Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review
Abstract
:1. Introduction
2. Microalgae as Functional Food
3. Microalgae as Functional Feed
4. Microalgae as Probiotics
5. Microalgae as Prebiotics
6. From Research Findings to Actual Commercialization
7. Sustainability Issues
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kay, R.A.; Barton, L.L.; Kay, R.A. Microalgae as food and supplement microalgae as food and supplement. Crit. Ver. Food Sci. Nutr. 1991, 30, 37–41. [Google Scholar]
- Hayes, M.; Skomedal, H.; Skjånes, K.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Catala, M.; Isleten Hosoglu, M.; García-Vaquero, M. Microalgal proteins for fedd, food and health. In Microalgae - Based Biofuels and Bioproducts: From Feedsotck Cultivation to End-Products; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Elsevier- Woodhead Publishing Series in Energy: Duxford, UK, 2017; pp. 347–368. [Google Scholar]
- Dittami, S.M.; Heesch, S.; Olsen, J.L.; Collén, J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. J. Phycol. 2017, 53, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Raymundo, A.; Batista, A.P.; Sousa, I.; Empis, J. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur. Food Res. Technol. 2006, 222, 362–367. [Google Scholar] [CrossRef]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Uysal, O.; Uysal, O.; Ek, K. Determination of fertilizing characteristics of three different microalgae cultivated in raceways in greenhouse conditions could increase soil fertility and product yield. Agron. Ser. Sci. Res. 2016, 59, 15–19. [Google Scholar]
- Rashid, N.; Park, W.K.; Selvaratnam, T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere 2018, 194, 67–75. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Gellenbeck, K.W. Utilization of algal materials for nutraceutical and cosmeceutical applications-what do manufacturers need to know? J. Appl. Phycol. 2012, 24, 309–313. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Sousa, I.; Raymundo, A.; Bandarra, N.M. Microalgae in Novel Food Product. In Food Chemistry Research Developments; Papadoupoulos, K., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 75–112. [Google Scholar]
- De Jesus Raposo, M.F.; De Morais, R.M.S.C.; De Morais, A.M.M.B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Vidanarachchi, J.K.; Kurukulasuriya, M.S.; Malshani Samaraweera, A.; Silva, K.F.S.T. Applications of Marine Nutraceuticals in Dairy Products. Adv Food Nutr Res. 2012, 65, 457–478. [Google Scholar] [PubMed]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae – A review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C. Prebiotic efficiency of blue green algae on probiotics microorganisms. J. Microbiol. Exp. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- United Nations. Revision of world population prospects. Available online: https://esa.un.org/unpd/wpp/publications/files/keyfindingswpp2015.pdf. (accessed on 21 December 2018).
- Westhoek, H.; Rood, T.; Van Den Berg, M.; Janse, J.; Nijdam, D.; Reudink, M.; Stehfest, E.; Lesschen, J.P.; Oenema, O.; Woltjer, G.B. The protein puzzle. The consumption and production of meat, dairy and fish in the European Union; Hunt, S., Lyon, S., Righart, A., Eds.; PBL Publishers: The Hague, The Netherlands, 2011; pp. 12–218. [Google Scholar]
- Andrade, L.M. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an Overview. MOJ Food Process. Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization of the United Nations. The State of Food Insecurity in the world 2008: High food prices and food security-threats and opportunities. Available online: http://www.fao.org/docrep/pdf/011/i0291e/i0291e00.pdf (accessed on 10 July 2018).
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Plaza, M.; Herrero, M.; Alejandro Cifuentes, A.; Ibáñez, E. Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Maroneze, M.M.; Deprá, M.C.; Sartori, R.B.; Dias, R.R.; Zepka, L.Q. Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Curr. Opin. Food Sci. 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Khazi, M.I.; Demirel, Z.; Dalay, M.C. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J. Appl. Phycol. 2018, 30, 1513–1523. [Google Scholar] [CrossRef]
- Chronakis, I.S.; Galatanu, A.N.; Nylander, T.; Lindman, B. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 173, 181–192. [Google Scholar] [CrossRef]
- Soares, A.T.; Júnior, J.G.M.; Lopes, R.G.; Derner, R.B.; Filho, N.R.A. Improvement of the extraction process for high commercial value pigments from desmodesmus sp. microalgae. J. Braz. Chem. Soc. 2016, 27, 1083–1093. [Google Scholar]
- Jianzhong, Y.; Mingxiong, X. High-protein milk powder. C.N. Patent 106359605, 1 February 2017. [Google Scholar]
- Mohammadi-Gouraji, E.; Soleimanian-Zad, S.; Ghiaci, M. Phycocyanin-enriched yogurt and its antibacterial and physicochemical properties during 21 days of storage. LWT 2018, 102, 230–236. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Abo-El-Khair, B.E.; Shalaby, S.M. Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. World Appl. Sci. J. 2013, 23, 914–925. [Google Scholar]
- Golmakani, M.T.; Soleimanian-Zad, S.; Alavi, N.; Nazari, E.; Eskandari, M.H. Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. J. Appl. Phycol. 2019, 31, 1085–1094. [Google Scholar] [CrossRef]
- Pavlovich, B.S.; Yurievich, M.I.; Pavlovich, B.S.; Jur’evich, M.I. Alcohol-free beverage utilising macro- and/or microalgae and its production method. R.U. Patent 02386369, 20 April 2010. [Google Scholar]
- Changhai, W.; Jie, D.; Meilin, H.; Jie, J.; Shanmei, Z. Plant essential oil compound preservative and application thereof in preservation of living Spirulina beverage. C.N. Patent 105454976, 6 April 2016. [Google Scholar]
