Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action
Abstract
1. Introduction
2. Bioactive Peptide from Tuna
2.1. Antioxidant Peptides
2.1.1. Mechanism of Action of Antioxidant Peptides
2.1.2. Antioxidant Peptides in Tuna
2.2. Hypotensive Active Peptides
2.2.1. Mechanism of Action of Hypotensive Active Peptides
2.2.2. Hypotensive Active Peptides in Tuna
2.3. Other Bioactive Peptides in Tuna
3. Advances in Screening and Extraction Methods for Bioactive Peptides
3.1. Extraction of Bioactive Peptides and Purification Methods
3.2. Screening, and Activity Evaluation of Bioactive Peptides
4. Current Challenges and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Agriculture Organization of the United Nations. Marine Resources Service Review of the State of World Marine Fishery Resources; Food & Agriculture Org.: Rome, Italy, 2005; Volume 457, ISBN 92-5-105267-0. [Google Scholar]
- Chamorro, F.; Cassani, L.; Garcia-Oliveira, P.; Barral-Martinez, M.; Jorge, A.O.S.; Pereira, A.G.; Otero, P.; Fraga-Corral, M.; Oliveira, M.B.P.P.; Prieto, M.A. Health Benefits of Bluefin Tuna Consumption: (Thunnus thynnus) as a Case Study. Front. Nutr. 2024, 11, 1340121. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, P.; Wang, L.; Wu, Z.; Chen, X.D. Exploring in Vitro Release and Digestion of Commercial DHA Microcapsules from Algae Oil and Tuna Oil with Whey Protein and Casein as Wall Materials. Food Funct. 2022, 13, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ren, Y.; Zhong, S.; Xu, B. New Insight into Utilization of Fish By-Product Proteins and Their Skin Health Promoting Effects. Mar. Drugs 2024, 22, 215. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Keskin Ulug, S.; Hong, H.; Wu, J. Regulatory Requirements of Bioactive Peptides (Protein hydrolysates) from Food Proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of Bioactive Peptides from Various Origin as Promising Nutraceutical Treasures: In Vitro, in Silico and in Vivo Studies. Food Chem. 2022, 373, 131395. [Google Scholar] [CrossRef]
- Suarez-Jimenez, G.-M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.-M. Bioactive Peptides and Depsipeptides with Anticancer Potential: Sources from Marine Animals. Mar. Drugs 2012, 10, 963–986. [Google Scholar] [CrossRef]
- Kang, H.K.; Seo, C.H.; Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs 2015, 13, 618–654. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Zhu, S.-S.; He, M.-J.; Luo, F.; Fu, C.-Z.; Zou, T.-B. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus—A Prospect. Mar. Drugs 2017, 15, 88. [Google Scholar] [CrossRef]
- Lee, S.-H.; Qian, Z.-J.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118, 96–102. [Google Scholar] [CrossRef]
- Hsu, K.-C. Purification of Antioxidative Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle By-Product. Food Chem. 2010, 122, 42–48. [Google Scholar] [CrossRef]
- Han, P.; Zhao, M.; Wang, Z.; Chen, N.; Liu, F.; Lu, S.; Dong, J.; Sun, J. Characterization of Ultrasound-Induced Soybean Peptide Particles (SPPs) and SPP-Stabilized Pickering Emulsions Combined with Amino Acid Sequence Analysis. Food Hydrocoll. 2025, 163, 111073. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Oxidative Stress in Cell Death and Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9030563. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant-and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef]
