Ghrelin and LEAP2: Their Interaction Effect on Appetite Regulation and the Alterations in Their Levels Following Bariatric Surgery
Abstract
1. Introduction
2. Appetite Regulation: Homeostatic and Hedonic Pathways
2.1. Homeostatic Control of Food Intake
2.2. Non-Homeostatic Control of Food Intake
3. The Ghrelin System and Its Role in Eating Behavior
3.1. The Discovery and Structure of Ghrelin
3.1.1. Acyl Ghrelin
3.1.2. Des-Acyl Ghrelin
3.2. Ghrelin and Appetite Regulation: Homeostatic and Hedonic Pathways
- -
- Once synthesized in the stomach, it travels through the bloodstream to the arcuate nucleus (ARC) and other parts of the brain, crossing the blood–brain barrier via active transport and influencing appetite.
- -
- Peripherally synthesized ghrelin stimulates vagal afferent nerve endings and is transmitted to the hypothalamus via the nucleus solitarius.
- -
3.3. Ghrelin and Metabolism
3.3.1. Effects on Glucose Metabolism
3.3.2. Effects on Lipid Metabolism
3.3.3. Effects on Gastrointestinal Motility
4. LEAP2: A Novel Antagonist in the Ghrelin System
5. Changes in Acyl Ghrelin, Des-Acyl Ghrelin, and LEAP2 After Bariatric Surgery
6. Limitations
7. Research Gaps and Future Perspectives
- Interactions at the Receptor Level: Molecular interactions between LEAP2 and ghrelin—particularly those involving acylated ghrelin—at the receptor level should be further investigated. This may provide a more accurate understanding of the regulatory role of this axis in appetite and metabolism.
- Diet-Related LEAP2 Regulation: The effects of various dietary components and meal patterns on LEAP2 expression should be investigated, especially in individuals with obesity or metabolic syndrome.
- Pharmacological Potential of LEAP2: The antagonistic effect of LEAP2 on the ghrelin receptor makes it a promising therapeutic target for appetite and weight management. However, further clarification of its physiological effects is needed to support this potential. Studies examining its efficacy, safety and pharmacokinetic properties are also needed.
- Relationship with Hedonic Hunger: Future studies should also address the role of LEAP2 in hedonic hunger and reward-driven eating, which may shed light on clinically important issues such as overeating behaviors and dietary failures in the obese.
- Long- and Short-Term Effects of Bariatric Surgery: Further studies examining the effects of different types of bariatric surgery on acyl ghrelin and LEAP2 levels are needed. In particular, there remains a lack of data on the short- and long-term effects of these hormones on metabolic outcomes and appetite.
- Clinical Measurement Challenges: The measurement of LEAP2, acyl ghrelin, and des-acyl ghrelin levels in clinical settings is not yet widely applicable. Currently, these biomarkers are assessed under research conditions that require high-sensitivity analytical techniques and stringent sampling protocols. Therefore, there is a need to develop simpler, faster, cost-effective, and clinically feasible measurement methods to enable their use in routine clinical practice.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 April 2025).
- Malek, M. Is obesity a disease? Yes. Iran. J. Endocrinol. Metab. 2021, 22, 6. [Google Scholar]
- Saper, C.B.; Chou, T.C.; Elmquist, J.K. The need to feed: Homeostatic and hedonic control of eating. Neuron 2002, 36, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Amin, T.; Mercer, J.G. Hunger and satiety mechanisms and their potential exploitation in the regulation of food intake. Curr. Obes. Rep. 2016, 5, 106–112. [Google Scholar] [CrossRef]
- Tremblay, A.; Bellisle, F. Nutrients, satiety, and control of energy intake. Appl. Physiol. Nutr. Metab. 2015, 40, 971–979. [Google Scholar] [CrossRef]
