Heart Rate Variability as a Predictor of Region-Specific Brain Injury in Neonates with Perinatal Asphyxia: A Prospective Study in a Middle-Income Country
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Procedures
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Predictive Capacity
3.2. Association Between HRV and Cerebral MRI Abnormalities
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HRV | Heart Rate Variability |
AUC | Area Under the Curve |
CI | Confidence Interval |
LF | Low-Frequency Power |
HF | High-Frequency Power |
SDNN | Standard deviation of all NN intervals |
rMSSD | Root mean square of successive differences between consecutive NN intervals |
pNN50 | Percentage of NN intervals differing by more than 50 ms |
VLF | Very-Low-Frequency Power |
LF/HF Ratio | Ratio between low-frequency and high-frequency power |
OR | Odds Ratios |
BG/T | Basal Ganglia/Thalamus |
PLIC | Posterior Limb of Internal Capsule |
IQR | Interquartile Range |
EHI | Hypoxic–Ischemic Encephalopathy |
TH | Therapeutic Hypothermia |
LMIC | Low- and middle-income country |
References
- Rosa-Mangeret, F.; Benski, A.C.; Golaz, A.; Zala, P.Z.; Kyokan, M.; Wagner, N.; Muhe, L.M.; Pfister, R.E. 2.5 Million Annual Deaths—Are Neonates in Low-and Middle-Income Countries Too Small to Be Seen? A Bottom-Up Overview on Neonatal Morbi-Mortality. Trop. Med. Infect. Dis. 2022, 7, 64. [Google Scholar] [CrossRef]
- Workineh, Y.; Semachew, A.; Ayalew, E.; Animaw, W.; Tirfie, M.; Birhanu, M. Prevalence of perinatal asphyxia in East and Central Africa: Systematic review and meta-analysis. Heliyon 2020, 6, e03793. [Google Scholar] [CrossRef]
- Mokuolu, O.A.; Adesiyun, O.O.; Ibrahim, O.R.; Suberu, H.D.; Ibrahim, S.; Bello, S.O.; Mokikan, M.; Obasa, T.O.; Abdulkadir, M.B. Appraising Neonatal Morbidity and Mortality in a Developing Country Categorized by Gestational Age Grouping and Implications for Targeted Interventions. Front. Pediatr. 2022, 10, 899645. [Google Scholar] [CrossRef]
- Dzikienė, R.; Lukoševičius, S.; Laurynaitienė, J.; Marmienė, V.; Nedzelskienė, I.; Tamelienė, R.; Rimdeikienė, I.; Kudrevičienė, A. Long-Term Outcomes of Perinatal Hypoxia and Asphyxia at an Early School Age. Med. B Aires 2021, 57, 988. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Le, H.T.; Tran, D.M.; Nguyen, G.T.H.; Hellström-Westas, L.; Alfven, T.; Olson, L. Therapeutic hypothermia after perinatal asphyxia in Vietnam: Medium-term outcomes at 18 months—A prospective cohort study. BMJ Paediatr. Open 2024, 8, e002208. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Chawla, D. Therapeutic hypothermia for neonatal encephalopathy in developing countries: Current evidence. Clin. Epidemiol. Glob. Health 2024, 26, 101507. [Google Scholar] [CrossRef]
- Bellos, I.; Devi, U.; Pandita, A. Therapeutic Hypothermia for Neonatal Encephalopathy in Low- and Middle-Income Countries: A Meta-Analysis. Neonatology 2022, 119, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Aiyer, S.; Singh, S. Impact of therapeutic hypothermia (whole body cooling) on severely asphyxiated term neonates: A prospective non-randomized comparative study in an Indian tertiary care setting. Int. J. Contemp. Pediatr. 2024, 11, 404–413. [Google Scholar] [CrossRef]