- Li, M.; Fan, W.; Xu, Y. Identification of Angiotensin Converting Enzyme (ACE) Inhibitory and Antioxidant Peptides Derived from Pixian Broad Bean Paste. LWT 2021, 151, 112221. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Chen, B.; Xu, M.; Liu, S.; Su, Y.; Qiao, K.; Liu, Z. Advances in Research on Marine-Derived Lipid-Lowering Active Substances and Their Molecular Mechanisms. Nutrients 2023, 15, 5118. [Google Scholar] [CrossRef]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological Production of Omega-3 Fatty Acids: Current Status and Future Perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef]
- Wiriyaphan, C.; Chitsomboon, B.; Roytrakul, S.; Yongsawadigul, J. Isolation and Identification of Antioxidative Peptides from Hydrolysate of Threadfin Bream Surimi Processing Byproduct. J. Funct. Foods 2013, 5, 1654–1664. [Google Scholar] [CrossRef]
- Wang, K.; Han, L.; Hong, H.; Pan, J.; Liu, H.; Luo, Y. Purification and Identification of Novel Antioxidant Peptides from Silver Carp Muscle Hydrolysate After Simulated Gastrointestinal Digestion and Transepithelial Transport. Food Chem. 2021, 342, 128275. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubzadeh, Z.; Peyravii Ghadikolaii, F.; Kaboosi, H.; Safari, R.; Fattahi, E. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. Int. J. Pept. Res. Ther. 2020, 26, 625–632. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Maimaiti, B.; Liu, J.; Li, Z.; Cheng, Y.; Zhao, W.; Mijiti, S.; Jiang, T.; Meng, Q.; et al. Circulating Malondialdehyde Level in Patients with Epilepsy: A Meta-Analysis. Seizure Eur. J. Epilepsy 2022, 99, 113–119. [Google Scholar] [CrossRef]
- Hsieh, H.-M.; Wu, W.-M.; Hu, M.-L. Soy Isoflavones Attenuate Oxidative Stress and Improve Parameters Related to Aging and Alzheimer’s Disease in C57BL/6J Mice Treated with d-Galactose. Food Chem. Toxicol. 2009, 47, 625–632. [Google Scholar] [CrossRef]
- Fu, Y.; Li, C.; Wang, Q.; Gao, R.; Cai, X.; Wang, S.; Zhang, Y. The Protective Effect of Collagen Peptides from Bigeye Tuna (Thunnus obesus) Skin and Bone to Attenuate UVB-Induced Photoaging via MAPK and TGF-β Signaling Pathways. J. Funct. Foods 2022, 93, 105101. [Google Scholar] [CrossRef]
- Wardani, D.W.; Ningrum, A.; Manikharda; Vanidia, N.; Munawaroh, H.S.H.; Susanto, E.; Show, P.-L. In Silico and in Vitro Assessment of Yellowfin Tuna Skin (Thunnus albacares) Hydrolysate Antioxidation Effect. Food Hydrocoll. Health 2023, 3, 100126. [Google Scholar] [CrossRef]
- Cai, B.; Wan, P.; Chen, H.; Huang, J.; Ye, Z.; Chen, D.; Pan, J. Purification and Identification of Novel Myeloperoxidase Inhibitory Antioxidant Peptides from Tuna (Thunnas albacares) Protein Hydrolysates. Molecules 2022, 27, 2681. [Google Scholar] [CrossRef]
- Yang, X.-R.; Zhao, Y.-Q.; Qiu, Y.-T.; Chi, C.-F.; Wang, B. Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in Vitro Gastrointestinal Digestion. Mar. Drugs 2019, 17, 78. [Google Scholar] [CrossRef]
- Saidi, S.; Saoudi, M.; Ben Amar, R. Valorisation of Tuna Processing Waste Biomass: Isolation, Purification and Characterisation of Four Novel Antioxidant Peptides from Tuna by-Product Hydrolysate. Environ. Sci. Pollut. Res. 2018, 25, 17383–17392. [Google Scholar] [CrossRef]
- Je, J.-Y.; Qian, Z.-J.; Lee, S.-H.; Byun, H.-G.; Kim, S.-K. Purification and Antioxidant Properties of Bigeye Tuna (Thunnus obesus) Dark Muscle Peptide on Free Radical-Mediated Oxidative Systems. J. Med. Food 2008, 11, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Zhao, Y.-Q.; Wang, Y.-M.; Yang, X.-R.; Chi, C.-F.; Wang, B. Gelatins and Antioxidant Peptides from Skipjack Tuna (Katsuwonus pelamis) Skins: Purification, Characterization, and Cytoprotection on Ultraviolet-A Injured Human Skin Fibroblasts. Food Biosci. 2022, 50, 102138. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.-M.; Li, L.-Y.; Chi, C.-F.; Wang, B. Twelve Antioxidant Peptides from Protein Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Roe Prepared by Flavourzyme: Purification, Sequence Identification, and Activity Evaluation. Front. Nutr. 2022, 8, 813780. [Google Scholar] [CrossRef] [PubMed]
