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Abstract: Five new cembranoid-related diterpenoids, namely, flexibilisins D and E (1 and 2),
secoflexibilisolides A and B (3 and 4), and flexibilisolide H (5), along with nine known compounds
(6–14), were isolated from the soft coral Sinularia flexibilis. Their structures were established by
extensive spectral analysis. Compound 3 possesses an unusual skeleton that could be biogenetically
derived from cembranoids. The cytotoxicity and anti-inflammatory activities of the isolates were
investigated, and the results showed that dehydrosinulariolide (7) and 11-epi-sinulariolide acetate (8)
exhibited cytotoxicity toward a limited panel of cancer cell lines and 14-deoxycrassin (9) displayed
anti-inflammatory activity by inhibition of superoxide anion generation and elastase release in
N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils.

Keywords: cembranoid-related compounds; flexibilisin; secoflexibilisolide; flexibilisolide;
Sinularia flexibilis

1. Introduction

Soft corals have been known to be the organisms possessing secondary metabolites with high
diversity in chemical structures [1]. Since 1975, many cembranoid-type natural products with diverse
and important biological activities have been isolated from Sinularia flexibilis [2–13]. In previous
studies of the chemical constituents of Taiwanese soft corals, numerous marine metabolites with
cytotoxic [14,15], neuroprotective [16], and anti-inflammatory activities [17–19] were also found from
Sinularia flexibilis. Some cembranolides, possessing an α-methylene lactone ring, have been discovered
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as potent cytotoxic agents to a limited panel of cancer cell lines, for example, 14-deoxycrassin [20],
and as significant anti-inflammatory agents, for example, sinulariolone acetate [21]. Additionally,
cembranoids and related compounds from other coral species were also found to have notable
antiviral [22], anti-inflammatory [23,24], and antiproliferative [25–28] activities. A wide variety of
chemical diversity and biological activity of cembranoids encouraged us to search for more natural
products from soft coral S. flexibilis, collected off the waters of Taiwan. Herein, we report the isolation
of five new cembrane-related metabolites, namely, flexbilisins D and E (1 and 2), secoflexibilisolides
A and B (3 and 4), and a cembranolide flexibilisolide H (5) (Figure 1), and nine known compounds,
including 6R-hydroxysinulariolide (6) [3], 11-dehydrosinulariolide (7) [18], 11-epi-sinulariolide acetate
(8) [13], 14-deoxycrassin (9) [20], 3,4:8,11-bisepoxy-7-acetoxycembra-15(17)-en-1,12-olide (10) [6],
sinulariolide (11) [2], sinulaflexiolide E (12) [10], querciformolide A (13) [21], and flexibilisquinone
(14) [19] (Figure 2). Their structures were established by spectroscopic analysis including infrared
(IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR) data (Figures S1–S14), as well
as chemical transformation. The biogenetic origins of 3 and 4 were postulated to demonstrate the
relationship between stereochemistry and biogenetic implications. The cytotoxicity of the isolates
toward a limited panel of cancer cell lines and their inhibition of superoxide anion generation and
elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced
human neutrophils were also investigated.
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2. Results and Discussion

Flexbilisin D (1) was obtained as a colorless oil and its high-resolution electrospray ionization
mass spectrometry (HRESIMS) (m/z 371.2196 [M + Na]+) data established the molecular formula of
C21H32O4, indicating six degrees of unsaturation. The IR spectrum showed the absorption bands of
carbonyl group (1716 cm−1) and double bond (1647 cm−1). The NMR data (Table 1), including 13C
NMR and distortion less enhancement by polarization transfer (DEPT) spectra, displayed 21 carbin
signals which can be classified as three methyls (δc 15.3, 17.0, 17.8), one methoxy (δc 52.0), seven sp3

methylene (δc 22.2, 24.6, 27.4, 31.5, 33.0, 36.0, 36.9), one sp2 methylene (δc 124.4), three sp3 methine
(δc 35.2, 60.1, 61.9), one sp2 methine (δc 126.5), two sp3 quaternary (δc 60.2, 60.8), and three sp2