- Batista, A.P.; Nunes, M.C.; Fradinho, P.; Gouveia, L.; Sousa, I.; Raymundo, A.; Franco, J.M. Novel foods with microalgal ingredients ‒ Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J. Food Eng. 2012, 110, 182–189. [Google Scholar] [CrossRef]
- Paulsen, S.; Klamczynska, B.; Plasse, K.; Bowman, C. High-protein gelled food products made using high-protein microalgae. U.S. Patent 0021923, 18 February 2016. [Google Scholar]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- Gouveia, L.; Coutinho, C.; Mendonça, E.; Batista, A.P.; Sousa, I.; Bandarra, N.M.; Raymundo, A. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J. Sci. Food Agric. 2008, 8, 891–896. [Google Scholar] [CrossRef]
- El Baky, H.H.A.; El Baroty, G.S.; Ibrahem, E.A. Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutr. Hosp. 2015, 32, 231–241. [Google Scholar]
- Singh, P.; Singh, R.; Jha, A.; Rasane, P.; Gautam, A.K. Optimization of a process for high fibre and high protein biscuit. J. Food Sci. Technol. 2015, 52, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.K.M.M.; Brennan, M.A.; Mason, S.L.; Guo, X.; Zeng, X.A.; Brennan, C.S. The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 2017, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Rafael, J.F. Algae-based food formulation, bread-making, bakery and confectionery products containing it, method for obtaining thereof and its use. E.P. Patent 3243520A1, 15 November 2017. [Google Scholar]
- Tarasenko Natalia Alexandrovna, T.N.R.; Andreevna, B.Z. Confectionery functional mixture for cookies. R.U. Patent 0002626625, 31 July 2017. [Google Scholar]
- Brooks, G.; Franklin, S.; Avila, J.; Decker, S.M.; Baliu, E.; Rakitsky, W.; Piechocki, J.; Zdanis, D.; Norris, L.M. Microalgal food compositions. U.S. Patent 0139994, 24 May 2018. [Google Scholar]
- Setsuko, S.; Yuji, Y.; Hiroyuki, T. Fermented food. J.P. Patent 077085, 31 March 2011. [Google Scholar]
- Deshan, S.; Bin, G.; Qingyun, H.; Jinchang, L.; Qing, K.; Hua, L.; Qianqian, Y.; Hongwei, C. Preparation method of soy sauce koji suitable for microalgal health liquid-state fermentation. C.N. Patent 104605308, 13 May 2015. [Google Scholar]
- El-Baz, F.K.; Abdo, S.M.; Hussein, A.M.S. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. Int. J. Pharm. Sci. Rev. Res. 2017, 46, 45–51. [Google Scholar]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT - Food Sci. Technol. 2013, 50, 312–319. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutr. Food Sci. 2008, 38, 492–501. [Google Scholar] [CrossRef]
- Raymundo, A.; Gouveia, L.; Batista, A.P.; Empis, J.; Sousa, I. Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Res. Int. 2005, 38, 961–965. [Google Scholar] [CrossRef]
- Gouveia, L.; Nobre, B.P.; Marcelo, F.M.; Mrejen, S.; Cardoso, M.T.; Palavra, A.F.; Mendes, R.L. Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007, 101, 717–723. [Google Scholar] [CrossRef]
- Crampon, C.; Nikitine, C.; Zaier, M.; Lépine, O.; Tanzi, C.D.; Vian, M.A.; Chemat, F.; Badens, E. Oil extraction from enriched Spirulina platensis microalgae using supercritical carbon dioxide. J. Supercrit. Fluids 2017, 119, 289–296. [Google Scholar] [CrossRef]
- Portillo, H.E.; Suárez, V.A.; Mendoza, G.H.; De la, J.V.A.; Freijanes, P.K.; Clemente, J.A.P.A.; Rodriguez, E.D. Method of manufacturing a culinary condiment with dunaliella salina and marine salt. W.S. Patent 2668814, 27 December 2018. [Google Scholar]
- Deremaux, L.; Wils, D. Composition of soluble indigestible fibers and of microalgae, used in the well-being field. U.S. Patent 0369681, 12 September 2017. [Google Scholar]
- Lei, X. Compositions comprising defatted microalgae, and treatment methods. U.S. Patent 0119018, 4 May 2017. [Google Scholar]
- Moshitzky, S.; Eisenstadt, D.; Levi, G.; Chen, O. Transgenic microalgae and use there of for oral delivery of proteins. U.S. Patent 9827280, 28 November 2017. [Google Scholar]
- Yamashita, E. Astaxanthin as a Medical Food. Funct. Foods Heal. Dis. 2013, 3, 254–258. [Google Scholar] [CrossRef]
- Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 2013, 12, 145–152. [Google Scholar] [CrossRef]
- Chan, K.; Chen, S.; Chen, P. Astaxanthin attenuated thrombotic risk factors in type 2 diabetic patients. J. Funct. Foods 2019, 53, 22–27. [Google Scholar] [CrossRef]
- Kyle, D.J. Microalgal feeds containing foreign patent documents arachidonic acid and their production and use. U.S. Patent 7396548, 8 July 2008. [Google Scholar]
- Kyung, M. Composition comprising fraction of Tetraselmis suecica for preventing or treating obesity or diabetes. K.R. Patent 102016000797, 6 January 2017. [Google Scholar]
- De Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Mar. Drugs 2015, 13, 5128–5155. [Google Scholar] [CrossRef] [PubMed]
- Joel, J. Carotenoids market by type (astaxanthin, beta-carotene, lutein, lycopene, canthaxanthin, zeaxanthin, and others) for feed, food, supplements, cosmetics, and pharmaceuticals - global industry perspective, comprehensive analysis, size, share, growth, segmen. Trends and Forecast, 2015 – 2021. Available online: http://www.marketresearchstore.com/report/carotenoids-market-z76031 (accessed on 16 August 2018).
- Del Campo, J.A.; García-González, M.; Guerrero, M.G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef]
- Woodside, J.V.; McGrath, A.J.; Lyner, N.; McKinley, M.C. Carotenoids and health in older people. Maturitas 2015, 80, 63–68. [Google Scholar] [CrossRef]
- Reig García-Galbis, M.; Martínez-Espinosa, R.; Garbayo, I.; Torregrosa-Crespo, J.; Fuentes, J.; Vílchez, C.; Montero, Z. Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar]
- International Carotenoid Society. Available online: http://www.carotenoidsociety.org (accessed on 20 February 2019).