- Ahima, R.S.; Antwi, D.A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. N. Am. 2008, 37, 811–823. [Google Scholar] [CrossRef]
- Liu, C.M.; Kanoski, S.E. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol. Behav. 2018, 193, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.; De Graaf, C.; Hulshof, T.; Jebb, S.; Livingstone, B.; Lluch, A.; Mela, D.; Salah, S.; Schuring, E.; Van Der Knaap, H. Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010, 11, 251–270. [Google Scholar] [CrossRef]
- Briggs, D.I.; Andrews, Z.B. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology 2011, 93, 48–57. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Kangawa, K. Ghrelin, a novel growth-hormone-releasing and appetite-stimulating peptide from stomach. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 517–530. [Google Scholar] [CrossRef]
- Al Massadi, O.; Nogueiras, R.; Dieguez, C.; Girault, J.-A. Ghrelin and food reward. Neuropharmacology 2019, 148, 131–138. [Google Scholar] [CrossRef]
- Lean, M.; Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence? Int. J. Obes. 2016, 40, 622–632. [Google Scholar] [CrossRef]
- Mani, B.K.; Puzziferri, N.; He, Z.; Rodriguez, J.A.; Osborne-Lawrence, S.; Metzger, N.P.; Chhina, N.; Gaylinn, B.; Thorner, M.O.; Thomas, E.L. LEAP2 changes with body mass and food intake in humans and mice. J. Clin. Investig. 2019, 129, 3909–3923. [Google Scholar] [CrossRef] [PubMed]
- Naznin, F.; Toshinai, K.; Waise, T.Z.; NamKoong, C.; Moin, A.S.M.; Sakoda, H.; Nakazato, M. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J. Endocrinol. 2015, 226, 81. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Yang, H.; Bednarek, M.A.; Galon-Tilleman, H.; Chen, P.; Chen, M.; Lichtman, J.S.; Wang, Y.; Dalmas, O.; Yin, Y. LEAP2 is an endogenous antagonist of the ghrelin receptor. Cell Metab. 2018, 27, 461–469.e6. [Google Scholar] [CrossRef]
- M’Kadmi, C.l.; Cabral, A.; Barrile, F.; Giribaldi, J.; Cantel, S.; Damian, M.; Mary, S.; Denoyelle, S.; Dutertre, S.; Péraldi-Roux, S. N-terminal liver-expressed antimicrobial peptide 2 (LEAP2) region exhibits inverse agonist activity toward the ghrelin receptor. J. Med. Chem. 2018, 62, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Kosmalski, M.; Deska, K.; Bąk, B.; Różycka-Kosmalska, M.; Pietras, T. Pharmacological support for the treatment of obesity—Present and future. Healthcare 2023, 11, 433. [Google Scholar] [CrossRef]
- Sinha, Y.; Mohamed, M.S.N.; Anwer, A.; Mashar, R.; Wiggins, T. Bariatric metabolic surgery. Surgery 2023, 41, 752–758. [Google Scholar] [CrossRef]
- Cavin, J.-B.; Bado, A.; Le Gall, M. Intestinal adaptations after bariatric surgery: Consequences on glucose homeostasis. Trends Endocrinol. Metab. 2017, 28, 354–364. [Google Scholar] [CrossRef]
- Evers, S.S.; Sandoval, D.A.; Seeley, R.J. The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes. Annu. Rev. Physiol. 2017, 79, 313–334. [Google Scholar] [CrossRef]
- Pucci, A.; Batterham, R. Mechanisms underlying the weight loss effects of RYGB and SG: Similar, yet different. J. Endocrinol. Investig. 2019, 42, 117–128. [Google Scholar] [CrossRef]
- Yousseif, A.; Emmanuel, J.; Karra, E.; Millet, Q.; Elkalaawy, M.; Jenkinson, A.D.; Hashemi, M.; Adamo, M.; Finer, N.; Fiennes, A.G. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes. Surg. 2014, 24, 241–252. [Google Scholar] [CrossRef]
- Coluzzi, I.; Raparelli, L.; Guarnacci, L.; Paone, E.; Del Genio, G.; Le Roux, C.W.; Silecchia, G. Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. Obes. Surg. 2016, 26, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, I. Physiological appetite regulation and bariatric surgery. J. Clin. Med. 2024, 13, 1347. [Google Scholar] [CrossRef]