- Shepherd, E.; Salam, R.A.; Middleton, P.; Han, S.; Makrides, M.; McIntyre, S.; Badawi, N.; A Crowther, C. Neonatal interventions for preventing cerebral palsy: An overview of Cochrane Systematic Reviews. Cochrane Database Syst. Rev. 2018, 6, CD012409. [Google Scholar] [CrossRef] [PubMed]
- Peeples, E.S.; Rao, R.; Dizon, M.L.V.; Johnson, Y.R.; Joe, P.; Flibotte, J.; Hossain, T.; Smith, D.; Hamrick, S.; DiGeronimo, R.; et al. Predictive Models of Neurodevelopmental Outcomes After Neonatal Hypoxic-Ischemic Encephalopathy. Pediatrics 2021, 147, e2020022962. [Google Scholar] [CrossRef]
- Yasova Barbeau, D.; Krueger, C.; Huene, M.; Copenhaver, N.; Bennett, J.; Weaver, M.; Weiss, M.D. Heart rate variability and inflammatory markers in neonates with hypoxic-ischemic encephalopathy. Physiol. Rep. 2019, 7, e14110. [Google Scholar] [CrossRef]
- Guarnera, A.; Lucignani, G.; Parrillo, C.; Rossi-Espagnet, M.C.; Carducci, C.; Moltoni, G.; Savarese, I.; Campi, F.; Dotta, A.; Milo, F.; et al. Predictive Value of MRI in Hypoxic-Ischemic Encephalopathy Treated with Therapeutic Hypothermia. Children 2023, 10, 446. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Q.; Liu, F.; Jin, L.; Ren, P.; Li, L. A biochemical feedback signal for hypothermia treatment for neonatal hypoxic–ischemic encephalopathy: Focusing on central nervous system proteins in biofluids. Front. Pediatr. 2024, 12, 1288853. [Google Scholar] [CrossRef]
- Jerez-Calero, A.; Contreras-Chova, F.; Benitez-Feliponi, A.; Azaryah, H.; Hurtado-Suazo, J.A.; Moreno-Galdó, M.F.; Carballo, A.M. Pro-Inflammatory Biomarkers and Long Term Neurological Outcomes in Hypothermia Plus Melatonin Treated Asphyxiated Newborns. A Preliminary Approach. Pediatr Res. 2025, 97, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- Goswami, I.; Guillot, M.; Tam, E.W.Y. Predictors of Long-Term Neurodevelopmental Outcome of Hypoxic-Ischemic Encephalopathy Treated with Therapeutic Hypothermia. Semin. Neurol. 2020, 40, 322–334. [Google Scholar] [CrossRef]
- Chiang, M.C.; Jong, Y.J.; Lin, C.H. Therapeutic hypothermia for neonates with hypoxic ischemic encephalopathy. Pediatr. Neonatol. 2017, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Metzler, M.; Govindan, R.; Al-Shargabi, T.; Vezina, G.; Andescavage, N.; Wang, Y.; du Plessis, A.; Massaro, A.N. Pattern of brain injury and depressed heart rate variability in newborns with hypoxic ischemic encephalopathy. Pediatr. Res. 2017, 82, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Rao, R.; Trivedi, S.B.; Mathur, A.M. The effect of therapeutic hypothermia on heart rate variability. J. Perinatol. 2017, 37, 679–683. [Google Scholar] [CrossRef]
- Goulding, R.M.; Stevenson, N.J.; Murray, D.M.; Livingstone, V.; Filan, P.M.; Boylan, G.B. Heart rate variability in hypoxic ischemic encephalopathy: Correlation with EEG grade and 2-y neurodevelopmental outcome. Pediatr. Res. 2015, 77, 681–687. [Google Scholar] [CrossRef]
- Bersani, I.; Piersigilli, F.; Gazzolo, D.; Campi, F.; Savarese, I.; Dotta, A.; Tamborrino, P.P.; Auriti, C.; Di Mambro, C. Heart rate variability as possible marker of brain damage in neonates with hypoxic ischemic encephalopathy: A systematic review. Eur. J. Pediatr. 2021, 180, 1335–1345. [Google Scholar] [CrossRef]
- Oliveira, V.; Martins, R.; Liow, N.; Teiserskas, J.; von Rosenberg, W.; Adjei, T.; Shivamurthappa, V.; Lally, P.J.; Mandic, D.; Thayyil, S. Prognostic Accuracy of Heart Rate Variability Analysis in Neonatal Encephalopathy: A Systematic Review. Neonatology 2019, 115, 59–67. [Google Scholar] [CrossRef]
