Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,769)

Search Parameters:
Keywords = animal health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2436 KiB  
Article
Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows
by Rui Guo and Yongqiang Dai
Appl. Sci. 2025, 15(15), 8763; https://doi.org/10.3390/app15158763 (registering DOI) - 7 Aug 2025
Abstract
Subclinical mastitis in dairy cows poses a significant challenge to the dairy industry, leading to reduced milk yield, altered milk composition, compromised animal health, and substantial economic losses for dairy farmers. A model based on the XGBoost algorithm, optimized with an Improved GOOSE [...] Read more.
Subclinical mastitis in dairy cows poses a significant challenge to the dairy industry, leading to reduced milk yield, altered milk composition, compromised animal health, and substantial economic losses for dairy farmers. A model based on the XGBoost algorithm, optimized with an Improved GOOSE Optimization Algorithm (IGOOSE), is presented in this work as an innovative approach for predicting subclinical mastitis in order to overcome these problems. The Dairy Herd Improvement (DHI) records of 4154 cows served as the model’s original foundation. A total of 3232 samples with 21 characteristics made up the final dataset, following extensive data cleaning and preprocessing. To overcome the shortcomings of the original GOOSE algorithm in intricate, high-dimensional problem spaces, three significant enhancements were made. First, an elite inverse strategy was implemented to improve population initialization, enhancing the algorithm’s balance between global exploration and local exploitation. Second, an adaptive nonlinear control factor was added to increase the algorithm’s stability and convergence speed. Lastly, a golden sine strategy was adopted to reduce the risk of premature convergence to suboptimal solutions. According to experimental results, the IGOOSE-XGBoost model works better than other models in predicting subclinical mastitis, especially when it comes to recognizing somatic cell scores, which are important markers of the illness. This study provides a strong predictive framework for managing the health of dairy cows, allowing for the prompt identification and treatment of subclinical mastitis, which enhances the efficiency and quality of milk supply. Full article
Show Figures