quaternary (134.2, 142.7, 167.3) carbons. The 13C NMR signals at δc 142.7 (C), δc 124.4 (CH2) and the
1H NMR signals at δH 6.26 (1H, s) and δH 5.48 (1H, s) revealed the presence of a 1,1-disubstituted
double bond, while those at δc 134.2 (CH), δc 126.5 (C), and δH 5.18 (1H, t, J = 5.6 Hz) are indicative
of a trisubstituted double bond. Two trisubstituted epoxides were identified from the NMR signals
at δc 61.9 CH, 60.8 C and 60.2 C, 60.1 CH; δH 2.65 dd, J = 10.0 and 3.2 Hz; 2.81 dd, J = 10.0 and
4.0 Hz. The molecular skeleton of 1 was established by the above results, as well as the correlations
spectroscopy (COSY) and heteronuclear multiple bond correlation (HMBC) correlations as shown in
Figure 3. By analysis of the COSY correlations, it was possible to identify three partial structures (a–c).
The fact that the methyl ester group [CO (δc 167.3)/OMe (δc 52.0; δH 3.76)] was on C-15 (δc 142.7) was
confirmed by the HMBC correlation from H2-17 (δH 6.26, 5.48) to C-16 (δc 167.3). The two epoxides
were assigned at 3,4- and 11,12-positions with methyl substituents at C-4 (δc 60.2) and C-12 (δc 60.8)
according to HMBC correlations from H3-18 (δH 1.29) to C-3 (δc 60.1), C-4, and C-5 (δc 36.9), as well as
H3-20 (δH 1.23) to C-11(δc 61.9), C-12, and C-13 (δc 33.0), respectively. Together with other key HMBC
correlations from H3-19 (δH 1.65) to C-7 (δc 126.5), C-8 (δc 134.2), and C-9 (δc 36.0), as well as H2-17 to
C-1 (δc 35.2), C-15, and C-16 permitted the establishment of the carbon skeleton.
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Table 1. 1H and 13C NMR spectroscopic data of 1 and 2.

Position
1 2

δH
a (J in Hz) c δC

b (mult.) d δH (J in Hz) δC (mult.)

1 2.85, m 35.2 (CH) 2.79, m 36.5 (CH)
2 2.05, m; 1.36, m 31.5 (CH2) 1.98, m; 1.40, m 32.5 (CH2)
3 2.81, dd (10.0, 4.0) 60.1 (CH) 2.77, dd; (9.6, 4.4) 59.4 (CH)
4 60.2 (C) 60.7 (C)
5 2.00, m; 1.59, m 36.9 (CH2) 1.99, m; 1.54, m 36.8 (CH2)
6 2.12, m; 2.08, m 22.2 (CH2) 2.10, m; 2.00, m 22.9 (CH2)
7 5.18, t (5.6) 126.5 (CH) 5.11, t (5.2) 126.4 (CH)
8 134.2 (C) 134.6 (C)
9 2.26, m; 2.09, m 36.0 (CH2) 2.55, m, 2.22, m 31.6 (CH2)

10 2.09, m; 1.40, m 24.6 (CH2 2.71, ddd (10.8, 8.0, 2.8) 34.3 (CH2)
2.65, ddd (10.8, 8.0, 2.8)

11 2.65, dd (10.0, 3.2) 61.9 (CH) 213.6 (C)
12 60.8 (C) 78.8 (C)

13 1.70, m; 1.20, m 33.0 (CH2) 1.74, ddd (12.8, 5.6. 2.0)
1.48, m 36.1 (CH2)

14 1.70, m; 1.58, m 27.4 (CH2) 1.54, m, 1.37, m 25.2 (CH2)
15 142.7 (C) 142.2 (C)
16 167.3 (C) 167.4 (C)
17 6.26, s; 5.48, s 124.4 (CH2) 6.31, s, 5.49, s 124.4 (CH2)
18 1.29, s 17.8 (CH3) 1.27, s 18.2 (CH3)
19 1.65, s 15.3 (CH3) 1.66, s 17.1 (CH3)
20 1.23, s 17.0 (CH3) 1.34, s 25.7 (CH3)