- Hedbäck, N.; Dichman, M.-L.; Hindsø, M.; Dirksen, C.; Jørgensen, N.B.; Bojsen-Møller, K.N.; Kristiansen, V.B.; Rehfeld, J.F.; Hartmann, B.; Holst, J.J. Effect of ghrelin on glucose tolerance, gut hormones, appetite, and food intake after sleeve gastrectomy. Am. J. Physiol.-Endocrinol. Metab. 2024, 327, E396–E410. [Google Scholar] [CrossRef]
- Bohdjalian, A.; Langer, F.B.; Shakeri-Leidenmühler, S.; Gfrerer, L.; Ludvik, B.; Zacherl, J.; Prager, G. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes. Surg. 2010, 20, 535–540. [Google Scholar] [CrossRef]
- Kirchner, H.; Heppner, K.M.; Tschöp, M.H. The role of ghrelin in the control of energy balance. Appet. Control 2012, 209, 161–184. [Google Scholar] [CrossRef]
- O’Rourke, R.W. The pathophysiology of obesity and obesity-related disease. In The ASMBS Textbook of Bariatric Surgery; Springer International Publishing: Cham, Germany, 2020; pp. 15–36. [Google Scholar] [CrossRef]
- Cifuentes, L.; Acosta, A. Homeostatic regulation of food intake. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101794. [Google Scholar] [CrossRef]
- Perry, B.; Wang, Y. Appetite regulation and weight control: The role of gut hormones. Nutr. Diabetes 2012, 2, e26. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, A.; Ranson, S. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 1940, 78, 149–172. [Google Scholar] [CrossRef]
- Brügger, M. Fresstrieb als Hypothalamisches Symptom; Druck von B. Schwabe & Company: Basel, Switzerland, 1943. [Google Scholar]
- Hoebel, B.G.; Teitelbaum, P. Hypothalamic control of feeding and self-stimulation. Science 1962, 135, 375–377. [Google Scholar] [CrossRef]
- Myers Jr, M.G.; Olson, D.P. Central nervous system control of metabolism. Nature 2012, 491, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Timper, K.; Brüning, J.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis. Models Mech. 2017, 10, 679–689. [Google Scholar] [CrossRef]
- Druce, M.; Bloom, S. The regulation of appetite. Arch. Dis. Child. 2006, 91, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Baldini, G.; Phelan, K.D. The melanocortin pathway and control of appetite-progress and therapeutic implications. J. Endocrinol. 2019, 241, R1–R33. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Peripheral mechanisms in appetite regulation. Gastroenterology 2015, 148, 1219–1233. [Google Scholar] [CrossRef]
- Campos, A.; Port, J.D.; Acosta, A. Integrative hedonic and homeostatic food intake regulation by the central nervous system: Insights from neuroimaging. Brain Sci. 2022, 12, 431. [Google Scholar] [CrossRef]
- Friedman, J. Leptin at 20: An overview. J. Endocrinol. 2014, 223, T1–T8. [Google Scholar] [CrossRef]
- Berthoud, H.-R. The vagus nerve, food intake and obesity. Regul. Pept. 2008, 149, 15–25. [Google Scholar] [CrossRef]
- Cork, S.C. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J. Neuroendocrinol. 2018, 30, e12643. [Google Scholar] [CrossRef]
- Berthoud, H.-R. Metabolic and hedonic drives in the neural control of appetite: Who is the boss? Curr. Opin. Neurobiol. 2011, 21, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Matafome, P.; Seiça, R. The role of brain in energy balance. Obes. Brain Funct. 2017, 19, 33–48. [Google Scholar] [CrossRef]
- Woodward, O.R.; Gribble, F.M.; Reimann, F.; Lewis, J.E. Gut peptide regulation of food intake–evidence for the modulation of hedonic feeding. J. Physiol. 2022, 600, 1053–1078. [Google Scholar] [CrossRef]
- Brunerová, L.; Anděl, M. Food intake regulation-2nd part. Vnitr. Lékarství 2014, 60, 38–50. [Google Scholar]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef]
- López, M.; Nogueiras, R. Ghrelin. Curr. Biol. 2023, 33, R1133–R1135. [Google Scholar] [CrossRef]