- European Network to Advance Carotenoid Research and Applications in Agro-Food and Health. Available online: http://www.cost.eu/COST_Actions/ca/CA15136 (accessed on 22 March 2019).
- Ibero-American Program of Science and Technology for Development—Carotenoids in Agro-Food and Health Section. Available online: http://www.cyted.org/es/ibercarot (accessed on 25 March 2019).
- Spanish Network of Carotenoids. Available online: http://www.ictan.csic.es/1693/cared-red-espanola-decarotenoides-%0Adesde-los-microbios-y-plantas-a-los-alimentos-y-la-salud/%0A (accessed on 19 March 2019).
- Fassett, R.G.; Coombes, J.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar. Drugs 2011, 9, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 2011, 29, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Mar. Drugs 2014, 12, 3487–3515. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: high value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.S.; Lee, D.J. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol. Adv. 2018, 36, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of Spirulina microalgae. Mini-Reviews Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Ruyet, M.L.; Segueilha, L.; Delaroche, S. Fermentative method for bleaching biomass of Chlorella protothecoides. U.S. Patent 0139993A1, 24 May 2018. [Google Scholar]
- FAO, Food and Agriculture Organization of the United Nations Food Insecurity in the World. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals. Available online: http://www.fao.org/3/a-i0424e.pdf (accessed on 20 July 2018).
- Harel, M.; Clayton, D.; Bullus, R. Feed formulation for terrestrial and aquatic animals. U.S. Patent 0082008A1, 12 April 2007. [Google Scholar]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Kouřimská, L.; Vondráčková, E.; Fantová, M.; Nový, P.; Nohejlová, L.; Michnová, K. Effect of feeding with algae on fatty acid profile of goat’s milk. Sci. Agric. Bohem. 2014, 45, 162–169. [Google Scholar] [CrossRef]
- Cooper, S.L.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs 1. J. Anim. Sci. 2004, 82, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Hess, T.M.; Rexford, J.K.; Hansen, D.K.; Harris, M.; Schauermann, N.; Ross, T.; Engle, T.E.; Allen, K.G.D.; Mulligan, C.M. Effects of two different dietary sources of long chain omega-3, highly unsaturated fatty acids on incorporation into the plasma, red blood cell, and skeletal muscle in horses 1. J. Anim. Sci. 2012, 90, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Simkus, A.; Simkiené, A.; Cemauskiené, J.; Kvietkuté, N.; Cemauskas, A. The effect of blue algae spirulina platensis on pig growth melsvadumblio Spirulina platensis. Vet. ir Zootech. 2013, 61, 70–74. [Google Scholar]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.C.; Yusoff, F.M.; Shariff, M.; Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 2018, 10, 738–773. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products—A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Smith, D.M. Feeding algae to cattle at low doses to produce high omega-3 levels in beef. U.S. Patent 0354168, 14 December 2017. [Google Scholar]
- Furbeyre, H.; Van Milgen, J.; Mener, T.; Gloaguen, M.; Labussière, E. Effects of dietary supplementation with freshwater microalgae on growth performance, nutrient digestibility and gut health in weaned piglets. Animal 2017, 11, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Nute, G.R.; Richardson, R.I.; Wood, J.D.; Hughes, S.I.; Wilkinson, R.G.; Cooper, S.L.; Sinclair, L.A. Effect of dietary oil source on the flavour and the colour and lipid stability of lamb meat. Meat Sci. 2007, 77, 547–555. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente-Vázquez, J.; Díaz-Díaz-Chirón, M.T.; Pérez-Marcos, C.; Cañeque-Martínez, V.; Sánchez-González, C.I.; Álvarez-Acero, I.; Fernández-Bermejo, C.; Rivas-Cañedo, A.; Lauzurica-Gómez, S. Linseed, microalgae or fish oil dietary supplementation affects performance and quality characteristics of light lambs. Spanish J. Agric. Res. 2014, 12, 436–447. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Kashani, A.; Malau-Aduli, A.E.O. Effects of Spirulina (Arthrospira platensis) supplementation level and basal diet on liveweight, body conformation and growth traits in genetically divergent Australian dual-purpose lambs during simulated drought and typical pasture grazing. Small Rumin. Res. 2014, 120, 6–14. [Google Scholar] [CrossRef]
- Urrutia, O.; Mendizabal, J.A.; Insausti, K.; Soret, B.; Purroy, A.; Arana, A. Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs. PLoS ONE 2016, 11, e0156765. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Sardi, L.; Bonaldo, A.; Pizzamiglio, V.; Brogna, N.; Cipollini, I.; Tassinari, M.; Zaghini, G. Influence of marine algae (Schizochytrium spp.) dietary supplementation on doe performance and progeny meat quality. Livest. Sci. 2010, 128, 179–184. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Cullere, M.; Sartori, A.; Szendro, Z.; Kovàcs, M.; Giaccone, V.; Dal Bosco, A. Dietary Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) supplementation to growing rabbits: Effects on raw and cooked meat quality, nutrient true retention and oxidative stability. Meat Sci. 2014, 98, 94–103. [Google Scholar] [CrossRef]
- Toyomizu, M.; Sato, K.; Taroda, H.; Kato, T.; Akiba, Y. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br. Poult. Sci. 2001, 42, 197–202. [Google Scholar] [CrossRef]
- Austic, R.E.; Mustafa, A.; Jung, B.; Gatrell, S.; Lei, X.G. Potential and limitation of a new defatted diatom microalgal biomass in replacing soybean meal and corn in diets for broiler chickens. J. Agric. Food Chem. 2013, 61, 7341–7348. [Google Scholar] [CrossRef]
- Bonos, E.; Kasapidou, E.; Kargopoulos, A.; Karampampas, A.; Christaki, E. Spirulina as a functional ingredient in broiler chicken diets. S. Afr. J. Anim. Sci. 2016, 46, 94–102. [Google Scholar] [CrossRef]
- Shanmugapriya, B.; Babu, S.S.; Hariharan, T.; Sivaneswaran, S.; Anusha, M.B.; College, C.N. Research Article Dietary Administration of Spirulina platensis As probiotics on growth performance and histopathology in broiler chicks. Int. J. Recent Sci. Res. 2015, 6, 2650–2653. [Google Scholar]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I.H. Effects of dietary ω-3 fatty acid-enriched microalgae supplementation on growth performance, blood profiles, meat quality, and fatty acid composition of meat in broilers. J. Appl. Anim. Res. 2013, 41, 392–397. [Google Scholar] [CrossRef]