- Haldar, R. Global Brief on Hypertension: Silent Killer, Global Public Health Crisis. Indian J. Phys. Med. Rehabil. 2013, 24, 2. [Google Scholar] [CrossRef]
- Chockalingam, A.; Campbell, N.R.; Fodor, J.G. Worldwide Epidemic of Hypertension. Can. J. Cardiol. 2006, 22, 553–555. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ezeorba, T.P.C.; Aham, E.C.; Aguchem, R.N.; Nechi, R.N. Recent Findings on the Cellular and Molecular Mechanisms of Action of Novel Food-Derived Antihypertensive Peptides. Food Chem. Mol. Sci. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Wisniewski, P.; Gangnus, T.; Burckhardt, B.B. Recent Advances in the Discovery and Development of Drugs Targeting the Kallikrein-Kinin System. J. Transl. Med. 2024, 22, 388. [Google Scholar] [CrossRef]
- He, H.-L.; Liu, D.; Ma, C.-B. Review on the Angiotensin-I-Converting Enzyme (ACE) Inhibitor Peptides from Marine Proteins. Appl. Biochem. Biotechnol. 2013, 169, 738–749. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Q.; Zhang, T.; Liu, M.; Duan, S.; Sun, X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4068. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhong, Q.; Wu, Y.; Xia, W. Purification and Characterization of a Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide Derived from Enzymatic Hydrolysate of Grass Carp Protein. Peptides 2012, 33, 52–58. [Google Scholar] [CrossRef]
- Balti, R.; Bougatef, A.; Sila, A.; Guillochon, D.; Dhulster, P.; Nedjar-Arroume, N. Nine Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Cuttlefish (Sepia officinalis) Muscle Protein Hydrolysates and Antihypertensive Effect of the Potent Active Peptide in Spontaneously Hypertensive Rats. Food Chem. 2015, 170, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; Gómez-Guillén, M.; Montero, P. Identification of Ace-Inhibitory Peptides from Squid Skin Collagen after in Vitro Gastrointestinal Digestion. Food Res. Int. 2013, 54, 790–795. [Google Scholar] [CrossRef]
- Seki, E.; Osajima, K.; Matsufuji, H.; Matsui, T.; Osajima, Y. Angiotensin I Converting Enzyme Inhibitory Activity of the Short Chain Peptides Derived from Various Food Proteins. J. Jpn. Soc. Food Sci. Eng. 1996, 43, 839–840. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Wang, H.; Wu, X.; Tu, Z. Novel Angiotensin-Converting Enzyme Inhibitory Peptides Derived from Tuna (Thunnus maccoyii): The Integration of Computer Tools with in Vitro Experiments. Food Biosci. 2025, 63, 105509. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Wang, H.; Liu, J.; Hu, Y.; Tu, Z. Angiotensin Converting Enzyme (ACE) Inhibitory Peptide from the Tuna (Thunnus thynnus) Muscle: Screening, Interaction Mechanism and Stability. Int. J. Biol. Macromol. 2024, 279, 135469. [Google Scholar] [CrossRef]
- Intarasirisawat, R.; Benjakul, S.; Wu, J.; Visessanguan, W. Isolation of Antioxidative and ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack (Katsuwana pelamis) Roe. J. Funct. Foods 2013, 5, 1854–1862. [Google Scholar] [CrossRef]
- Zu, X.-Y.; Zhao, Y.-N.; Liang, Y.; Li, Y.-Q.; Wang, C.-Y.; Zhao, X.-Z.; Wang, H. Research on the Screening and Inhibition Mechanism of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Tuna Dark Muscle. Food Biosci. 2024, 59, 103956. [Google Scholar] [CrossRef]