- Mori, K.; Yoshimoto, A.; Takaya, K.; Hosoda, K.; Ariyasu, H.; Yahata, K.; Mukoyama, M.; Sugawara, A.; Hosoda, H.; Kojima, M. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett. 2000, 486, 213–216. [Google Scholar] [CrossRef]
- Date, Y.; Nakazato, M.; Hashiguchi, S.; Dezaki, K.; Mondal, M.S.; Hosoda, H.; Kojima, M.; Kangawa, K.; Arima, T.; Matsuo, H. Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion. Diabetes 2002, 51, 124–129. [Google Scholar] [CrossRef]
- Gnanapavan, S.; Kola, B.; Bustin, S.A.; Morris, D.G.; McGee, P.; Fairclough, P.; Bhattacharya, S.; Carpenter, R.; Grossman, A.B.; Korbonits, M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 2002, 87, 2988–2991. [Google Scholar] [CrossRef]
- Lu, X.; Huang, L.; Huang, Z.; Feng, D.; Clark, R.J.; Chen, C. LEAP-2: An emerging endogenous ghrelin receptor antagonist in the pathophysiology of obesity. Front. Endocrinol. 2021, 12, 717544. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, N.; Akamizu, T.; Hosoda, H.; Hataya, Y.; Ariyasu, H.; Takaya, K.; Hosoda, K.; Saijo, M.; Moriyama, K.; Shimatsu, A. Substantial production of ghrelin by a human medullary thyroid carcinoma cell line. J. Clin. Endocrinol. Metab. 2001, 86, 4984–4990. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.A.; Solenberg, P.J.; Perkins, D.R.; Willency, J.A.; Knierman, M.D.; Jin, Z.; Witcher, D.R.; Luo, S.; Onyia, J.E.; Hale, J.E. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl. Acad. Sci. USA 2008, 105, 6320–6325. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.-B.; Leite-Moreira, A.F. Ghrelin, des-acyl ghrelin and obestatin: Three pieces of the same puzzle. Peptides 2008, 29, 1255–1270. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, H.; Kangawa, K. Standard sample collections for blood ghrelin measurements. Methods Enzymol. 2012, 514, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Poher, A.-L.; Tschöp, M.H.; Müller, T.D. Ghrelin regulation of glucose metabolism. Peptides 2018, 100, 236–242. [Google Scholar] [CrossRef]
- Lear, P.V.; Iglesias, M.J.; Feijóo-Bandín, S.; Rodríguez-Penas, D.; Mosquera-Leal, A.; García-Rúa, V.; Gualillo, O.; Ghe, C.; Arnoletti, E.; Muccioli, G. Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes. Endocrinology 2010, 151, 3286–3298. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Nelson, T.A.; Guschina, I.A.; Parsons, L.C.; Lewis, C.L.; Brown, R.C.; Christian, H.C.; Davies, J.S.; Wells, T. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: Evidence for target cell-induced acylation. Sci. Rep. 2017, 7, 45541. [Google Scholar] [CrossRef]
- Murtuza, M.I.; Isokawa, M. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus. J. Neurochem. 2018, 144, 58–67. [Google Scholar] [CrossRef]
- Abizaid, A.; Hougland, J.L. Ghrelin signaling: GOAT and GHS-R1a take a LEAP in complexity. Trends Endocrinol. Metab. 2020, 31, 107–117. [Google Scholar] [CrossRef]
- Lim, C.T.; Kola, B.; Korbonits, M. The ghrelin/GOAT/GHS-R system and energy metabolism. Rev. Endocr. Metab. Disord. 2011, 12, 173–186. [Google Scholar] [CrossRef]
- Toshinai, K.; Yamaguchi, H.; Sun, Y.; Smith, R.G.; Yamanaka, A.; Sakurai, T.; Date, Y.; Mondal, M.S.; Shimbara, T.; Kawagoe, T. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology 2006, 147, 2306–2314. [Google Scholar] [CrossRef]
- Fernandez, G.; Cabral, A.; Cornejo, M.P.; De Francesco, P.N.; Garcia-Romero, G.; Reynaldo, M.; Perello, M. Des-acyl ghrelin directly targets the arcuate nucleus in a ghrelin-receptor independent manner and impairs the orexigenic effect of ghrelin. J. Neuroendocrinol. 2016, 28, 12349. [Google Scholar] [CrossRef]