- Oh, S.T.; Zheng, L.; Kwon, H.J.; Choo, Y.K.; Lee, K.W.; Kang, C.W.; An, B.K. Effects of dietary fermented Chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in pekin ducks. Asian-Australasian J. Anim. Sci. 2015, 28, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Saeid, A.; Chojnacka, K.; Opaliński, S.; Korczyński, M. Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for laying hens. Algal Res. 2016, 19, 342–347. [Google Scholar] [CrossRef]
- Zahroojian, N.; Moravej, H.; Shivazad, M. Effects of dietary marine algae (Spirulina platensis) on egg quality and production performance of laying hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Bruneel, C.; Lemahieu, C.; Fraeye, I.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J. Funct. Foods 2013, 5, 897–904. [Google Scholar] [CrossRef]
- Ginzberg, A.; Cohen, M.; Sod-moriah, U.A.; Shany, S.; Rosenshtrauch, A.; Arad, S.M. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J. Appl. Phycol. 2000, 12, 325–330. [Google Scholar] [CrossRef]
- Elias, J. Method for producing Dunalella sp. biomass for obtaining food with antioxidant properties. M.X. Patent 013954, 8 March 2017. [Google Scholar]
- Rahman, N.A.; Khatoon, H.; Yusuf, N.; Banerjee, S.; Haris, N.A.; Lananan, F.; Tomoyo, K. Tetraselmis chuii biomass as a potential feed additive to improve survival and oxidative stress status of Pacific white-leg shrimp Litopenaeus vannamei postlarvae. Int. Aquat. Res. 2017, 9, 235–247. [Google Scholar] [CrossRef]
- Kiron, V.; Phromkunthong, W.; Huntley, M.; Archibald, I.; De Scheemaker, G. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac. Nutr. 2012, 18, 521–531. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Tayefi-Nasrabadi, H.; Oushani, A.K.; Enferadi, M.H.N. Effects of Haematococcus Pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2012, 38, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wen, G.; Lin, H.; Yang, Y.; Huang, X.; Zhou, C.; Zhang, Z.; Duan, Y.; Huang, Z.; Li, T. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of Coral trout Plectropomus leopardus (Lacepede, 1802). Fish Shellfish Immunol. 2018, 74, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Rema, P.; Pereira, O.; Empis, J. Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquac. Nutr. 2003, 9, 123–129. [Google Scholar] [CrossRef]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M.M. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol. Res. 2010, 61, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.M.F.; Ramos, A.M.; Vanzela, E.S.L.; Stringheta, P.C.; de Oliveira Pinto, C.L.; Martins, J.M. Products of vegetable origin: a new alternative for the consumption of probiotic bacteria. Food Res. Int. 2013, 51, 764–770. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Park, S.K.; Heo, H.J.; Kim, H.J.; Ham, K.S.; Kim, J.H. Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT - Food Sci. Technol. 2016, 71, 130–137. [Google Scholar] [CrossRef]
- Panda, S.K.; Behera, S.K.; Witness Qaku, X.; Sekar, S.; Ndinteh, D.T.; Nanjundaswamy, H.M.; Ray, R.C.; Kayitesi, E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum - ATCC 9338. LWT - Food Sci. Technol. 2017, 75, 453–459. [Google Scholar] [CrossRef]
- Argyri, A.A.; Nisiotou, A.A.; Pramateftaki, P.; Doulgeraki, A.I.; Panagou, E.Z.; Tassou, C.C. Preservation of green table olives fermented with lactic acid bacteria with probiotic potential under modified atmosphere packaging. LWT - Food Sci. Technol. 2015, 62, 783–790. [Google Scholar] [CrossRef]
- Guantario, B.; Zinno, P.; Schifano, E.; Roselli, M.; Perozzi, G.; Palleschi, C.; Uccelletti, D.; Devirgiliis, C. In vitro and in vivo selection of potentially probiotic Lactobacilli from nocellara del belice table olives. Front. Microbiol. 2018, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A.C.; Malcata, F.X. Nutritional value and use of microalgae in aquaculture. Aquaculture 2012, 281–292. [Google Scholar]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.M.; Bøgwald, J.; Castex, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R. Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 2018, 77, 99–113. [Google Scholar] [CrossRef]
- Mélo, R.C.S.; de Souza Santos, L.P.; Brito, A.P.M.; de Andrade Gouveia, A.; Marçal, C.; Cavalli, R.O. Use of the microalga Nannochloropsis occulata in the rearing of newborn longsnout seahorse Hippocampus reidi (Syngnathidae) juveniles. Aquac. Res. 2016, 47, 3934–3941. [Google Scholar] [CrossRef]
- Martínez-Fernández, E.; Southgate, P.C. Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquaculture 2007, 263, 220–226. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Taminiau, B.; Walgrave, H.; Daube, G.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients 2017, 9, 633. [Google Scholar] [CrossRef]
- Regunathan, C.; Wesley, S.G. Control of Vibrio spp. in shrimp hatcheries using the green algae Tetraselmis suecica. Asian Fish. Sci. 2004, 17, 147–158. [Google Scholar]
- Nimrat, S.; Boonthai, T.; Vuthiphandchai, V. Effects of probiotic forms, compositions of and mode of probiotic administration on rearing of Pacific white shrimp (Litopenaeus vannamei) larvae and postlarvae. Anim. Feed Sci. Technol. 2011, 169, 244–258. [Google Scholar] [CrossRef]
- Makridis, P.; Costa, R.A.; Dinis, M.T. Microbial conditions and antimicrobial activity in cultures of two microalgae species, Tetraselmis chuii and Chlorella minutissima, and effect on bacterial load of enriched Artemia metanauplii. Aquaculture 2006, 255, 76–81. [Google Scholar] [CrossRef]
- Marques, A.; Dhont, J.; Sorgeloos, P.; Bossier, P. Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. J. Exp. Mar. Bio. Ecol. 2004, 312, 115–136. [Google Scholar] [CrossRef]
- Marques, A.; Thanh, T.H.; Sorgeloos, P.; Bossier, P. Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 2006, 258, 116–126. [Google Scholar] [CrossRef]