Figure 1

17 pages, 688 KiB  
Review
Mycoplasma Biofilms: Characteristics and Control Strategies
by Jingyi Liang, Baoyi Deng, Weihuo Li, Jingjing Qi, Yangshuo Li, Xueyan Wang, Ming Li, Hong Yang and Nan Zhang
Microorganisms 2025, 13(8), 1850; https://doi.org/10.3390/microorganisms13081850 (registering DOI) - 7 Aug 2025
Abstract
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases [...] Read more.
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases have a significant impact on public health and the economic development of livestock breeding. Clinical prevention and treatment of mycoplasma infections is primarily dependent on the use of antibiotics. However, inappropriate and excessive use of antimicrobials has enabled resistance development that has become a significant clinical concern. Mycoplasma are also robust biofilm producers, and this process is a major factor for the persistence of these infections, especially in conjunction with common antibiotic resistance mechanisms, including target gene mutations and the action of efflux pumps. A mycoplasma biofilm refers to a structured and stable microbial community formed by Mycoplasma spp. adhering to biological or non-biological surfaces under suitable conditions and secreting extracellular polymers (EPS) such as polysaccharides. This process allows the microorganisms to adapt to their surrounding environment and survive during the growth process. These biofilms render bacteria more resistant to antimicrobials than planktonic bacteria, resulting in biofilm-associated infections that are more challenging to eradicate and more likely to recur. The current study reviews progress from the fields of biofilm formation, structure and identification, correlations between biofilms and drug resistance and virulence as well as methods of biofilm prevention and control. Our aim was to provide a reference basis for the subsequent in-depth understanding of the research of mycoplasma biofilms. Full article
12 pages, 2150 KiB  
Article
First Survey on the Seroprevalence of Coxiella burnetii in Positive Human Patients from 2015 to 2024 in Sardinia, Italy
by Cinzia Santucciu, Maria Paola Giordo, Antonio Tanda, Giovanna Chessa, Matilde Senes, Gabriella Masu, Giovanna Masala and Valentina Chisu
Pathogens 2025, 14(8), 790; https://doi.org/10.3390/pathogens14080790 (registering DOI) - 7 Aug 2025
Abstract
Coxiella burnetii, the etiological agent of Q fever, is a globally distributed zoonotic pathogen affecting both animals and humans. Despite its known endemicity in various Mediterranean regions, data on human seroprevalence in Sardinia are still lacking. This study aimed to assess seroprevalence [...] Read more.
Coxiella burnetii, the etiological agent of Q fever, is a globally distributed zoonotic pathogen affecting both animals and humans. Despite its known endemicity in various Mediterranean regions, data on human seroprevalence in Sardinia are still lacking. This study aimed to assess seroprevalence in patients and to analyze the annual positivity rate related to the serum samples collected in Sardinia over a ten-year period (2015–2024). For this purpose, a total of 1792 patients were involved in the survey, and 4310 serum samples were analyzed using indirect immunofluorescence assay (IFI) to detect IgM and IgG antibodies against C. burnetii. The global seroprevalence rates relating to all the patients over a ten-year period were determined along with the annual positivity rate and trends from all sera. An overall seroprevalence of 27.0% and an average of annual positivity rate of 16.0% were determined, with the IFI detecting IgG antibodies in 15.2% of positive samples and IgM antibodies in 0.9%, suggesting significant prior exposure of the population evaluated. Annual positivity rates ranged from 24.8% in 2016 to 8.0% in 2020. These results confirmed the endemic circulation of C. burnetii in Sardinia and the ongoing risk of human exposure. A GIS-based map was built to evidence the spatial distribution of Q fever in Sardinia. Interestingly, areas with higher seroprevalence appear to coincide with the distribution of sheep and goat farms, indicating a link between livestock and human exposure. These findings confirm the circulation of C. burnetii in Sardinia and underscore the importance of epidemiological monitoring, public health interventions, and educational efforts in populations at increased risk. Full article
(This article belongs to the Section Bacterial Pathogens)
18 pages, 567 KiB  
Review
Mephedrone and Its Metabolites: A Narrative Review
by Ordak Michal, Tkacz Daria, Juzwiuk Izabela, Wiktoria Gorecka, Nasierowski Tadeusz, Muszynska Elzbieta and Bujalska-Zadrozny Magdanena
Int. J. Mol. Sci. 2025, 26(15), 7656; https://doi.org/10.3390/ijms26157656 (registering DOI) - 7 Aug 2025
Abstract
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the [...] Read more.
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the structure, pharmacokinetic properties, and metabolic pathways of mephedrone, highlighting its phase I and phase II metabolites as potential biomarkers for detection and forensic applications. A comprehensive literature search was performed without date restrictions. The search employed key terms such as “mephedrone metabolites”, “pharmacokinetics of mephedrone”, “phase I metabolites of mephedrone”, and “phase II metabolites of mephedrone”. Additionally, the reference lists of selected studies were screened to ensure a thorough review of the literature. Mephedrone is a chiral compound existing in two enantiomeric forms, exhibiting different affinities for monoamine transporters and distinct pharmacological profiles. In vivo animal studies indicate rapid absorption, significant tissue distribution, and the formation of multiple phase I metabolites (e.g., normephedrone, dihydromephedrone, 4-carboxymephedrone) that influence its neurochemical effects. Phase II metabolism involves conjugation reactions leading to metabolites such as N-succinyl-normephedrone and N-glutaryl-normephedrone, further complicating its metabolic profile. These findings underscore the importance of elucidating mephedrone’s metabolic pathways to improve detection methods, enhance our understanding of its toxicological risks, and inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

20 pages, 1558 KiB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 (registering DOI) - 7 Aug 2025
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 (registering DOI) - 7 Aug 2025
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabo-lites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
30 pages, 11384 KiB  
Article
An AI-Driven Multimodal Monitoring System for Early Mastitis Indicators in Italian Mediterranean Buffalo
by Maria Teresa Verde, Mattia Fonisto, Flora Amato, Annalisa Liccardo, Roberta Matera, Gianluca Neglia and Francesco Bonavolontà
Sensors 2025, 25(15), 4865; https://doi.org/10.3390/s25154865 - 7 Aug 2025
Abstract
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring [...] Read more.
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring of udder health in Italian Mediterranean buffalo. Unlike traditional approaches, the system leverages the synchronized acquisition of thermal images during milking and compensates for environmental variables through a calibrated weather station. A transformer-based neural network (SegFormer) segments the udder area, enabling the extraction of maximum udder skin surface temperature (USST), which is significantly correlated with somatic cell count (SCC). Initial trials demonstrate the feasibility of this approach in operational farm environments, paving the way for scalable, precision diagnostics of subclinical mastitis. This work represents a critical step toward intelligent, automated systems for early detection and intervention, improving animal welfare and reducing antibiotic use. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