16-OMe 3.76, s 52.0 (CH3) 3.76, s 52.0 (CH3)
a Spectra recorded at 400 MHz in CDCl3. b Spectra recorded at 100 MHz in CDCl3. c J values (in Hz) in parentheses.
d Attached protons were deduced by DEPT experiments.
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The relative configuration of 1 was determined by the nuclear Overhauser effect spectroscopy
(NOESY) experiment as shown in Figure 4. Assuming that H-1 is α-oriented, which showed NOESY
correlations to one of H2-2 (δH 1.36) and one of H2-13 (δH 1.70); thus, another of H2-2 (δH 2.05) and
H2-13 (δH 1.20) were β-oriented. Two trans epoxides were then assigned according to the NOESY
correlations from H-11 to H-13β and from H-13α to H3-20, as well as those from H3-18 to H-2α.
The proposed structure of 1 is in agreement with the most stable conformation (Figure 4) generated by
an energy-minimized (MM2) force field calculation [29]. Consequently, the relative configurations of
C-1, C-3, C-11, and C-12 were determined as 1R*, 3S*, 4S*, 11R*, 12R* (Figure 4).

Flexibilisin E (2) had a molecular formula C21H32O5 as deduced from HRESIMS data. The 1H
and 13C NMR spectra showed that the structure of 2 closely resembled that of 1. By comparing
their NMR data (Table 1), significant differences in chemical shifts were observed at C-11 (δc 61.9
for 1; 213.6 for 2), C-12 (δc 60.8 for 1; 78.8 for 2), and C-20 (δc 17.0 for 1; 25.7 for 2), suggesting that
2 is a 12-hydroxy-11-oxo derivative of 1. This was supported by the COSY and HMBC correlations
(Figure 3). The structure and absolute configurations of the stereogenic centers of 2 were confirmed
by an alkaline hydrolysis of 11-dehydrosinulariolide (7), whose absolute configurations at C-1, C-3,
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C-4, and C-12 were determined as 1R, 3S, 4S, and 12R, respectively, based on a single-crystal X-ray
diffraction analysis [18]. Accordingly, the structure of 2 was determined as shown in Figure 1.
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Secoflexibilisolide A (3) was isolated as a colorless oil and its molecular formula was established
as C20H28O5 by the observation of a sodiated molecular ion peak at m/z 371.1831 (calcd. for 371.1829
[M + Na]+) in the HRESIMS, indicating seven degrees of unsaturation. Its IR absorption bands
suggested the presence of hydroxy (3450 cm−1) and carbonyl (1765 and 1671 cm−1) groups. Three spin
systems (a–c), inferred by analysis of the COSY correlations, were constructed as shown in Figure 5.
A bicyclo[4.3.0]nonane ring system was established by the HMBC correlations from H3-20 (δH 1.39) to
C-11 (δc 85.3), C-12 (δc 84.7), and C-13 (δc 30.4); from H2-10 (δH 2.05, 1.68) to C-11 and C-12; and from
H2-17 (δH 2.26, 1.66) to C-1 (δc 34.5), C-15 (δc 60.9), and C-16 (δc 177.6). In addition, a γ–lactone ring
between C-16 and C-11 was evidenced by the IR absorption band at 1765 cm−1, which is consistent
with perhydroindan analogues [30]. A methyl-substituted epoxy group was evidenced by the HMBC
correlations from H3-18 (δH 1.28) to C-3 (δc 61.9), C-4 (δc 58.8), and C-5 (δc 41.2), while an acetyl group
was found to be located at C-7 by the HMBC correlations from H3-19 (δH 2.26) to C-7 (δc 134.0) and
C-8 (δc 198.3). Accordingly, the planar structure of 3 was deduced as shown in Figure 5.