- Defoirdt, T.; Boon, N.; Sorgeloos, P.; Verstraete, W.; Bossier, P. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol. 2007, 25, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vine, N.G.; Leukes, W.D.; Kaiser, H. Probiotics in marine larviculture. FEMS Microbiol. Rev. 2006, 30, 404–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernaerts, T.M.M.; Gheysen, L.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Vandionant, S.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Res. 2018, 32, 150–161. [Google Scholar] [CrossRef]
- De Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Emergent sources of prebiotics: Seaweeds and microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef]
- Chen, C.Y.; Zhao, X.Q.; Yen, H.W.; Ho, S.H.; Cheng, C.L.; Lee, D.J.; Bai, F.W.; Chang, J.S. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S.L. Microalgae disruption techniques for product recovery: influence of cell wall composition. J. Appl. Phycol. 2018, 1, 1–28. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. The current trends and future perspectives of prebiotics research: a review. Biotech 2012, 2, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Cerezuela, R.; Meseguer, J.; Esteban, M.A. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013, 34, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cheng, Y.; Chen, X.; Liu, Z.; Long, X. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater. Chin. J. Oceanol. Limnol. 2017, 35, 89–97. [Google Scholar] [CrossRef]
- Akhter, N.; Wu, B.; Memon, A.M.; Mohsin, M. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol. 2015, 45, 733–741. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.J.; Corzo, N.; Montilla, A.; Villamiel, M.; Olano, A. Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr. Opin. Food Sci. 2017, 13, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Zaporozhets, T.S.; Besednova, N.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Makarenkova, I.D.; Kryzhanovsky, S.P.; Melnikov, V.G. The prebiotic potential of polysaccharides and extracts of seaweeds. Russ. J. Mar. Biol. 2014, 40, 1–9. [Google Scholar] [CrossRef]
- Parada, J.L.; Zulpa de Caire, G.; Zaccaro de Mulé, M.C.; Storni de Cano, M.M. Lactic acid bacteria growth promoters from Spirulina platensis. Int. J. Food Microbiol. 1998, 45, 225–228. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Khosravi-Darani, K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Babbar, N.; Baldassarre, S.; Maesen, M.; Prandi, B.; Dejonghe, W.; Sforza, S.; Elst, K. Enzymatic production of pectic oligosaccharides from onion skins. Carbohydr. Polym. 2016, 146, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, N.; Karboune, S. Optimization of enzymatic production of prebiotic galacto/galacto(arabino)-oligosaccharides and oligomers from potato rhamnogalacturonan I. Carbohydr. Polym. 2018, 181, 1153–1159. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Liu, F.; Hu, H.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2017, 244, 232–237. [Google Scholar]
- Bianchi, V.A.; Castro, J.M.; Rocchetta, I.; Nahabedian, D.E.; Conforti, V.; Luquet, C.M. Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli. Fish Shellfish Immunol. 2015, 42, 367–378. [Google Scholar] [CrossRef]
- Kiron, V.; Kulkarni, A.; Dahle, D.; Vasanth, G.; Lokesh, J.; Elvebo, O. Recognition of purified beta 1,3/1,6 glucan and molecular signalling in the intestine of Atlantic salmon. Dev. Comp. Immunol. 2016, 56, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco Montoya, L.N.; Martins, T.P.; Gimbo, R.Y.; Zanuzzo, F.S.; Urbinati, E.C. β-Glucan-induced cortisol levels improve the early immune response in matrinxã (Brycon amazonicus). Fish Shellfish Immunol. 2017, 60, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, F.Y.; Yin, F.; Rossi, W.; Hume, M.; Gatlin, D.M. β-1,3 glucan derived from Euglena gracilis and AlgamuneTM enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish Shellfish Immunol. 2018, 77, 273–279. [Google Scholar] [CrossRef]
- Akita, S.; Nakano, O.; Wadano, A. Poultry farming method comprising feeding euglena culture solution to improve quality of poultry meat and egg. J.P. Patent 2004008063A, 15 January 2004. [Google Scholar]
- Guldas, M.; Irkin, R. Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo 2010, 60, 237–243. [Google Scholar]
- Mocanu, G.; Botez, E.; Nistor, O.V.; Georgeta, D.; Vlăsceanu, G. Influence of Spirulina platensis biomass over some starter culture of lactic bacteria. J. Agroaliment. Process. Technol. 2013, 19, 474–479. [Google Scholar]
- Kavimandan, A. Incorporation of Spirulina platensis into probiotic fermented dairy products. Int. J. Dairy Sci. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- De Caire, G.; Parada, J.; Zaccaro, M.; de Cano, M. Effect od Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World J. Microbiol Biotechnol 2000, 16, 563–565. [Google Scholar] [CrossRef]
- Monika, S.; Otto, P.; Jeno, S.; Vince, O.; Laszlo, V. Production of dairy products, yoghurt(s) enriched with vitamin(s) and trace elements. D.E. Patent 4614A1, 25 June 1998. [Google Scholar]
- Nikolaevna, O.M. Cheese product production method. R.U. Patent 0002542479, 1 January 2015. [Google Scholar]
- Reyes-Becerril, M.; Angulo, C.; Estrada, N.; Murillo, Y.; Ascencio-Valle, F. Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper (Lutjanus peru). Fish Shellfish Immunol. 2014, 40, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Tayag, C.M.; Lin, Y.C.; Li, C.C.; Liou, C.H.; Chen, J.C. Administration of the hot-water extract of Spirulina platensis enhanced the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol. 2010, 28, 764–773. [Google Scholar] [CrossRef]
- Ibrahem, M.D. Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. J. Adv. Res. 2013, 6, 765–791. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Chew, P.F.; Soh, B.S.; Tham, L.Y. Enhancing phagocytic activity of hemocytes and disease resistance in the prawn Penaeus merguiensis by feeding Spirulina platensis. J. Appl. Phycol. 2003, 15, 279–287. [Google Scholar] [CrossRef]
- Lebrun, J.R.; Levine, R.; Horst, G.P. Animal feed compositions and methods of using the same. E.P. Patent 2817012, 31 December 2014. [Google Scholar]
- Borowitzka, M.A. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- A4F- Algae 4 Future. Available online: https://www.a4f.pt/en (accessed on 20 January 2019).