- Mathew, J.L.; Kaur, N.; Dsouza, J.M. Therapeutic hypothermia in neonatal hypoxic encephalopathy: A systematic review and meta-analysis. J. Glob. Health 2022, 12, 04030. [Google Scholar] [CrossRef]
- Goswami, I.; Kamino, D.; Widjaja, E.; Paniccia, M.; Mitsakakis, N.; Moore, A.; Tam, E.W.Y. Early neonatal heart rate variability patterns in different subtypes of perinatal hypoxic-ischemic brain injury. Pediatr. Res. 2022, 92, 1630–1639. [Google Scholar] [CrossRef]
- Andersen, M.; Andelius, T.C.K.; Pedersen, M.V.; Kyng, K.J.; Henriksen, T.B. Severity of hypoxic ischemic encephalopathy and heart rate variability in neonates: A systematic review. BMC Pediatr. 2019, 19, 242. [Google Scholar] [CrossRef]
- Cardoso, S.; Silva, M.J.; Guimarães, H. Autonomic nervous system in newborns: A review based on heart rate variability. Child’s Nerv. Syst. 2017, 33, 1053–1063. [Google Scholar] [CrossRef]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Thoresen, M.; Tooley, J.; Liu, X.; Jary, S.; Fleming, P.; Luyt, K.; Jain, A.; Cairns, P.; Harding, D.; Sabir, H. Time Is Brain: Starting Therapeutic Hypothermia within Three Hours after Birth Improves Motor Outcome in Asphyxiated Newborns. Neonatology 2013, 104, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Mulkey, S.B.; dú Plessis, A. The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Semin. Pediatr. Neurol. 2018, 28, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Ferreira, E.; Hristova, M. Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast. 2016, 2016, 4901014. [Google Scholar] [CrossRef] [PubMed]
- Boardman, A.; Schlindwein, F.S.; Thakor, N.V.; Kimura, T.; Geocadin, R.G. Detection of asphyxia using heart rate variability. Med. Biol. Eng. Comput. 2002, 40, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Presacco, A.; Chirumamilla, V.C.; Vezina, G.; Li, R.; Du Plessis, A.; Massaro, A.N.; Govindan, R.B. Prediction of outcome of hypoxic-ischemic encephalopathy in newborns undergoing therapeutic hypothermia using heart rate variability. J. Perinatol. 2024, 44, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Singla, M.; Chalak, L.; Kumar, K.; Hayakawa, M.; Mehta, S.; Neoh, S.H.; Kitsommart, R.; Yuan, Y.; Zhang, H.; Shah, P.S.; et al. “Mild’’ Hypoxic-Ischaemic Encephalopathy and Therapeutic Hypothermia: A Survey of Clinical Practice and Opinion from 35 Countries. Neonatology 2022, 119, 712–718. [Google Scholar] [CrossRef]
- Massaro, A.N.; Govindan, R.B.; Al-Shargabi, T.; Andescavage, N.N.; Metzler, M.; Chang, T.; Glass, P.; du Plessis, A.J. Heart rate variability in encephalopathic newborns during and after therapeutic hypothermia. J. Perinatol. 2014, 34, 836–841. [Google Scholar] [CrossRef]
- Campbell, H.; Govindan, R.B.; Kota, S.; Al-Shargabi, T.; Metzler, M.; Andescavage, N.; Chang, T.; Vezina, G.; du Plessis, A.; Massaro, A.N. Autonomic dysfunction in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia impairs physiological responses to routine care events. J. Pediatr. 2018, 196, 38–44, Epub 2018 Mar 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Total Cohort | Normal MRI | Abnormal MRI | p-Value | ||||
---|---|---|---|---|---|---|---|
Sex, n (%) | |||||||
Female | 36 | (41.40) | 26 | (72.20) | 10 | (27.80) | 0.35 |