- Qian, Z.-J.; Je, J.-Y.; Kim, S.-K. Antihypertensive Effect of Angiotensin I Converting Enzyme-Inhibitory Peptide from Hydrolysates of Bigeye Tuna Dark Muscle, Thunnus obesus. J. Agric. Food Chem. 2007, 55, 8398–8403. [Google Scholar] [CrossRef]
- Qiao, Q.-Q.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, Characterization, and Cytoprotective Effects on HUVECs of Fourteen Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides from Protein Hydrolysate of Tuna Processing by-Products. Front. Nutr. 2022, 9, 868681. [Google Scholar] [CrossRef]
- Kasiwut, J.; Youravong, W.; Adulyatham, P.; Sirinupong, N. Angiotensin I-Converting Enzyme Inhibitory and Ca-Binding Activities of Peptides Prepared from Tuna Cooking Juice and Spleen Proteases. Int. J. Food Sci. Technol. 2015, 50, 389–395. [Google Scholar] [CrossRef]
- Suo, S.-K.; Zheng, S.-L.; Chi, C.-F.; Luo, H.-Y.; Wang, B. Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Tuna Byproducts—Milts: Preparation, Characterization, Molecular Docking Study, and Antioxidant Function on H2O2-Damaged Human Umbilical Vein Endothelial Cells. Front. Nutr. 2022, 9, 957778. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-L.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Mar. Drugs 2022, 20, 176. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.S.; Okagu, I.U.; Chukwudozie, K.; Ezike, T.C.; Ezeorba, T.P.C. Marine-Derived Bioactive Proteins and Peptides: A Review of Current Knowledge on Anticancer Potentials, Clinical Trials, and Future Prospects. Nat. Prod. Commun. 2024, 19, 1934578X241239825. [Google Scholar] [CrossRef]
- Tansukkasem, S.; Kaewpathomsri, P.; Jonjaroen, V.; Payongsri, P.; Lertsiri, S.; Niamsiri, N. Production and Characterization of Heme Iron Polypeptide from the Blood of Skipjack Tuna (Katsuwonus pelamis) Using Enzymatic Hydrolysis for Food Supplement Application. Foods 2023, 12, 3249. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial Peptides: Mechanism of Action, Activity and Clinical Potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and Antibiofilm Peptides. Biomolecules 2020, 10, 652. [Google Scholar] [CrossRef]
- Masso-Silva, J.A.; Diamond, G. Antimicrobial Peptides from Fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Park, T.H.; Park, N.G. Purification and Characterization of YFGAP, a GAPDH-Related Novel Antimicrobial Peptide, from the Skin of Yellowfin Tuna, Thunnus albacares. Fish Shellfish Immunol. 2012, 33, 743–752. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, B.; Chen, H.; Wan, P.; Chen, D.; Ye, Z.; Duan, A.; Chen, X.; Sun, H.; Pan, J. Tuna Trimmings (Thunnas albacares) Hydrolysate Alleviates Immune Stress and Intestinal Mucosal Injury during Chemotherapy on Mice and Identification of Potentially Active Peptides. Curr. Res. Food Sci. 2023, 7, 100547. [Google Scholar] [CrossRef]
- Hsu, K.-C.; Li-Chan, E.C.Y.; Jao, C.-L. Antiproliferative Activity of Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle on Human Breast Cancer Cell Line MCF-7. Food Chem. 2011, 126, 617–622. [Google Scholar] [CrossRef]