- Blue Biotech. Available online: https://www.bluebiotech.de/com/produkte.htm (accessed on 17 December 2018).
- DIC Lifetec. Available online: http://www.dlt-spl.co.jp/business/en/spirulina/ (accessed on 13 January 2019).
- E.I.D Parry. Available online: http://www.parrynutraceuticals.com/contact-us/ (accessed on 19 March 2019).
- Necton. Available online: http://phytobloom.com/ (accessed on 10 January 2019).
- Ocean Nutrition. Available online: https://www.nutraingredients.com/Suppliers/Ocean-Nutrition-Canada (accessed on 20 November 2018).
- Algomed. Available online: https://www.algomed.de/en/homepage/ (accessed on 13 December 2018).
- Buggypower. Available online: http://www.buggypower.eu/pt/ (accessed on 12 March 2019).
- Phycom. Available online: http://www.phycom.eu/ (accessed on 11 December 2018).
- Taiwan Chlorella. Available online: http://www.taiwanchlorella.com/ (accessed on 20 November 2018).
- BASF. Available online: https://www.basf.com/us/en.html (accessed on 29 March 2019).
- Nikken Sohonsha Corporation. Available online: http://www.nikken-miho.com/index_topic.php?did=9&didpath=/9 (accessed on 12 January 2019).
- Wonder Care. Available online: http://wondercare.co.in/microalgae/microal.html (accessed on 10 January 2019).
- Solazyme. Available online: http://www.solazyme.com/ (accessed on 20 March 2019).
- Algalimento SL. Available online: http://www.algalimento.com/en/ (accessed on 28 January 2019).
- Algatech. Available online: https://www.algatech.com/ (accessed on 23 November 2018).
- Asta Real. Available online: http://www.astareal.com/ (accessed on 17 March 2019).
- Fuji Chemical. Available online: http://www.fujichemical.co.jp/english/ (accessed on 10 March 2019).
- Solix Biofuels Inc. Available online: %0Awww.solixbiofuels.com (accessed on 12 January 2019).
- Cyanotech. Available online: https://www.cyanotech.com/ (accessed on 10 March 2019).
- Algaeon. Available online: http://algaeon-inc.com/ (accessed on 20 December 2018).
- Kemin. Available online: https://www.kemin.com/na/en-us/home (accessed on 29 March 2019).
- Valensa. Available online: http://valensa.com/contact/ (accessed on 28 January 2019).
- Fernández, A.F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of Nutrients From Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Acién, F.G.; Molina, E.; Ferández-Sevilha, J.M.; Barbosa, M.; Gouveia, L.; Sepúlveda, C.; Bazaes, J.; Arbib, Z. Economics of microalgae production. In Microalgae-Based Biofuels Bioproduction From Feedstock Cultivation to End-Products; Muñoz, R., Gonzalez-Fernandez, C., Eds.; Woodhead Publishing Limited: Duxford, UK, 2017; pp. 485–503. [Google Scholar]
- Bhowmick, G.; Sarmah, A.K.; Sen, R. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. Bioresour. Technol. 2019, 198–206. [Google Scholar] [CrossRef]
- Trivedi, T.; Jain, D.; Mulla, N.S.S.; Mamatha, S.S.; Damare, S.R.; Sreepada, R.A.; Kumar, S.; Gupta, V. Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renew. Energy 2019, 139, 326–335. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Ríos Pinto, L.F.; Maciel Filho, R.; Fregolente, L.V. A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renew. Sustain. Energy Rev. 2019, 109, 448–466. [Google Scholar] [CrossRef]
- Gatrell, S.; Lum, K.; Kim, J.; Lei, X.G. Nonruminant nutrition symposium: Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J. Anim. Sci. 2014, 92, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
Microalgae | Food | Commercial Form of Biomass | Bioactive Compound | Health Benefit | Reference | |
---|---|---|---|---|---|---|
Genus/Species | Product | Sensory Effect | ||||
Chlorella sp. Sprirulina sp. | Milk | Improved flavor and mouthfeel | Powder or liquid | Protein, PUFA-ω3, EPA *, DHA ** | Reduced risk of anemia | [32] |
Arthrospira platensis | Yoghurt | Improved texture and viscosity | Extract | Phycocyanin | Anticancer; antioxidant and anti-inflammatory | [33] |
Arthrospira platensis Chlorella sp. | Cheese | Improved texture | Powder | Protein, carbohydrates, PUFA-ω3 | Anticancer; reduced risk of gastric ulcers, constipation, anemia, hypertension, diabetes, infant malnutrition, neurosis | [34,35] |
Spirulina sp. | Alcohol-free beverage | Improved color and sour taste | Powder or liquid | Protein, chlorophylls, phycocyanin | Improved immune and lymphatic systems, protection against cancers and ulcers | [36,37] |
Arthrospira maxima Chlorella protothecoides Haematococcus pluvialis | Desserts | Improved color and stability | Powder or flour | Protein, vitamins, minerals | Antioxidant activity, prevention of constipation | [38,39] |
Arthrospira platensis Chlorella vulgaris Hematococcus pluvialis Phaeodactylum tricornutum Tetraselmis suecica | Cookies and biscuits | Improved color, stability and texture | Powder or flour | Protein, PUFA-ω3, EPA, DHA, astaxanthin | Antioxidant activity | [12,40,41,42,43,44] |
Arthospira platensis Chlorella sp. | Bread and cookies | Improved flavor, texture and appearance | Powder or flour | Protein, vitamins, minerals | Reduced fat and cholesterol levels, induced satiety | [45,46,47] |
Dunaliella sp. Spirulina sp. | Miso | Slightly seaweed taste | Powder | Protein, vitamins, minerals | Antioxidant activity | [48] |