- Murzinski, E.S.; Saha, I.; Ding, H.; Strugatsky, D.; Hollibaugh, R.A.; Liu, H.; Tontonoz, P.; Harran, P.G. In search of small molecules that selectively inhibit MBOAT4. Molecules 2021, 26, 7599. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Fujimiya, M.; Laviano, A.; Chang, F.-Y.; Lin, H.-C.; Lee, S.-D. Modulation of ingestive behavior and gastrointestinal motility by ghrelin in diabetic animals and humans. J. Chin. Med. Assoc. 2010, 73, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Zang, P.; Yang, C.-H.; Liu, J.; Lei, H.-Y.; Wang, W.; Guo, Q.-Y.; Lu, B.; Shao, J.-Q. Relationship between acyl and desacyl ghrelin levels with insulin resistance and body fat mass in type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2763–2770. [Google Scholar] [CrossRef]
- Elibol, E.; Akdevelioğlu, Y.; Yılmaz, C.; Narlı, B.; Şen, S.; Kaplanoğlu, G.T.; Seymen, C.M. Acyl ghrelin, desacyl ghrelin and their ratio affect hepatic steatosis via PPARγ signaling pathway. Arab. J. Gastroenterol. 2024, 25, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Gómez-Ambrosi, J.; Catalán, V.; Gil, M.; Becerril, S.; Sáinz, N.; Silva, C.; Salvador, J.; Colina, I.; Frühbeck, G. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int. J. Obes. 2009, 33, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Davis, H.W.; Gastaldelli, A.; D’Alessio, D. Ghrelin impairs prandial glucose tolerance and insulin secretion in healthy humans despite increasing GLP-1. J. Clin. Endocrinol. Metab. 2016, 101, 2405–2414. [Google Scholar] [CrossRef]
- Özcan, B.; Neggers, S.J.; Miller, A.R.; Yang, H.-C.; Lucaites, V.; Abribat, T.; Allas, S.; Huisman, M.; Visser, J.A.; Themmen, A.P. Does des-acyl ghrelin improve glycemic control in obese diabetic subjects by decreasing acylated ghrelin levels? Eur. J. Endocrinol. 2014, 170, 799–807. [Google Scholar] [CrossRef]
- Elbaz, M.; Gershon, E. Ghrelin, via corticotropin-releasing factor receptors, reduces glucose uptake and increases lipid content in mouse myoblasts cells. Physiol. Rep. 2021, 9, e14654. [Google Scholar] [CrossRef]
- Fujitsuka, N.; Asakawa, A.; Amitani, H.; Fujimiya, M.; Inui, A. Ghrelin and gastrointestinal movement. Methods Enzymol. 2012, 514, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Fujimiya, M.; Ataka, K.; Asakawa, A.; Chen, C.-Y.; Kato, I.; Inui, A. Ghrelin, des-acyl ghrelin and obestatin on the gastrointestinal motility. Peptides 2011, 32, 2348–2351. [Google Scholar] [CrossRef]
- Sanger, G.J.; Broad, J.; Callaghan, B.; Furness, J.B. Ghrelin and motilin control systems in GI physiology and therapeutics. Gastrointest. Pharmacol. 2016, 239, 379–416. [Google Scholar] [CrossRef]
- Krause, A.; Sillard, R.; Kleemeier, B.; Klüver, E.; Maronde, E.; Conejo-García, J.R.; Forssmann, W.G.; Schulz-Knappe, P.; Nehls, M.C.; Wattler, F. Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 2003, 12, 143–152. [Google Scholar] [CrossRef]
- Lynn, D.J.; Lloyd, A.T.; O’Farrelly, C. In silico identification of components of the Toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Vet. Immunol. Immunopathol. 2003, 93, 177–184. [Google Scholar] [CrossRef]
- Zhang, Y.-A.; Zou, J.; Chang, C.-I.; Secombes, C.J. Discovery and characterization of two types of liver-expressed antimicrobial peptide 2 (LEAP-2) genes in rainbow trout. Vet. Immunol. Immunopathol. 2004, 101, 259–269. [Google Scholar] [CrossRef]
- Sosinski, O.; Pruszynska-Oszmalek, E.; Leciejewska, N.; Sassek, M.; Kolodziejski, P.A. LEAP2 in Physiology—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 377. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Zhou, Q.; Chen, Y.; Lei, X.; Chen, Y.; Chen, Q. Circulating acyl and des-acyl ghrelin levels in obese adults: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 2679. [Google Scholar] [CrossRef]
- Lucie, H.; Tureckiova, T.; Kuneš, J.; Železná, B.; Maletinska, L. High-fat diet induces resistance to ghrelin and LEAP2 peptide analogs in mice. Physiol. Res. 2023, 72, 607. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Ogden, S.B.; Shankar, K.; Varshney, S.; Zigman, J.M. A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes. Mol. Metab. 2021, 46, 101128. [Google Scholar] [CrossRef] [PubMed]