Compound 3 can be hypothesized to derive from a precursor with the cembranoid-type skeleton.
As shown in Scheme 1, flexibilisolide D, which was also isolated from this coral [17], was suggested
as a precursor. Flexibilisolide D was converted to intermediate I by oxidative cleavage and Michael
addition. Reduction of the carboxylic acid of the cyclobutane intermediate (II), derived from I
by the aldol condensation, would produce an alcohol functionality in III. Rearrangement of the
hydroxymethyl cyclobutane through a reductive ring opening in III resulted in a formation of the
cyclopentane ring in 3. This suggested that the configurations of C-1, C-3, C-4, and C-12 should be
the same as those of flexibilisolide D and related analogues possessing a 3,4-epoxide group, isolated
previously from this soft coral [17]. The relative configurations of C-11 and C-15 were determined by
a combination of NOESY correlations (Figure 5) and pyridine-induced solvent shift experiment [31].
The NOESY correlations from H3-20 to H2-10 allowed the assignment of the lactone ring as α-oriented.
However, the present NOESY data were unable to fully confirm the orientation of OH-11. As a result,
the pyridine-induced solvent shift experiment was applied on 3. H-2β (δH 1.66 in pyridine), which is
1,3-diaxial to OH-11, was found to be downfield shifted by 0.28 ppm with respect to H-2β, measured
in CDCl3 (Table 2), suggesting the β-orientation of OH-11. Consequently, the relative configurations
1R*, 3S*, 4S*, 11S*, 12S*, 15R* were suggested for 3.
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The molecular formula of 4 was found to be C20H28O6 as deduced from the HRESIMS and 13C
NMR data, suggesting seven degrees of unsaturation. The 13C NMR data of 4 (Table 3) showed signals
attributable to two double bonds (δc 139.5, 126.0, 136.9, 124.1), one ketone carbonyl (δc 205.6), and
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two ester carbonyls (δc 175.4, 165.3), which accounted for five degrees of unsaturation. Accordingly,
the structure of 4 may contain two rings. From the COSY spectrum of 4, it was possible to suggest the
presence of three proton sequences for H2-13/H2-14/H-1/H-2/H-3, H2-5/H-6/H-7, and H2-9/H2-10
(a–c, respectively; Figure 6). Key HMBC correlations from H3-20 (δH 1.64) to C-12 (δc 205.6) and C-13
(δc 39.4); from H2-17 (δH 6.40, 5.12) to C-15 (δc 139.5), C-16 (δc 165.3), and C-1 (δc 35.9); from H3-18
(δH 1.00) to C-3 (δc 83.0), C-4 (δc 72.5), and C-5 (δc 41.3); and from H3-19 (δH 1.04) to C-7 (δc 136.9), C-8
(δc 83.9), and C-9 (δc 33.9); as well as H2-10 (δH 2.05, 1.94) to C-11 (δc 175.4) were observed, allowing to
establish the planar structure of 4 as shown in Figure 6.

In the NOESY spectrum of 4, correlations from H-2α to both H-1 and H-3, and from H3-18 to
H-3 revealed that H-1 and H-3 are on the same face of the lactone ring. Biogenetically, 4 could be
derived from sinuflexolide, which has been reported from the same coral [12], via an oxidative
cleavage of the diol groups, epimerization of the vinyl alcohol, and subsequent esterification
(Scheme 2). This suggested that the configuration of C-4 should be the same as that of sinuflexolide.
Consequently, the relative configurations 1S*, 3S*, 4R* were suggested for 4. The configuration of C-8
remains undetermined.
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Table 2. 1H, 13C NMR data, COSY, and HMBC correlations of 3.

Position δH
a (J in Hz) c δC

b (mult.) d COSY HMBC

1 2.13, m 34.5 (CH) H-2, 14 C-3, 16
2 1.78, m; 1.38, m 30.7 (CH2) H-1, 3 C-1, 3, 14, 15
3 2.74, dd (7.5, 6.5) 61.9 (CH) H-2 C-2
4 58.8 (C)
5 2.44, d (7.5) 41.2 (CH2) H-6 C-3, 4, 6, 7, 18
6 6.73, m 142.2 (CH) H-5, 7 C-4, 5, 7, 8
7 6.12, d (16.0) 134.0 (CH) H-6 C-8
8 198.3 (C)
9 1.82, m 20.8 (CH2) H-10, 17 C-15