12 pages, 3009 KiB  
Article
Molnupiravir Inhibits Replication of Multiple Alphacoronavirus suis Strains in Feline Cells
by Tomoyoshi Doki, Kazuki Shinohara, Kaito To and Tomomi Takano
Pathogens 2025, 14(8), 787; https://doi.org/10.3390/pathogens14080787 (registering DOI) - 7 Aug 2025
Abstract
The cross-species spillover of coronaviruses is considered a serious public health risk. Feline coronavirus (FCoV), canine coronavirus (CCoV), and transmissible gastroenteritis virus (TGEV) are all classified under Alphacoronavirus suis and infect companion animals and livestock. Due to their frequent contact with humans, these [...] Read more.
The cross-species spillover of coronaviruses is considered a serious public health risk. Feline coronavirus (FCoV), canine coronavirus (CCoV), and transmissible gastroenteritis virus (TGEV) are all classified under Alphacoronavirus suis and infect companion animals and livestock. Due to their frequent contact with humans, these viruses pose a potential risk of future cross-species transmission. Molnupiravir, a prodrug of N4-hydroxycytidine, exhibits potent antiviral activity against SARS-CoV-2, a member of the Betacoronavirus genus, and has been approved for the treatment of COVID-19. Molnupiravir was recently shown to be effective against FCoV, suggesting broad-spectrum antiviral activity across coronavirus lineages. Based on these findings, the present study investigated whether molnupiravir is also effective against CCoV and TGEV, which belong to the same Alphacoronavirus suis species as FCoV. We examined the in vitro antiviral effects of molnupiravir using four viral strains: FCoV-1 and -2, CCoV-2, and TGEV. Molnupiravir inhibited plaque formation, viral antigen expression, the production of infectious viral particles, and viral RNA replication in a dose-dependent manner in all strains. IC50 values for CCoV-2 and TGEV, calculated using a feline-derived cell line (fcwf-4), were significantly lower than those for FCoV, suggesting higher sensitivity to molnupiravir. These results demonstrate that molnupiravir exhibited broad antiviral activity against animal coronaviruses classified under Alphacoronavirus suis, providing a foundation for antiviral strategies to mitigate the future risk of cross-species transmission. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 704 KiB  
Review
Marine Antimicrobial Peptides: Emerging Strategies Against Multidrug-Resistant and Biofilm-Forming Bacteria
by Rita Magalhães, Dalila Mil-Homens, Sónia Cruz and Manuela Oliveira
Antibiotics 2025, 14(8), 808; https://doi.org/10.3390/antibiotics14080808 - 7 Aug 2025
Abstract
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from [...] Read more.
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from marine organisms, have emerged as promising antimicrobial candidates due to their broad-spectrum activity, structural diversity, and distinctive mechanisms of action. Unlike conventional antibiotics, AMPs can disrupt microbial membranes, inhibit biofilm formation, and even modulate immune responses, making them highly effective against resistant bacteria. This review highlights the potential of marine AMPs as next-generation therapeutics, emphasizing their efficacy against multidrug-resistant pathogens and biofilm-associated infections. Furthermore, marine AMPs show promise in combating persister cells and disrupting quorum sensing pathways, offering new strategies for tackling chronic infections. Despite their potential, challenges such as production scalability and limited clinical validation remain; nevertheless, the use of new technologies and bioinformatic tools is accelerating the discovery and optimization of these peptides, paving the way for bypassing these challenges. This review consolidates current findings on marine AMPs, advocating for their continued exploration as viable tools in the fight against antimicrobial resistance. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