Male | 51 | (58.60) | 32 | (62.70) | 19 | (37.30) | |
Gestational age (Ballard), n (%) | |||||||
≥37 | 77 | (88.50) | 53 | (68.80) | 24 | (31.20) | 0.29 1 |
<37 | 10 | (11.50) | 5 | (50.00) | 5 | (50.00) | |
Birth weight, g, n (%) | |||||||
≥2.500 | 74 | (85.10) | 50 | (67.60) | 24 | (32.40) | 0.75 1 |
<2.500 | 13 | (14.90) | 8 | (61.50) | 5 | (38.50) | |
Mode of delivery, n (%) | |||||||
Vaginal | 45 | (51.70) | 29 | (64.40) | 16 | (35.60) | 0.64 |
Cesarean | 42 | (48.30) | 29 | (69.00) | 13 | (31.00) | |
Admission temperature, n (%) | |||||||
33–35 °C | 40 | (50.60) | 30 | (68.20) | 14 | (31.80) | 0.92 |
>35 °C | 27 | (31.00) | 18 | (66.70) | 9 | (33.30) | |
<33 °C | 16 | (18.40) | 10 | (62.50) | 6 | (37.50) | |
Apgar score at 1 min, n (%) | |||||||
≥5 | 54 | (62) | 36 | (66.70) | 18 | (33.30) | 1.00 |
<5 | 33 | (38) | 22 | (66.70) | 11 | (33.30) | |
Apgar Score at 5 min, n (%) | |||||||
≥5 | 87 | (100) | 58 | (67) | 29 | (33.30) | |
<5 | - | - | - | ||||
Severity of asphyxia, n (%) | |||||||
Moderate | 37 | (42.50) | 26 | (70.30) | 11 | (29.70) | 0.54 |
Severe | 50 | (57.40) | 32 | (64.00) | 18 | (36.00) | |
Sarnat classifications, n (%) | |||||||
Moderate | 75 | (86.20) | 52 | (69.30) | 23 | (30.70) | 0.20 1 |
Severe | 12 | (13.80) | 6 | (50.00) | 6 | (50.00) | |
Umbilical Cord Blood Gases | |||||||
pH, median (IQR) | 6.94 | (0.10) | 6.96 | (0.10) | 6.91 | (0.17) | 0.24 2 |
HCO3, mean, (SD) | 11.70 | (5.10) | 11.50 | (5.03) | 12.00 | (5.05) | 0.68 |
Base excess, median (IQR) | −18.00 | (6.40) | −16.90 | (6.70) | −18.00 | (7.80) | 0.30 2 |
Lactate, mean (SD) | 11.40 | (4.30) | 11.20 | (4.50) | 11.80 | (3.90) | 0.54 |
Clinical and/or Electrical Seizures, n (%) | |||||||
No | 56 | (64.40) | 44 | (78.60) | 12 | (21.4) | 0.02 3 |
Yes | 31 | (35.60) | 14 | (45.20) | 17 | (54.8) | |
Inotropic support, n (%) | |||||||
No | 36 | (41.40) | 23 | (63.90) | 13 | (36.10) | 0.64 |
Yes | 51 | (58.60) | 35 | (68.60) | 16 | (31.40) |
Time Point | AUC | 95% CI | p-Value | |
---|---|---|---|---|
First 24 h | ||||
SDNN | 0.53 | 0.41 | 0.66 | 0.62 |
rMSSD | 0.55 | 0.42 | 0.67 | 0.47 |
pNN50 | 0.54 | 0.41 | 0.66 | 0.58 |
VLF power | 0.51 | 0.38 | 0.64 | 0.93 |
LF power | 0.79 | 0.69 | 0.88 | <0.001 1 |
HF power | 0.80 | 0.72 | 0.89 | <0.001 1 |
LF/HF ratio | 0.40 | 0.28 | 0.52 | 0.10 |
Rewarming phase | ||||
SDNN | 0.51 | 0.37 | 0.64 | 0.90 |
rMSSD | 0.50 | 0.37 | 0.63 | 0.95 |
pNN50 | 0.50 | 0.37 | 0.63 | 0.99 |
VLF power | 0.52 | 0.38 | 0.66 | 0.76 |
LF power | 0.90 | 0.84 | 0.97 | <0.001 1 |
HF power | 0.82 | 0.74 | 0.91 | <0.001 1 |
LF/HF ratio | 0.59 | 0.47 | 0.72 | 0.14 |
24 h Post-Rewarming | ||||
SDNN | 0.46 | 0.33 | 0.59 | 0.54 |
rMSSD | 0.41 | 0.28 | 0.55 | 0.21 |
pNN50 | 0.38 | 0.26 | 0.51 | 0.06 |
VLF power | 0.51 | 0.38 | 0.63 | 0.93 |
LF power | 0.55 | 0.43 | 0.67 | 0.43 |
HF power | 0.45 | 0.33 | 0.58 | 0.48 |
LF/HF ratio | 0.67 | 0.56 | 0.79 | <0.001 1 |
Brain MRI | |||||
---|---|---|---|---|---|
Normal | Abnormal | ||||
Median | IQR | Median | IQR | p-Value 1 | |
First 24 h | |||||
SDNN | 0.63 | ||||
rMSSD | 26 | 25 | 23 | 23 | 0.48 |
pNN50 | 5 | 20 | 4 | 14 | 0.59 |
VLF power | 515.90 | 596.30 | 584.40 | 532.30 | 0.92 |
LF power | 168.90 | 280.30 | 54.80 | 27.80 | <0.001 2 |
HF power | 53.10 | 105.40 | 11.70 | 9 | <0.001 2 |
LF/HF ratio | 3.20 | 4.1 | 4.1 | 3.7 | 0.10 |