- Huang, F.; Dai, Q.; Zheng, K.; Ma, Q.; Liu, Y.; Jiang, W.; Yan, X. Unmasking the Efficacy of Skipjack Tuna (Katsuwonus pelamis) Dark Muscle Hydrolyzate in Lipid Regulation: A Promising Component for Functional Food. Int. J. Food Prop. 2023, 26, 3014–3029. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Jung, H.-G.; Go, H.-J.; Kim, Y.J.; Park, N.G. Antimicrobial Function of SHβAP, a Novel Hemoglobin β Chain-Related Antimicrobial Peptide, Isolated from the Liver of Skipjack Tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014, 37, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-R.; Sun, J.-P.; Zhu, Q.-Y.; Yao, W.; Song, R.; Wang, J.-X. Optimization of Preparation and In-Vitro Activity of Uricate-Lowering Peptide from Dorsal Belly Meat of Skipjack. Food Mach. 2023, 39, 153–160. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, B.; Yu, R.; Sun, X.; Wang, Z.; Zhou, J.; Lu, C.; Zhang, J.; Han, J.; Su, X. Studies on Blocking the JAK2/STAT3 Signaling Pathway with Elastin Peptides from Skipjack Tuna (Katsuwonus pelamis) Bulbus Cordis to Alleviate Osteoarthritis. Food Biosci. 2023, 56, 103253. [Google Scholar] [CrossRef]
- Yu, Z.; Kan, R.; Wu, S.; Guo, H.; Zhao, W.; Ding, L.; Zheng, F.; Liu, J. Xanthine Oxidase Inhibitory Peptides Derived from Tuna Protein: Virtual Screening, Inhibitory Activity, and Molecular Mechanisms. J. Sci. Food Agric. 2021, 101, 1349–1354. [Google Scholar] [CrossRef]
- Siahaan, E.A.; Agusman; Pangestuti, R.; Shin, K.-H.; Kim, S.-K. Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar. Drugs 2022, 20, 734. [Google Scholar] [CrossRef]
- Kubomura, D.; Yamada, M.; Masui, A. Tuna Extract Reduces Serum Uric Acid in Gout-Free Subjects with Insignificantly High Serum Uric Acid: A Randomized Controlled Trial. Biomed. Rep. 2016, 5, 254–258. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, B.; Yu, R.; Sun, X.; Wang, Z.; Zhou, J.; Lu, C.; Wan, H.; Zhang, J.; Han, J.; et al. Bacterial Community Mapping of the AIA Mouse Gastrointestinal Tract under Dietary Intervention with Skipjack Tuna (Katsuwonus pelamis) Elastin Peptides. Food Biosci. 2023, 53, 102661. [Google Scholar] [CrossRef]
- He, W.; Su, G.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Zhao, M.; Liu, Y. In Vivo Anti-Hyperuricemic and Xanthine Oxidase Inhibitory Properties of Tuna Protein Hydrolysates and Its Isolated Fractions. Food Chem. 2019, 272, 453–461. [Google Scholar] [CrossRef]
- Hao, L.; Ding, Y.; Fan, Y.; Tian, Q.; Liu, Y.; Guo, Y.; Zhang, J.; Hou, H. Identification of Hyperuricemia Alleviating Peptides from Yellow Tuna Thunnus albacares. J. Agric. Food Chem. 2024, 72, 12083–12099. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Wang, F.; Zhu, W.; Li, X. Combining Bioinformatic Prediction and Assay Experiment to Identify Novel Xanthine Oxidase Inhibitory Peptides from Pacific Bluefin Tuna (Thunnus orientalis). In Proceedings of the 2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020), Xi’an, China, 7–9 August 2020; EDP Sciences. Volume 185, p. 04062. [Google Scholar]
- Su, G.; He, W.; Zhao, M.; Waterhouse, G.I.N.; Sun-Waterhouse, D. Effect of Different Buffer Systems on the Xanthine Oxidase Inhibitory Activity of Tuna (Katsuwonus pelamis) Protein Hydrolysate. Food Res. Int. 2018, 105, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xian, M.; Qu, C.; Peng, P.; Yongo, E.; Guo, Z.; Du, Z.; Xiao, J. Novel Se-Enriched α-Glucosidase Inhibitory Peptide Derived from Tuna Dark Meat: Preparation, Identification and Effects on IR-HepG2 Cells. Food Biosci. 2024, 60, 104357. [Google Scholar] [CrossRef]
- Shi, C.; Hu, D.; Wei, L.; Yang, X.; Wang, S.; Chen, J.; Zhang, Y.; Dong, X.; Dai, Z.; Lu, Y. Identification and Screening of Umami Peptides from Skipjack Tuna (Katsuwonus pelamis) Hydrolysates Using EAD/CID Based Micro-UPLC-QTOF-MS and the Molecular Interaction with T1R1/T1R3 Taste Receptor. J. Chromatogr. A 2024, 1734, 465290. [Google Scholar] [CrossRef]