19 pages, 6720 KiB  
Article
Processed Pearl Millet Improves the Morphology and Gut Microbiota in Wistar Rats
by Jaqueline Maciel Vieira Theodoro, Lucimar Aguiar da Silva, Vinícius Parzanini Brilhante de São José, Nathaniel Baldwin Willis, Renata Celi Lopes Toledo, Mariana Grancieri, Carlos Wanderlei Piler Carvalho, Joseph Francis Pierre, Bárbara Pereira da Silva and Hércia Stampini Duarte Martino
Foods 2025, 14(15), 2752; https://doi.org/10.3390/foods14152752 - 7 Aug 2025
Abstract
This study evaluated the effect of pearl millet subjected to different processing on the intestinal health of rats. The animals were fed a standard iron-free diet (28 days) (hemoglobin depletion: 8.65 + 1.40 g/dL of hemoglobin). Subsequently, they were divided into four groups [...] Read more.
This study evaluated the effect of pearl millet subjected to different processing on the intestinal health of rats. The animals were fed a standard iron-free diet (28 days) (hemoglobin depletion: 8.65 + 1.40 g/dL of hemoglobin). Subsequently, they were divided into four groups for hemoglobin repletion (21 days): standard diet + ferrous sulfate (SD + FS); standard diet + non-germinated open-pan cooked millet flour (SD + NGOPCMF); standard diet + germinated open-pan cooked millet flour (SD + GOPCMF); and standard diet + extrusion-cooked millet flour (SD + ECMF). Hemoglobin level did not differ among groups. The SD + NGOPCMF, SD + GOPCMF and SD + ECMF groups demonstrated a higher Chao index in the microbiome and a higher number and area of goblet cells and longitudinal muscle layer width. The SD + NGOPCMF and SD + GOPCMF groups demonstrated increased cecum weight, crypt depth, crypt thickness, and circular muscle layer width; lower fecal pH; and a higher relative abundance of Bacteroidota, while the SD + FS group showed the highest abundance of Actinobacteriota. The SD + GOPCMF group stood out for showing the lowest fecal pH, better α-diversity (Chao and Shannon index), and the highest width of the longitudinal muscle layer. In conclusion, pearl millet subjected to different processing, mainly germination, has the potential to improve the composition of the intestinal microbiota and the intestinal morphology in rats induced to iron deficiency. Full article
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens
by Gabriela Miotto Galli, Ines Andretta, Camila Lopes Carvalho, Aleksandro Schafer da Silva and Marcos Kipper
Poultry 2025, 4(3), 35; https://doi.org/10.3390/poultry4030035 - 7 Aug 2025
Abstract
(1) Background: The goal of the present study was to evaluate whether the supplementation with a multi-species probiotic in the diet of laying hens can change the microbiota and health status of the oviduct. (2) Methods: A total of 60 cages housing lightweight [...] Read more.
(1) Background: The goal of the present study was to evaluate whether the supplementation with a multi-species probiotic in the diet of laying hens can change the microbiota and health status of the oviduct. (2) Methods: A total of 60 cages housing lightweight laying hens (36 weeks old) were randomly assigned to the following two different treatments: a control group fed a diet without probiotic, and a treatment group receiving diets supplemented with 50 g/ton of probiotics. The trial lasted for 26 weeks, after which five layers were slaughtered per treatment for oviduct (magnum) assessment, focusing on microbiome composition, oxidant and antioxidant status, and morphological analyses. Additionally, intestinal (jejunum) samples were collected to determine oxidant and antioxidant status. (3) Results: Probiotic supplementation resulted in lower counts of organisms from the RB41 order (p = 0.039) and Burkholderia genus (p = 0.017), and a total reduction in Bacillus and Corynebacterium (p = 0.050) compared to the control treatment. Genera Burkholderia (p = 0.017), Corynebacterium (p = 0.050), and Bacillus (p = 0.050) were also lower with the probiotic supplementation in relation to the control. Genera Epulopiscium (p = 0.089), Flavobacterium (p = 0.100), Ruminococcus (p = 0.089), and Staphylococcus (p = 0.100) tended to be lower in the probiotic group compared to the control. No significant differences were found between treatments for oviduct lesions. Probiotic treatment resulted in a higher protein thiol level in the intestine compared to the control (p < 0.001). However, the use of probiotics tended to reduce glutathione S-transferase levels in the oviduct compared to the control (p = 0.068). (4) Conclusions: These results suggest that dietary supplementation with probiotics can modulate the oviduct microbiota and improve the antioxidant status of laying hens, without causing tissue damage. Further research is warranted to explore the long-term implications of these changes on reproductive performance and egg quality. Full article
Show Figures