10 2.05, m; 1.68, m 34.1 (CH2) H-9 C-9, 11, 12
11 85.3 (C)
12 84.7 (C)
13 2.10, m; 1.72, m 30.4 (CH2) C-11, 12
14 1.96, m; 1.22, m 25.8 (CH2) C-12, 15
15 60.9 (C)
16 177.6 (C)
17 2.26, m; 1.66, m 28.4 (CH2) H-9 C-1, 15, 16
18 1.28, s 17.2 (CH3) C-3, 4, 5
19 2.26, s 27.0 (CH3) C-7, 8
20 1.39, s 18.7 (CH3) C-11, 12, 13

a Spectra recorded at 500 MHz in CDCl3. b Spectra recorded at 125 MHz in CDCl3. c J values (in Hz) in parentheses.
d Attached protons were deduced by DEPT experiments.
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The 13C NMR data (Table 3) and the HRESIMS of 5 showed that it has the same molecular formula
as flexibilisolide G [17], that is, C22H32O7. They also have similar functional groups, including an
α-exomethylene-ε-lactone ring, an acetoxyl group, and a methyl-substituted epoxy group. However,
the obvious difference between the two compounds is that the 6,7-double bond in flexibilisolide G
is isomerized to an exocyclic double bond at C-8 in 5. In addition, the hydroperoxy group at C-7 in
flexibilisolide G was found to migrate to C-8 in 5. The above findings were further confirmed by
COSY and HMBC correlations. The 1R*, 12R* configuration of the α-exomethylene-ε-lactone ring
was deduced based on the NOESY correlations from H-1 to H-14α, from H3-20 to H-13β, and from
H-14β to H-13β. In addition, NOESY correlations from H-11 to both H-7 and H-1 as well as H-1 to H-4
suggested the relative configurations of C-3, C-4, C-7, and C-11 as shown in Figure 4.

Table 3. 1H and 13C NMR data of compounds 4 and 5.

Position
4 5

δH
a (J in Hz) e δC

b (mult.) f δH
c (J in Hz) δC

d (mult.)

1 2.02, m 35.9 (CH) 2.92, m 34.6 (CH)
2 1.07, m; 1.02, m 28.2 (CH2) 2.14, m; 1.48, m 33.3 (CH2)
3 3.64, dd (11.6) 83.0 (CH) 3.07, dd (10.0, 4.0) 61.7 (CH)
4 72.5 (C) 59.6 (C)
5 2.14, m; 1.97, m 41.3 (CH2) 2.12, m; 1.48, m 34.3 (CH2)
6 5.66, m 124.1 (CH) 1.94, m; 1.91, m 25.5 (CH2)
7 5.20, dd (15.6, 6.8) 136.9 (CH) 4.53, d (10.0) 81.2 (CH)
8 83.9 (C) 145.8 (C)
9 1.44, m; 1.22, m 33.9 (CH2) 2.59, m; 2.23, m 29.7 (CH2)

10 2.05, m; 1.94, m 28.7 (CH2) 1.89, m; 1.78, m 26.5 (CH2)
11 175.4 (C) 5.60, dd (12.8, 2.4) 72.9 (CH)
12 205.6 (C) 87.1 (C)
13 1.76, m; 1.68, m 39.4 (CH2) 2.03, m; 1.92, m 32.8 (CH2)
14 1.62, m; 1.32, m 28.0 (CH2) 2.23, m; 1.38, m 30.1 (CH2)
15 139.5 (C) 143.4 (C)
16 165.3 (C) 168.1 (C)
17 6.40, s; 5.12, s 126.0 (CH2) 6.30, s; 5.50, s 125.0 (CH2)
18 1.00 s 22.4 (CH3) 1.40 s 24.0 (CH3)
19 1.04 s 26.3 (CH3) 5.09 s; 5.06 s 115.0 (CH2)
20 1.64 s 29.4 (CH3) 1.38 s 15.5 (CH3)

OAc 2.09 s 20.9 (CH3)
170.6 (C)

a Spectra recorded at 400 MHz in C6D6. b Spectra recorded at 100 MHz in C6D6. c Spectra recorded at 400 MHz
in CDCl3. d Spectra recorded at 100 MHz in CDCl3. e J values (in Hz) in parentheses. f Attached protons were
deduced by DEPT experiments.