- Safitri, E.; Kuziel, O.H.; Nagai, T.; Saito, M. Characterization of Collagen and Its Hydrolysate from Southern Bluefin Tuna Skin and Their Potencies as DPP-IV Inhibitors. Food Chem. Adv. 2024, 5, 100774. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, S.; Zhang, Y.; Gao, M.; Luo, Z.; Cai, S. Combining Molecular Docking and Molecular Dynamics Simulation to Discover Four Novel Umami Peptides from Tuna Skeletal Myosin with Sensory Evaluation Validation. Food Chem. 2024, 433, 137331. [Google Scholar] [CrossRef]
- Cai, B.; Chen, H.; Wan, P.; Luo, L.; Ye, Z.; Huang, J.; Chen, D.; Pan, J. Isolation and Identification of Immunomodulatory Peptides from the Protein Hydrolysate of Tuna Trimmings (Thunnas albacares). LWT 2022, 164, 113614. [Google Scholar] [CrossRef]
- Zhong, H.; Abdullah; Zhang, Y.; Deng, L.; Zhao, M.; Tang, J.; Zhang, H.; Feng, F.; Wang, J. Exploring the Potential of Novel Xanthine Oxidase Inhibitory Peptide (ACECD) Derived from Skipjack Tuna Hydrolysates Using Affinity-Ultrafiltration Coupled with HPLC–MALDI-TOF/TOF-MS. Food Chem. 2021, 347, 129068. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Kim, Y.J.; Park, N.G. Antimicrobial Function of the GAPDH-Related Antimicrobial Peptide in the Skin of Skipjack Tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014, 36, 571–581. [Google Scholar] [CrossRef]
- Yu, Z.; Kan, R.; Ji, H.; Wu, S.; Zhao, W.; Shuian, D.; Liu, J.; Li, J. Identification of Tuna Protein-Derived Peptides as Potent SARS-CoV-2 Inhibitors via Molecular Docking and Molecular Dynamic Simulation. Food Chem. 2021, 342, 128366. [Google Scholar] [CrossRef]
- Peng, P.; Yu, H.; Xian, M.; Qu, C.; Guo, Z.; Li, S.; Zhu, Z.; Xiao, J. Preparation of Acetylcholinesterase Inhibitory Peptides from Yellowfin Tuna Pancreas Using Moderate Ultrasound-Assisted Enzymatic Hydrolysis. Mar. Drugs 2025, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Song, Y.; Zheng, B.; Zhao, Y.; Hong, B.; Ma, M.; Wen, Z.; Miao, W.; Xu, Y. Preparation, Identification, Activity Prediction, and Protective Effects on IR-HepG2 Cells of Five Novel DPP-IV Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Dark Muscles. Food Funct. 2023, 14, 10991–11004. [Google Scholar] [CrossRef] [PubMed]
- Ortizo, R.G.G.; Sharma, V.; Tsai, M.-L.; Wang, J.-X.; Sun, P.-P.; Nargotra, P.; Kuo, C.-H.; Chen, C.-W.; Dong, C.-D. Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Appl. Sci. 2023, 13, 5768. [Google Scholar] [CrossRef]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish Viscera Protein Hydrolysates: Production, Potential Applications and Functional and Bioactive Properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef]
- Hassan, M.A.; Xavier, M.; Gupta, S.; Nayak, B.B.; Balange, A.K. Antioxidant Properties and Instrumental Quality Characteristics of Spray Dried Pangasius Visceral Protein Hydrolysate Prepared by Chemical and Enzymatic Methods. Environ. Sci. Pollut. Res. 2019, 26, 8875–8884. [Google Scholar] [CrossRef]
- Kaewsahnguan, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. A Novel Angiotensin I-Converting Enzyme Inhibitory Peptide Derived from the Trypsin Hydrolysates of Salmon Bone Proteins. PLoS ONE 2021, 16, e0256595. [Google Scholar] [CrossRef]
- Liu, W.; Han, Y.; An, J.; Yu, S.; Zhang, M.; Li, L.; Liu, X.; Li, H. Alternation in Sequence Features and Their Influence on the Anti-Inflammatory Activity of Soy Peptides during Digestion and Absorption in Different Enzymatic Hydrolysis Conditions. Food Chem. 2025, 471, 142824. [Google Scholar] [CrossRef]