Figure 1

24 pages, 3149 KiB  
Article
Evaluation of Aggregate Oral Fluid Sampling for Early Detection of African Swine Fever Virus Infection
by Bonto Faburay, Kathleen O’Hara, Marta Remmenga, Theophilus Odoom, Sherry Johnson, William Tasiame, Matilda Ayim-Akonor, Benita Anderson, Kingsley Kwabena Amoako, Diane Holder, Wu Ping, Michelle Zajac, Vivian O’Donnell, Lizhe Xu, Robin Holland, Corrie Brown, Randall Levings and Suelee Robbe-Austerman
Viruses 2025, 17(8), 1089; https://doi.org/10.3390/v17081089 - 6 Aug 2025
Abstract
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large [...] Read more.
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large numbers of pigs, and sampling individual pigs, which represents the main strategy for current ASF surveillance, can be both costly and labor intensive. A study performed in Ghana was designed to estimate the diagnostic sensitivity of pen-based aggregate oral fluid testing for ASFV in infected pigs in a pen of 30 animals and to evaluate its utility as a tool to support surveillance of ASF in the US. This study was performed in three phases: (i) virus (Ghana ASFV24) amplification in a target host species to generate the challenge inoculum; (ii) titration of the inoculum (10% spleen homogenate) in target host species to determine the minimum dose inducing acute ASF in pigs with survival up to 5–6 days post-inoculation (dpi); and (iii) the main study, involving 186 pigs, consisting of 6 replicates of 30 pigs per pen and one seeder pig inoculated with wildtype ASFV (highly virulent genotype II) per pen. Daily sampling of aggregate oral fluids, uncoagulated blood, oropharyngeal swabs, fecal and water nipple swabs, and recording of rectal temperatures and clinical observations was carried out. The seeder pigs were each inoculated intramuscularly with 0.5 mL of the 10% spleen homogenate, which induced the desired clinical course of ASF in the pigs, with survival of up to 6 dpi. ASFV DNA was detected in the seeder pigs as early as 1 dpi and 2 dpi in the blood and oropharyngeal swabs, respectively. Transmission of ASFV from the seeder pigs to the contact pig population was detected via positive amplification of ASFV DNA in aggregate oral fluid samples at 3 days post-contact (dpc) in 4 out of 6 pens, and in all 6 pens, at 4 dpc. Testing of oropharyngeal swabs and blood samples from individual pigs revealed a variable number of ASFV-positive pigs between 3 and 5 dpc, with detection of 100% positivity between 6 and 18 dpc, the study endpoint. These findings demonstrate the potential utility of aggregate oral fluid sampling for sensitive and early detection of ASFV incursion into naïve swine herds. It also demonstrates that testing of environmental samples from the premises could further enhance overall ASF early detection and surveillance strategies. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

16 pages, 1369 KiB  
Article
Recycling Waste Cottonseed Hulls to Biomaterials for Ammonia Adsorption
by Thomas Klasson, Bretlyn Pancio and Allen Torbert
Recycling 2025, 10(4), 158; https://doi.org/10.3390/recycling10040158 - 6 Aug 2025
Abstract
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to [...] Read more.
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to remove ammonia from air. In this study, the efficacy of ammonia removal was observed using cottonseed hull biomaterials pyrolyzed at seven different temperatures: 250, 300, 350, 400, 500, 600, and 700 °C. In this study, ammonia was passed through a column filled with pyrolyzed material, and ammonia in the filtered air was monitored. The results showed that materials pyrolyzed at intermediate temperatures of 350 and 400 °C were the most efficient at ammonia removal and were able to adsorb approximately 3.7 mg NH3/g of material. Despite extensive characterization, ammonia adsorption could not be linked to intrinsic material properties. Evaluation of the materials showed that the carbon in the pyrolyzed materials would be stable over time should the spent material be used as a soil amendment. Full article
Show Figures

Figure 1

26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

Back to TopTop