The cytotoxicitiy of 1, 2, and 4–14 against P-388 (murine leukemia), K-562 (human
erythromyeloblastoid leukemia), and HT-29 (human colon carcinoma cells) cell lines was investigated.
The results showed that 7–9 and 11 exhibited cytotoxic activity toward P-388 and K-562 cancer cell
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lines with half maximal inhibitory concentration (IC50) values ranging from 6.9 µM to 26.7 µM
(Table 4). Among them, 7 showed selective cytotoxicity toward P-388, while 8 was found to
show potent activity and selectivity toward P-388 and HT-29 cancer cell lines. Compounds
1, 2, 4–6, 10, and 12–14 were nontoxic toward these cancer cell lines (IC50 values > 40 µM).
The anti-inflammatory effect of 1, 2, and 4–14 was also studied by measuring their ability to
suppress N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF-CB)-induced superoxide
anion (O2

−•) generation and elastase release in human neutrophils. The results revealed that, at a
concentration of 10 µM, 9 exhibited significant inhibition toward superoxide anion generation and
elastase release with IC50 values of 10.8 ± 0.38 and 11.0 ± 1.52 µM, respectively.

Table 4. The cytotoxic activity of 7–9 and 11 a.

Compound
IC50 (µM)

P-388 b K-562 c HT-29 d

7 9.3 23.4 15.9
8 6.9 12.2 9.6
9 16.0 26.7 (–)
11 (–) e 21.7 27.1

Doxorubicin hydrochloride f 0.3 1.0 0.9
a Compounds 1, 2, 4–6, 10, and 12–14 were inactive toward the three cancer cell lines with IC50 > 40 µM. b P-388:
murine leukemia. c K-562: human erythromyeloblastoid leukemia. d HT-29: human colon adenocarcinoma. e (–):
IC50 > 40 µM. f Positive control.

3. Experimental Section

3.1. General Experimental Procedures

Optical rotations were measured on a JASCO P-1020 polarimeter (JASCO Corpotation, Tokyo,
Japan). IR spectra were recorded on a JASCO FT/IR-4100 infrared spectrophotometer (JASCO
Corporation) (Varian Inc., Palo Alto, CA, USA). NMR spectra were recorded on 400 MHz (or 500 MHz)
for 1H and 100 MHz (or 125 MHz) for 13C in CDCl3 or C6D6. LRMS or HRMS were obtained by
electrospray ionization (ESI) on a Bucker APEX II mass spectrometer (Bruker, Bremen, Germany).
Silica gel (230–400 mesh, Merck, Darmstadt, Germany) was used for column chromatography.
Precoated silica gel plates (Merck, Kieselgel 60 F-254, 0.2 mm) were used for analytical thin-layer
chromatography (TLC). High-performance liquid chromatography was performed on a Hitachi L-7100
(HPLC) (Hitachi Ltd., Tokyo, Japan) apparatus with a Merck Hibar Si-60 column (250 mm × 21.2 mm,
8 µm) and on a Hitachi L-2455 (HPLC) (Hitachi Ltd., Tokyo, Japan) apparatus with a Sciences Inc.
(GL Science, Tokyo, Japan) ODS-3 C18 column (250 mm × 20 mm, 5 µm).

3.2. Animal Material

The soft coral Sinularia flexibilis was collected by scuba diving off the coast of Liuqiu, Taiwan, in
October 2011, at a depth of 10–15 m, and stored in the freezer until extraction. A voucher specimen was
deposited in the Department of Marine Biotechnology and Resource, National Sun Yet-sen University.