- Tang, S.; Chen, D.; Shen, H.; Yuan, Z.; Wei, H.; Feng, Y.; Li, L.; Dong, J.; Zhang, L. Discovery of Two Novel ACE Inhibitory Peptides from Soybeans: Stability, Molecular Interactions, and in Vivo Antihypertensive Effects. Int. J. Biol. Macromol. 2025, 308, 142247. [Google Scholar] [CrossRef]
- Saleh, A.S.; Wang, P.; Wang, N.; Yang, S.; Xiao, Z. Technologies for Enhancement of Bioactive Components and Potential Health Benefits of Cereal and Cereal-Based Foods: Research Advances and Application Challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 207–227. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Leon, M.J.; Millan-Linares, M.C.; Montserrat-De la Paz, S. Antimicrobial Plant-Derived Peptides Obtained by Enzymatic Hydrolysis and Fermentation as Components to Improve Current Food Systems. Trends Food Sci. Technol. 2023, 135, 32–42. [Google Scholar] [CrossRef]
- Zaky, A.A.; Abd El-Aty, A.; Ma, A.; Jia, Y. An Overview on Antioxidant Peptides from Rice Bran Proteins: Extraction, Identification, and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, Y.; Hou, X.; Lu, Y.; Meng, H.; Pei, S.; Dai, Z.; Wu, S. Separation and Identification of ACE Inhibitory Peptides from Lizard Fish Proteins Hydrolysates by Metal Affinity-Immobilized Magnetic Liposome. Protein Expr. Purif. 2022, 191, 106027. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.M.; Bandyopadhyay, A. High Throughput Virtual Screening (HTVS) of Peptide Library: Technological Advancement in Ligand Discovery. Eur. J. Med. Chem. 2022, 243, 114766. [Google Scholar] [CrossRef]
- Teymennet-Ramírez, K.V.; Martínez-Morales, F.; Trejo-Hernández, M.R. Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications. Front. Bioeng. Biotechnol. 2022, 9, 794742. [Google Scholar] [CrossRef]
- Syu, G.-D.; Dunn, J.; Zhu, H. Developments and Applications of Functional Protein Microarrays*. Mol. Cell. Proteom. 2020, 19, 916–927. [Google Scholar] [CrossRef]
- Nong, N.T.P.; Hsu, J.-L. Bioactive Peptides: An Understanding from Current Screening Methodology. Processes 2022, 10, 1114. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, M.; Huang, L.; Wang, J.; Gong, L.; Liu, J.; Sun, B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J. Food Sci. 2017, 82, 278–288. [Google Scholar] [CrossRef]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-Learning Methods for Ligand–Protein Molecular Docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef]
- Du, A.; Jia, W. Virtual Screening, Identification, and Potential Antioxidant Mechanism of Novel Bioactive Peptides during Aging by a Short-Chain Peptidomics, Quantitative Structure–Activity Relationship Analysis, and Molecular Docking. Food Res. Int. 2023, 172, 113129. [Google Scholar] [CrossRef]
- Meng, P.; Wang, Y.; Huang, Y.; Liu, T.; Ma, M.; Han, J.; Su, X.; Li, W.; Wang, Y.; Lu, C. A Strategy to Boost Xanthine Oxidase and Angiotensin Converting Enzyme Inhibitory Activities of Peptides via Molecular Docking and Module Substitution. Food Chem. 2024, 442, 138401. [Google Scholar] [CrossRef] [PubMed]
- Lina, L.; Jingru, S.; Wanting, Z.; Yuanyuan, Z.; Changyuan, W. Purification and Molecular Docking of α-Glucosidase Inhibitory Peptides from Mung Bean Protein Hydrolysates. LWT 2025, 222, 117545. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Hong, J.; Yuan, X.; Tian, W.; Zhao, D.; Sun, B.; Sun, J.; Wu, J.; Huang, M.; et al. Exploration of the Flavor Mechanism of Novel Umami Peptides from Lager Beer: HPLC-Q-TOF-MS Combined with Flavor Perception, Molecular Docking and Molecular Dynamics Simulation. J. Food Compos. Anal. 2025, 141, 107338. [Google Scholar] [CrossRef]