Rewarming phase | |||||
SDNN | 30 | 20.50 | 29 | 29 | 0.90 |
rMSSD | 22 | 18 | 20.50 | 19 | 0.95 |
pNN50 | 3.50 | 9 | 2 | 11 | 0.98 |
VLF power | 429.90 | 476.30 | 411.70 | 879.90 | 0.74 |
LF power | 237.10 | 314.40 | 40.50 | 28.40 | <0.001 2 |
HF power | 78.60 | 105.40 | 10.90 | 18.90 | <0.001 2 |
LF/HF ratio | 3.70 | 3.20 | 2.90 | 2.50 | 0.15 |
24 h Post-Rewarming | |||||
SDNN | 24 | 8 | 26 | 10 | 0.53 |
rMSSD | 17.80 | 12 | 24.50 | 15 | 0.19 |
pNN50 | 1.80 | 7 | 5 | 8 | 0.06 |
VLF power | 290.90 | 283.40 | 288.40 | 211 | 0.93 |
LF power | 134.40 | 138.70 | 130.60 | 113.70 | 0.44 |
HF power | 36.20 | 41.60 | 47.40 | 40.10 | 0.48 |
LF/HF ratio | 3.85 | 2.79 | 2.90 | 1.45 | 0.009 2 |
Variable | OR | 95% CI | Valor p | aOR | 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|---|
High-Frequency Power (HF) in the First 24 h | 0.93 | 0.90 | 0.97 | 0.002 | 0.91 | 0.84 | 0.99 | 0.05 1 |
Low-Frequency Power (LF) During Rewarming | 0.96 | 0.94 | 0.98 | 0.002 | 0.93 | 0.89 | 0.98 | 0.01 1 |
High-Frequency Power (HF) During Rewarming | 0.96 | 0.94 | 0.98 | <0.001 | 1.04 | 0.98 | 1.10 | 0.14 |
Clinical/Electrical Seizures | ||||||||
No (reference) | ||||||||
Yes | 6.05 | 2.25 | 16.26 | <0.001 | 8.71 | 1.21 | 62.52 | 0.03 1 |
Severity of Asphyxia | ||||||||
Moderate (reference) | ||||||||
Severe | 1.32 | 0.53 | 3.30 | 0.64 | 1.18 | 0.20 | 6.75 | 0.84 |
Severity of Encephalopathy (Sarnat Classification) | ||||||||
Moderate (reference) | ||||||||
Severe | 2.26 | 0.65 | 7.76 | 0.19 | 1.70 | 0.14 | 20.21 | 0.67 |
Region | HRV Metric | Adjusted OR | 95% CI | p-Value |
---|---|---|---|---|
Basal Ganglia/Thalamus (BG/T) | HF Power (First 24 h) | 0.94 | 0.87–0.99 | 0.10 |
LF Power (Rewarming) | 0.97 | 0.94–0.99 | 0.08 | |
LF/HF Ratio (Post-Rewarming) | 0.64 | 0.34–1.09 | 0.12 | |
White Matter | LF Power (Rewarming) | 0.96 | 0.93–0.98 | 0.04 1 |
Cortex | LF Power (Rewarming) | 0.97 | 0.94–0.99 | 0.08 |
Cortex | HF Power (Rewarming) | 1.02 | 0.97–1.02 | 0.41 |
Posterior Limb of Internal Capsule (PLIC) | HF Power (post-rewarming) | 1.00 | 0.98–1.02 | 0.83 |
LF/HF Ratio (Post-Rewarming) | 0.67 | 0.41–1.04 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudelo-Pérez, S.; Troncoso, G.; Arenas Auli, A.; Ayala, C. Heart Rate Variability as a Predictor of Region-Specific Brain Injury in Neonates with Perinatal Asphyxia: A Prospective Study in a Middle-Income Country. Medicina 2025, 61, 1631. https://doi.org/10.3390/medicina61091631
Agudelo-Pérez S, Troncoso G, Arenas Auli A, Ayala C. Heart Rate Variability as a Predictor of Region-Specific Brain Injury in Neonates with Perinatal Asphyxia: A Prospective Study in a Middle-Income Country. Medicina. 2025; 61(9):1631. https://doi.org/10.3390/medicina61091631
Chicago/Turabian StyleAgudelo-Pérez, Sergio, Gloria Troncoso, Alvaro Arenas Auli, and Camila Ayala. 2025. "Heart Rate Variability as a Predictor of Region-Specific Brain Injury in Neonates with Perinatal Asphyxia: A Prospective Study in a Middle-Income Country" Medicina 61, no. 9: 1631. https://doi.org/10.3390/medicina61091631
APA StyleAgudelo-Pérez, S., Troncoso, G., Arenas Auli, A., & Ayala, C. (2025). Heart Rate Variability as a Predictor of Region-Specific Brain Injury in Neonates with Perinatal Asphyxia: A Prospective Study in a Middle-Income Country. Medicina, 61(9), 1631. https://doi.org/10.3390/medicina61091631