3.3. Extraction and Separation

Sliced bodies of S. flexibilis were exhaustively extracted with EtOAc (2 L × 5). The EtOAc extract
(40.0 g) was chromatographed over silica gel by column chromatography using hexane, EtOAc–hexane
(1:100 and gradually increasing the proportion of EtOAc to 10:1), EtOAc, and then Me2CO–EtOAc
(1:100 and gradually increasing the proportion of Me2CO to 10:1), and subsequently Me2CO as
eluents to yield 26 fractions. Fraction 16, eluting with hexane–EtOAc (3:1), was further applied on
a silica gel column (240 g) using hexane–EtOAc (8:1) to yield five subfractions (A–E). Subfraction
16-C was purified by normal-phase HPLC using hexane–Me2CO (8:1) to afford 1 (3.4 mg). Fraction
18, eluting with hexane-EtOAc (1:1), was further purified by RP-18 silica gel and using a mixture of
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MeOH-H2O (1.5:1) to yield seven subfractions (A–G). Subfraction 18-B was purified by reversed-phase
HPLC using MeCN-H2O (1:2) to afford 3 (1.0 mg). Subfraction 18-D was purified over silica gel
column (50 g) using hexane–EtOAc (2:1) to obtain 4 (3.2 mg). Fraction 19, eluting with hexane–EtOAc
(1:2), was chromatographed on silica gel (240 g) using hexane–EtOAc (5:1) to yield six subfractions
(A–F). Subfraction 19-B was purified on RP-18 silica gel using MeOH–H2O (1:1) and subsequently
by RP-HPLC with MeOH–H2O (1.5:1) to afford 7 (280.4 mg) and 14 (2.9 mg). Subfraction 19-E was
purified by RP-HPLC with MeCN–H2O (2:1) to yield 2 (94.6 mg), 8 (84.5 mg), and 9 (11.2 mg). Fraction
20, eluting with hexane–EtOAc (2:1), was further purified over silica gel column (200 g) and eluted
with hexane–EtOAc (2:1) to yield five subfractions (A–E). Compounds 5 (2.1 mg) and 10 (123.7 mg)
were obtained from subfraction 20-C using NP-HPLC (hexane–Me2CO, 4:1). Subfraction 20-E was
isolated repeatedly over silica gel column (50 g) using hexane–Me2CO (3:1) as eluent, followed by
RP-HPLC (MeCN–H2O, 1:1.5) to afford 6 (4.8 mg), 11 (9.5 mg), 12 (5.1 mg), and 13 (1.0 mg).

Flexibilisin D (1): colorless oil; [α]19
D −245 (c 0.85, CHCl3); IR (KBr) vmax 2933, 1716, 1647, 1453,

1244, 1149, and 1074 cm−1; 1H and 13C NMR data, see Table 1; ESIMS m/z 371 [M + Na]+; HRESIMS
m/z 371.2196 [M + Na]+ (calcd. for C21H32O4Na, 371.2198).

Flexibilisin E (2): colorless oil; [α]25
D +26 (c 0.57, CHCl3); IR (KBr) vmax 3481, 2927, 1713, 1627, 1460,

1438, 1387, 1252, 1159, 946, 816, and 755 cm−1; 1H and 13C NMR data, see Table 1; ESIMS m/z 387
[M + Na]+; HRESIMS m/z 387.2145 [M + Na]+ (calcd. for C21H32O5Na, 387.2147).

Secoflexibilisolide A (3): colorless oil; [α]22
D −580 (c 0.28, CHCl3); IR (KBr) vmax 3450, 2924, 1766,

1672, 1627, 1380, 1232, 1175, 1101, 1078, 1030, and 1026 cm−1; 1H and 13C NMR data, see Table 2; ESIMS
m/z 371 [M + Na]+; HRESIMS m/z 371.1831 [M + Na]+ (calcd. for C20H28O5Na, 371.1829).

Secoflexibilisolide B (4): colorless oil; [α]19
D −56 (c 0.91, CHCl3); IR (KBr) vmax 3501, 2924, 1705,

1647, 1515, 1267, and 1153 cm−1; 1H and 13C NMR data, see Table 3; ESIMS m/z 387 [M + Na]+;
HRESIMS m/z 387.1779 [M + Na]+ (calcd. for C20H28O6Na, 387.1778).

Flexibilisolide H (5): white powder; [α]19
D −12 (c 0.60, CHCl3); IR (KBr) vmax 3391, 2934, 1739,

1711, 1621, 1239, 1236, 1141, 1065, and 1048 cm−1; 1H and 13C NMR data, see Table 3; ESIMS m/z 431
[M + Na]+; HRESIMS m/z 431.2047 [M + Na]+ (calcd. for C22H32O7Na, 431.2046).

3.4. Alkaline Hydrolysis of 7

Compound 7 (3.5 mg) was dissolved in 1 N methanolic NaOH solution (1 mL), and the mixture
was stirred at 0 ◦C for 12 h. The reaction mixture was neutralized with 0.1 N HCl (aq). After evaporation
of the solvent, the residue was extracted with CHCl3, and subsequently purified by HPLC using
MeOH–H2O (3:1) as eluent to yield a methyl ester (1.1 mg, 31.4%; [α]25

D +48 (c 0.28, CHCl3; 1H and
13C NMR spectra, Supplementary materials, Figures S4 and S5), which was identified as 2.