- Gradel, A.K.J.; Holm, S.K.; Byberg, S.; Merkestein, M.; Hogendorf, W.F.J.; Lund, M.L.; Buijink, J.A.; Damgaard, J.; Lykkesfeldt, J.; Holst, B. The dietary regulation of LEAP2 depends on meal composition in mice. FASEB J. 2023, 37, e22923. [Google Scholar] [CrossRef] [PubMed]
- Lugilde, J.; Casado, S.; Beiroa, D.; Cuñarro, J.; Garcia-Lavandeira, M.; Álvarez, C.V.; Nogueiras, R.; Diéguez, C.; Tovar, S. LEAP-2 counteracts ghrelin-induced food intake in a nutrient, growth hormone and age independent manner. Cells 2022, 11, 324. [Google Scholar] [CrossRef]
- Wald, H.S.; Ghidewon, M.Y.; Hayes, M.R.; Grill, H.J. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2023, 324, R547–R555. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Peng, H.; Yu, N.; Zhang, Y.; Lin, X.; Lu, Y. Involvement of POMC neurons in LEAP2 regulation of food intake and body weight. Front. Endocrinol. 2022, 13, 932761. [Google Scholar] [CrossRef]
- Hagemann, C.A.; Jensen, M.S.; Holm, S.; Gasbjerg, L.S.; Byberg, S.; Skov-Jeppesen, K.; Hartmann, B.; Holst, J.J.; Dela, F.; Vilsbøll, T. LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell Rep. Med. 2022, 3, 100582. [Google Scholar] [CrossRef]
- Tufvesson-Alm, M.; Zhang, Q.; Aranäs, C.; Blid Sköldheden, S.; Edvardsson, C.E.; Jerlhag, E. Decoding the influence of central LEAP2 on hedonic food intake and its association with dopaminergic reward pathways. bioRxiv 2023. [Google Scholar] [CrossRef]
- Castagneto-Gissey, L.; Casella-Mariolo, J.; Mingrone, G. Bariatric/metabolic surgery. Obes. Diabetes 2021, 274, 371–386. [Google Scholar] [CrossRef]
- Cook, T.M.; Bethea, M.M.; Sandoval, D.A. The role of the gut-brain axis in bariatric surgery. Curr. Opin. Neurobiol. 2025, 92, 103041. [Google Scholar] [CrossRef]
- Levine, M.S.; Carucci, L.R. Imaging of bariatric surgery: Normal anatomy and postoperative complications. Radiology 2014, 270, 327–341. [Google Scholar] [CrossRef]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Vitiello, A.; Higa, K.; Himpens, J.; Buchwald, H.; Scopinaro, N. IFSO worldwide survey 2016: Primary, endoluminal, and revisional procedures. Obes. Surg. 2018, 28, 3783–3794. [Google Scholar] [CrossRef]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Palma, R.; Kow, L.; Prager, G.; Ramos, A.; Shikora, S. IFSO Worldwide Survey 2020–2021: Current trends for bariatric and metabolic procedures. Obes. Surg. 2024, 34, 1075–1085. [Google Scholar] [CrossRef]
- Sharma, G.; Nain, P.S.; Sethi, P.; Ahuja, A.; Sharma, S. Plasma ghrelin levels after laparoscopic sleeve gastrectomy in obese individuals. Indian J. Med. Res. 2019, 149, 544–547. [Google Scholar] [CrossRef]
- Anderson, B.; Switzer, N.J.; Almamar, A.; Shi, X.; Birch, D.W.; Karmali, S. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: A systematic review. Obes. Surg. 2013, 23, 1476–1480. [Google Scholar] [CrossRef]
- Patrikakos, P.; Toutouzas, K.G.; Gazouli, M.; Perrea, D.; Menenakos, E.; Papadopoulos, S.; Zografos, G. Long-term plasma ghrelin and leptin modulation after sleeve gastrectomy in Wistar rats in comparison with gastric tissue ghrelin expression. Obes. Surg. 2011, 21, 1432–1437. [Google Scholar] [CrossRef]
- Singhal, V.; Nimmala, S.; Karzar, N.H.; Bredella, M.A.; Misra, M. One-Year self-reported appetite is similar in adolescents with obesity who do or do not undergo sleeve gastrectomy. Nutrients 2022, 14, 3054. [Google Scholar] [CrossRef]
- Eickhoff, H. Central modulation of energy homeostasis and cognitive performance after bariatric surgery. Obes. Brain Funct. 2017, 19, 213–236. [Google Scholar] [CrossRef]
