

different set of predominant groups of microorganisms in the gut of various animals. By further 

analyzing the respective microbial communities, more data points or community signature can be 

established to determine if the source of contamination is from human feces or feces of various animals. 

As an example McLellan et al. [119], determined that members within Clostridales and 

Lachnospiraceae were among the most dominant bacterial groups in Milwaukee’s wastewaters, and 

these bacteria were found in an estuary and bathing beaches of  

Lake Michigan following storm events. Further, pathogen frequency was highly associated with 

Lachnospiraceae and Bacteroides markers and several molecular markers were identified within 

Clostridales and Lachnospiraceae groups for potential application in source-tracking programs.  

In summary, metagenomics is the newest technology to characterize different sources of fecal 

contamination. More studies are needed to determine if metagenomics methods are feasible for general 

use and if the generated data can be used to improve future RWQC. 

Guidelines for Future Development of RWQC. For development of future RWQC, assays for  

C. perfringens, coliphages, Bacteroides and human specific sewage-borne viruses have been identified 

as markers that are relatively sewage specific and should be evaluated in future epidemiological studies. 

In this regard, the design of the epidemiological studies should be to determine health risks to bathers 

exposed to recreational waters with point source and non-point sources of contamination.  

Each of the four assays has advantages and disadvantages. Moreover, feasibility of the methods for 

routine monitoring is important. A reasonable recommendation for routine monitoring for many sites 

would be to assay for culturable levels of C. perfringens (the most conservative assay) and for human 

specific Bacteroides (highly sensitive and specific assay for human fecal contamination). Assays for  

C. perfringens will result in culturable concentrations of sewage-borne bacteria, and because this 

population of bacteria is so stable, it is considered the most conservative of all sewage assays.  

As a result, if a water sample is negative or contains very low concentrations of C. perfringens, it is fair 

to assume that the extent of sewage contamination is minimal. Since C. perfringens is not specific to 

human sewage, elevated concentrations of C. perfringens could indicate animal fecal contamination. By 

also assaying this same water sample for human specific Bacteroides, the resulting data can determine 

if the source of C. perfringens is from sewage. Additional Bacteroides assays can be used to determine 

the specific animal fecal sources. A combination of host-specific markers increases the confidence of 

source identification in suspected waters; for instance, Johnston et al. [120] showed that when 

Bacteroides HF183 and Methanobrevibacter smithii nifH gene were both present in a sample, the 

probability of human (sewage) contamination would be greater than 98%. 

Human sewage viruses are considered to be the most specific marker for human fecal or sewage 

contamination. Moreover, some human enteric viruses are believed to be the etiological agents 

responsible for GI illness among bathers. The need to concentrate larger volumes of water can be 

addressed by automated water concentration systems. Culturable assays for human viruses are complex 

but should be developed because they can provide data, which can be used for direct public health 

assessment. However, since molecular assays for human viruses are feasible, accurate and productive, 

they should be assessed in future development of RWQC. 
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7. Summary and Conclusions 

The new 2012 RWQC did not meet the expectations of the research community because key 

recommended studies were not completed. As a result, the following limitations can be expected in the 

implementation and interpretation of the 2012 RWQC: (1) the predictable health risk to bathers based 

on the concentrations of FIB will apply to recreational water sites with point source contamination but 

not at sites with non-point sources of FIB; (2) risks to bathers at recreational water sites with non-point 

sources of FIB have not been determined; (3) the reliability of monitoring for alternative sewage markers 

(C. perfringens, coliphages, and Bacteroides) was not determined; (4) the 2012 RWQC did not show 

marked improvements over 1986 RWQC, because of the uncertainty of linking concentrations of FIB at 

all recreational water sites with human health effects; (5) guidelines to implement site-specific criteria 

are incomplete, although tools including QMRA and epidemiologic studies are available to evaluate the 

links between health and the environmental characteristics of nearshore waters regardless of source, and 

(6) beach sand is an unregulated source of FIB and pathogens, which can contribute to degrading the 

quality of regulated recreational waters. 

8. A Vision for Future Development of RWQC 

A vision for future development of RWQC is to improve on the 2012 RWQC by conducting 

epidemiological studies to determine which sewage specific marker (C. perfringens, coliphages, 

Bacteroides, human enteric viruses) will provide feasible and reliable data to predict GI illness rates for 

bathers exposed to recreational waters with point source and with non-point sources of contamination. 

The promise of selecting a sewage specific marker instead of traditional FIB is that the concentrations 

of sewage specific marker will increase beyond the RWQC only when that site is contaminated with 

sewage and when there is a definite sewage-related risk for bathers. Since epidemiological studies are 

slow, costly and only limited numbers of these studies can be completed, QMRA studies should be used 

in new epidemiological investigations so that the validity of QMRA models can be tested with actual 

measurements of illness rates from the epidemiological studies.  

In addition, QMRA, microbial source tracking and metagenomics should be also used to measure health 

risks to bathers from non-sewage sources of pathogens. 
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