3.5. Cytotoxicity Testing

Cell lines were purchased from the American Type Cultural Collection (ATCC). Cytotoxicity assay
of 1, 2, and 4–14 were performed using Alamar Blue Assay [32,33].

3.6. In Vitro Anti-Inflammatory Assay

Human neutrophils were obtained from whole blood using dextran sedimentation and Ficoll
centrifugation. Measurements of superoxide anion generation and elastase release were performed
according to previously described procedures [34,35]. Idelalisib was used as a positive control, of which
the IC50 values for inhibition of superoxide anion generation and elastase release were 0.07 ± 0.01 and
0.28 ± 0.09 µM, respectively.

4. Conclusions

Five new diterpenoids and nine known compounds were isolated and characterized from the
marine soft coral Sinularia flexibilis. The previously unreported 3, containing a bicyclo[4.3.0]nonane
ring system, was proposed be derived from flexibilisolide D. Compounds 7 and 8 showed selective
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cytotoxicity toward P388 cancer cell line, while 8 also exhibited significant cytotoxicity toward
HT-29 cancer cells. Compound 9 displayed weaker cytotoxicity than 7 and 8, but displayed potent
inhibitory activities for superoxide anion generation and elastase release in (fMLF-CB)-induced
human neutrophils.

Supplementary Materials: 1H and 13C spectra of compounds 1–14 and the hydrolyzed product of 7 are available
online at http://www.mdpi.com/1660-3397/16/8/278/s1. Figure S1: 1H NMR spectrum of compound 1 in
CDCl3, Figure S2: 13C NMR spectrum of compound 1 in CDCl3, Figure S3: 1H NMR spectrum of compound 2 in
CDCl3, Figure S4: 1H NMR spectra of compound 2 and hydrolyzed product of 7 in CDCl3, Figure S5: 13C NMR
spectra of compound 2 and hydrolyzed product of 7 in CDCl3, Figure S6: 13C NMR spectrum of compound 2
in CDCl3, Figure S7: 1H NMR spectrum of compound 3 in CDCl3, Figure S8: 1H NMR spectrum of compound
3 in pyridine-d5, Figure S9: 13C NMR spectrum of compound 3 in CDCl3, Figure S10: 1H–1H COSY spectrum
of 3 in pyridine-d5, Figure S11: 1H NMR spectrum of compound 4 in C6D6, Figure S12: 13C NMR spectrum of
compound 4 in C6D6, Figure S13: 1H NMR spectrum of compound 5 in CDCl3, Figure S14: 13C NMR spectrum of
compound 5 in CDCl3, Figure S15: 1H NMR spectrum of compound 6 in CDCl3, Figure S16: 13C NMR spectrum of
compound 6 in CDCl3, Figure S17: 1H NMR spectrum of compound 7 in CDCl3, Figure S18: 13C NMR spectrum of
compound 7 in CDCl3, Figure S19: 1H NMR spectrum of compound 8 in CDCl3, Figure S20: 13C NMR spectrum of
compound 8 in CDCl3, Figure S21: 1H NMR spectrum of compound 9 in CDCl3, Figure S22: 13C NMR spectrum of
compound 9 in CDCl3, Figure S23: 1H NMR spectrum of compound 10 in CDCl3, Figure S24: 13C NMR spectrum
of compound 10 in CDCl3, Figure S25: 1H NMR spectrum of compound 11 in CDCl3, Figure S26: 13C NMR
spectrum of compound 11 in CDCl3, Figure S27: 1H NMR spectrum of compound 12 in CDCl3, Figure S28: 13C
NMR spectrum of compound 12 in CDCl3, Figure S29: 1H NMR spectrum of compound 13 in CDCl3, Figure S30:
13C NMR spectrum of compound 13 in CDCl3, Figure S31: 1H NMR spectrum of compound 14 in CDCl3, Figure
S32: 13C NMR spectrum of compound 14 in CDCl3.
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