Chlorella sp. Sprirulina sp. | Koji | No flavor or smell | Powder | n.a. ***** | Improved immunity and blood pressure | [49] |
Dunaliella salina | Pasta | Improved color and texture | Powder | Protein, carotenoids | Antioxidant activity | [50] |
Diacronena volkianum Isochrysis galbana | Pasta | Improved color, flavor, texture and firmness | Powder | Protein, PUFA-ω3, EPA, DHA, carotenoids | Protection against gastric ulcers, prevention of constipation, reduced anemia and diabetes, improved blood pressure | [51,52] |
Arthrospiramaxima Diacronena volkianum Haematococcus pluvialis | Vegetarian food gels | Improved color and firmness | Gels | PUFA-ω3, EPA, DHA, GLA ***, carotenoids | Antioxidant activity | [53] |
Chlorella vulgaris Haematococus pluvialis | Emulsions or vegetarian mayonnaise | Improved color and stability | Oil or emulsions | Protein, carotenoids | Antioxidant activity | [4,54] |
Chlorella vulgaris | Soybean oil | Improved color and stability | Oil | Carotenoids | Antioxidant activity | [55] |
Arthrospira platensis | n.a. | n.a. | Oil | Carotenoids | Antimicrobial and antiviral activities | [56] |
Dunaliella salina | Culinary condiment with sea salt | Improved flavor | Powder | Carotenoids | Antioxidant activity | [57] |
Chlorella sp. Schizochytrium sp. Thraustochytrium sp. | Food supplement | n.a. | Powder, flour, tablet or liquid | Proteins, PUFA-ω3 | Prevention of constipation, induction of satiety | [58,59] |
Dunaliella sp. Phaeodactylum tricornutum Nannochloris sp. Nannochloropsis sp. | Food supplement | n.a. | Capsules | Protein | n.a. | [60] |
Haematococcus pluvialis | Food supplement | n.a. | Capsules | Astaxanthin | Improved eye and brain health, UV protection and skin health, anti-coagulatory and anti-inflammatory effects in diabetes, immune system modulation, cardiovascular health | [61,62,63] |
Parietochoris incisa | Food supplement | n.a. | Powder or tablet | ARA **** | n.a. | [64] |
Tetraselmis suecica | Food supplement | n.a. | Extract | n.a. | Prevention of obesity and diabetes | [65] |
Microalgae | Feed | Resulting Food | Commercial Form of Biomass | Bioactive Compound | Health Benefit | Reference | |
---|---|---|---|---|---|---|---|
Genus/Species | Animal | Product | Sensory Effect | ||||
Schizochytrium sp. | Cow | Meat | n.a *** | Powder | PUFA-ω3, EPA *, DHA ** | Improved cardiovascular, brain and eye systems | [93] |
Chlorella vulgarisa Spirulina sp. | Piglet | Meat | n.a. | Powder or spray | Cu | Increased nutritional properties | [94] |
Arthrospira platensis Isochrysis sp. | Lamb | Meat | Improved color, (not so intense) odor and flavor | Powder | Protein, PUFA-ω3 | Prevention of cardiovascular diseases | [95,96,97,98] |
Arthrospira platensis Schizochytrium sp. | Rabbit | Meat | n.a. | Powder | PUFA-ω3, γ-linolenic acid | Anti-inflammatory activity, increased nutritional properties | [99,100] |
Arthrospira platensis Chlorella vulgaris Staurosira sp. Schizochytrium sp. | Chicken | Meat | Improved color (yellowness of flesh, and redness of liver) | Powder or spray | PUFA-ω3, EPA, DHA | Antibiotic activity, reduced risk of chronic diseases, improved well-being | [101,102,103,104,105,106] |
Chlorella vulgaris | Pekin duck | Meat | Improved color (yellowness of flesh) | Fermented | Protein | Improved immunity | [107] |
Arthrospira platensis Nannochloropsis gaditana | Hen | Egg | Improved color (yellow to orange) | Powder or spray | PUFA-ω3, EPA, DHA, carotenoids | Prevention of cardiovascular diseases, anti-inflammatory, antihypertensive, anticancer, antioxidant, antidepressing and antiaging activities | [108,109,110] |
Porphyridium sp. | White Leghorn chicken | Egg | Improved color (yellow to orange) | Freeze dried | PUFA-ω3, EPA, DHA, γ-linolenic acid | Improved nutritional properties | [111] |
Dunaliella sp. | Shrimp | Meat | n.a. | Freeze dried | Carotenoids | Antioxidant activity, improved immunity | [112] |
Tetraselmis chuii | Shrimp | Meat | n.a. | Freeze dried | Astaxanthin | Antioxidant activity | [113] |
Nanofrustulum sp. Tetraselmis sp. | Atlantic salmon | Meat | n.a. | Powder | Protein, lipids | Improved nutritional properties | [114] |
Haematococcus pluvialis | Salmon and trout | Meat | Improved color | Powder | Astaxanthin | Antioxidant activity | [115] |
Arthorospira platensis | Coral trout | Meat | n.a. | Pellet | Protein, lipids | Improved nutritional properties and immunity | [116] |
Arthrospria maxima Chlorella vulgaris Haematococcus pluvialis | Koi carp goldfish | Food supplement | Improved color (red hue) | Powder | Carotenoids | Antioxidant activity | [117] |
Microalgae | Target Probiotic Bacteria | Food | Health Benefit | Reference | |||
---|---|---|---|---|---|---|---|
Genus/Species | Commercial Form of Biomass | Bioactive Compound | Product | Sensory Effect | |||
Arthrospira platensis Chlorella vulgaris | Powder | Glucose, rhamnose, mannose, xylose and galactose | Lactobacillus acidophilus Bifidobacterium lactis Lactobacillus delbrueckii Streptococcus thermophilus | Yoghurt | Improved color, stability and texture | Prevention of constipation, improved immune system, enhanced absorption of minerals and lactose, reduced cholesterol | [155,163,164,165] |