- Ye, X.; Yang, R.; Yang, Z.; Huang, B.; Riaz, T.; Zhao, C.; Chen, J. Novel Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptides from Porphyra Haitanensis: Screening, Digestion Stability, and Mechanistic Insights. Food Biosci. 2025, 68, 106460. [Google Scholar] [CrossRef]
Source | Extraction Site | Active Substance Name | Mechanism of Action | Reference |
---|---|---|---|---|
Bigeye tuna | Skin and bones | TSCP, TBCP | Inhibition of signaling pathways | [28] |
Yellowfin tuna | Skin | PH, PWG, EL, AH, IR, HL | Inhibition of MPO activity | [29] |
Yellowfin tuna | Trimmings | ACGSDGK | Inhibition of MPO activity | [30] |
Skipjack Tuna | Bones | GADIVA, GAEGFIF | Scavenging free radicals | [31] |
Skipjack Tuna | Dark muscle | YENGGG, EGYPWN, YIVYPG, WGDAGGGYY | Scavenging free radicals | [32] |
Bigeye tuna | Dark muscle | APTDM | Scavenging free radicals | [33] |
Skipjack Tuna | Skin | STG-AH | Scavenging free radicals | [34] |
Skipjack Tuna | Roes | AEM, QDHK, YEA, AEHNH, YVM | Scavenging free radicals | [35] |
Source | Extraction Site | Active Substance Name | IC50 | Reference |
---|---|---|---|---|
Atlantic tuna | Muscle | LTGCP, YPKP | 64.3 μM, 139.6 μM | [47] |
Skipjack Tuna | Roes | MLVFAV | 3.07 μM | [48] |
Skipjack Tuna | Dark muscle | FPPDVA | 87.11 ± 1.02 μM | [49] |
Bigeye tuna | Dark muscle | WPEAAELMMEVDP | 21.6 µM | [50] |
Skipjack Tuna | Dark muscle | MWN, MEKS, MKKS, LPRS | 0.328 ± 0.035, 0.527 ± 0.030, 0.269 ± 0.006, 0.495 ± 0.024 mg/mL | [51] |
skipjack tuna | Milts | ICY, LSFR, IYSP | 0.48, 0.59, 0.76 mg/mL | [53] |
Skipjack Tuna | Muscle | SP, VDRYF | 0.06 ± 0.01, 0.28 ± 0.03 mg/mL | [54] |
Source | Extraction Site | Active Substance Name | Activity | Reference |
---|---|---|---|---|
Yellowfin tuna | Dark muscles | KPLSeCPK | α-glucosidase inhibition | [76] |
Skipjack tuna | Flesh of fish | FQLSAER, GEVDDSIQE, YEAFVK, KSIDDVEE | Umami peptide | [77] |
Bluefin tuna | Skin | GPSGGGYDV | DPP-IV inhibitory peptide | [78] |
Bluefin tuna | Skeletal myosin | LADW, MEIDD, VAEQE, EEAEGT | Umami peptide | [79] |
Yellowfin tuna | Trimmings | HIAEEADRK AEQAESDKK | Immunomodulatory peptide | [80] |
Skipjack tuna | Muscles | ACECD | XODI peptide | [81] |
Skipjack tuna | Skin | SJGAP | Antimicrobial peptide | [82] |
Bluefin tuna | Skeletal myosin | EEAGGATAAQIEM | Antiviral peptide | [83] |
Yellowfin tuna | Pancreas | LLDF | Ache inhibitory peptide | [84] |
Skipjack tuna | Dark muscles | APP, PPP, DPLL, EAVP, EAIP | DPP-IV inhibitory peptide | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.-a.; Wang, D.; Yu, G.; Chen, S.; Ma, Z.; Wei, Y.; Zhao, X.; Li, C.; Wang, Y.; Zhang, Y.; et al. Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action. Mar. Drugs 2025, 23, 293. https://doi.org/10.3390/md23070293
Cheng J-a, Wang D, Yu G, Chen S, Ma Z, Wei Y, Zhao X, Li C, Wang Y, Zhang Y, et al. Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action. Marine Drugs. 2025; 23(7):293. https://doi.org/10.3390/md23070293
Chicago/Turabian StyleCheng, Jing-an, Di Wang, Gang Yu, Shengjun Chen, Zhenhua Ma, Ya Wei, Xue Zhao, Chunsheng Li, Yueqi Wang, Yi Zhang, and et al. 2025. "Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action" Marine Drugs 23, no. 7: 293. https://doi.org/10.3390/md23070293
APA StyleCheng, J.-a., Wang, D., Yu, G., Chen, S., Ma, Z., Wei, Y., Zhao, X., Li, C., Wang, Y., Zhang, Y., Cao, R., & Zhao, Y. (2025). Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action. Marine Drugs, 23(7), 293. https://doi.org/10.3390/md23070293