Arthrospira platensis | Powder | PUFA-ω6 | Streptococcus thermophilus Lactobacillus delbrueckii spp. bulgaricus Lactobacillus lactis ssp. lactis Lactobacillus acidophilus | Milk | n.a. * | Improved nutritional properties | [166] |
Cryptheiconidium cohnii | Powder or freeze dried | Phycocyanin, vitamin C, Se, Zn, Fe, Mg | Streptococcus salivarius Thermophilus sp. Lactobacillus delbrueckii Lactobacillus bulgaricus Bifidobacterium bifidum Lactobacillus acidophilus | Milk | n.a. | Anticarcinogenic and anti-inflammatory activities, improved blood and cholesterol levels | [167] |
Chlorella sp. Scenedesmus sp. Spirulina sp. | Powder | Carotenoids, γ-linolenic acid | Lactobacillus plantarum Bifidobacteria | Cheese | Improved color (green-blue) and texture | Improved nutritional properties | [168] |
Microalgae | Probiotic Bacteria | Animal | Health Benefit | Reference | ||
---|---|---|---|---|---|---|
Genus/Species | Commercial Form of Biomass | Bioactive Compound | ||||
Navicula sp. | Freeze dried | Oligosaccharides | Lactobacillus sakei | Pacific red snapper (Lutjanus peru) | Improved immune system and antioxidant activity | [169] |
Phaeodactylum tricornutum Tetraselmis chuii | Freeze dried | Protein | Bacillus subtilis | Gilthead seabream (Sparus aurata) | Improved immune system and increased intestinal absorption ability | [144] |
Arthrospira platensis | Freeze dried | C-phycocyanin | Vibrio alginolyticus | Shrimp (Litopenaeus vannamei) | Improved immune system (>lysozyme) and disease resistance | [170] |
Dunaliella tertiolecta | Freeze dried | β-carotene | Bacillus sp. | Shrimp (Artemia franciscana) | Improved immune system and disease resistance | [136] |
Arthrospira platensis | Powder | Phycobilins, phycocyanin, allophycocyanin, xanthophylls and carotenoid | Pseudomonas fluorescens | Nile tilapia (Oreochromis niloticus L.) | Improved immune system and antioxidant activity | [171] |
Euglena gracilis | Powder | Paramylon | Streptococcus iniae | Red drum (Sciaenops ocellatus L.) | Immunostimulant activity | [161] |
Arthrospira platensis | Powder | Oligosaccharides | Bacillus subtilis | Prawn (Penaeus merguiensis) | Improved immune system and disease resistance | [172] |
Euglena gracilis | Powder | β-glucan | Bacillus licheniformis or Bacillus subtilis | Poultry, cows, horses, dogs, cats, reptiles, birds | Improved well-being and immune system | [162,173] |
Microalgae | Food | Feed | Reference | |||
---|---|---|---|---|---|---|
Genus/Species | Main Product | Main Product Application | Industries | Main Product | Industries | |
Arthrospira plantensis | Phycocyanin | Food colorant and supplement | A4F-Algae 4 Future (Portugal) Blue Biotech (Germany) DIC Lifetec (Japan) E.I.D Parry (India) Necton (Portugal) Ocean Nutrition (Canada) | Feed supplement | Blue Biotech (Germany) Ocean Nutrition (Canada) | [175,176,177,178,179,180] |
Chlorella vulgaris | Lutein | Food supplement | A4F-Algae 4 Future (Portugal) Algomed (Germany) Buggypower (Portugal) E.I.D Parry (India) Phycom (Netherlands) Chlorella Co. (Taiwan) | Feed supplement | Blue Biotech (Germany) Necton (Portugal) | [175,176,178,179,181,182,183,184] |
Dunaliella salina | β-carotene | Food colorant and supplement | BASF (Germany) Nikken Sohonsa Co. (Japan) Wonder Care Pvt. Ltd. (India) Solazyme, Inc. (San Francisco) | Feed supplement | Blue Biotech (Germany) Necton (Portugal) Algalimento SL (Canary Islands) | [176,179,185,186,187,188,189] |
Haematococcus pluvialis | Astaxanthin | Food supplement | AlgaTech (Israel) AstraReal Co. (Japan) Blue Biotech (Germany) Fuji Chemicals (Japan) E.I.D Parry (India) Solix Inc. (USA) | Feed supplement (pigment enhancer for fish) | Blue Biotech (Germany) | [176,178,190,191,192,193] |
Labosphaera incisa | ARA *** | Food supplement | A4F-Algae 4 Future (Portugal) | n.a. **** | n.a. | [175] |
Nannochloropsis sp. | EPA and DHA (ω-3) | Food supplement | AstraReal Co. (Japan) AlgaTech (Israel) Cyanotech (US, Hawaii) E.I.D Parry (India) | Feed additive | Blue Biotech (Germany) Innovative Aqua (Canada) | [176,178,189,190,191,194] |
Euglena gracilis | Paramylon/Linear beta-1,3-glucan | Food supplement | Algaeon Inc. (USA) Kemin Industries (USA) Valensa International (USA) | n.a. | n.a. | [195,196,197] |
Phaeodactylum tricornutum | EPA (ω-3), Fucoxanthin | Food supplement | A4F-Algae 4 Future (Portugal) AlgaTech (Israel) | n.a. | n.a. | [175,190] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, F.; Macedo, A.; Malcata, F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar. Drugs 2019, 17, 312. https://doi.org/10.3390/md17060312
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Marine Drugs. 2019; 17(6):312. https://doi.org/10.3390/md17060312
Chicago/Turabian StyleCamacho, Franciele, Angela Macedo, and Francisco Malcata. 2019. "Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review" Marine Drugs 17, no. 6: 312. https://doi.org/10.3390/md17060312
APA StyleCamacho, F., Macedo, A., & Malcata, F. (2019). Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Marine Drugs, 17(6), 312. https://doi.org/10.3390/md17060312