- Steenackers, N.; Vanuytsel, T.; Augustijns, P.; Tack, J.; Mertens, A.; Lannoo, M.; Van der Schueren, B.; Matthys, C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol. Hepatol. 2021, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Ding, X.; Fu, H.; Cai, Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg. Obes. Relat. Dis. 2019, 15, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Ammon, B.S.; Bellanger, D.E.; Geiselman, P.J.; Primeaux, S.D.; Yu, Y.; Greenway, F.L. Short-term pilot study of the effect of sleeve gastrectomy on food preference. Obes. Surg. 2015, 25, 1094–1097. [Google Scholar] [CrossRef]
- Rao, R.S. Bariatric surgery and the central nervous system. Obes. Surg. 2012, 22, 967–978. [Google Scholar] [CrossRef] [PubMed]
- DeMaria, E.J.; Ikramuddin, S.; Hutter, M.M. The Sages Manual: A Practical Guide to Bariatric Surgery; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Netto, B.D.M.; Earthman, C.P.; Bettini, S.C.; Clemente, A.P.G.; Masquio, D.C.L.; Farias, G.; Boritza, K.; da Silva, L.G.; von der Heyde, M.E.; Dâmaso, A.R. Early effects of Roux-en-Y gastric bypass on peptides and hormones involved in the control of energy balance. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1050–1055. [Google Scholar] [CrossRef]
- Schmidt, J.B.; Pedersen, S.D.; Gregersen, N.T.; Vestergaard, L.; Nielsen, M.S.; Ritz, C.; Madsbad, S.; Worm, D.; Hansen, D.L.; Clausen, T. Effects of RYGB on energy expenditure, appetite and glycaemic control: A randomized controlled clinical trial. Int. J. Obes. 2016, 40, 281–290. [Google Scholar] [CrossRef]
- Xu, H.-C.; Pang, Y.-C.; Chen, J.-W.; Cao, J.-Y.; Sheng, Z.; Yuan, J.-H.; Wang, R.; Zhang, C.-S.; Wang, L.-X.; Dong, J. Systematic review and meta-analysis of the change in ghrelin levels after Roux-en-Y gastric bypass. Obes. Surg. 2019, 29, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Delko, T.; Köstler, T.; Peev, M.; Oertli, D.; Zingg, U. Influence of additional resection of the gastric fundus on excessive weight loss in laparoscopic very very long limb Roux-en-Y gastric bypass. Obes. Surg. 2013, 23, 279–286. [Google Scholar] [CrossRef]
- Chronaiou, A.; Tsoli, M.; Kehagias, I.; Leotsinidis, M.; Kalfarentzos, F.; Alexandrides, T.K. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: A randomized clinical trial. Obes. Surg. 2012, 22, 1761–1770. [Google Scholar] [CrossRef]
- Parada, D.D.; Peña, G.K.B.; Vives, M.; Molina, A.; Mayayo, E.; Riu, F.; Sabench, F.; Del Castillo, D. Quantitative and topographic analysis by immunohistochemical expression of ghrelin gastric cells in patients with morbid obesity. Diabetes Metab. Syndr. Obes. 2020, 13, 2855–2864. [Google Scholar] [CrossRef]
- Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Moncada, R.; Valentí, V.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G.; Rodríguez, A. Acylated and desacyl ghrelin are associated with hepatic lipogenesis, β-oxidation and autophagy: Role in NAFLD amelioration after sleeve gastrectomy in obese rats. Sci. Rep. 2016, 6, 39942. [Google Scholar] [CrossRef]
- Dardzińska, J.A.; Kaska, Ł.; Proczko-Stepaniak, M.; Szymańska-Gnacińska, M.; Aleksandrowicz-Wrona, E.; Małgorzewicz, S. Fasting and postprandial acyl and desacyl ghrelin and the acyl/desacyl ratio in obese patients before and after different types of bariatric surgery. Videosurgery Other Miniinvasive Tech. 2018, 13, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Chandarana, K.; Drew, M.E.; Emmanuel, J.; Karra, E.; Gelegen, C.; Chan, P.; Chron, N.J.; Batterham, R.L. Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology 2009, 136, 2115–2126. [Google Scholar] [CrossRef]
- Nabekura, H.; Islam, M.N.; Sakoda, H.; Yamaguchi, T.; Saiki, A.; Nabekura, T.; Oshiro, T.; Tanaka, Y.; Murayama, S.; Zhang, W. Liver-expressed antimicrobial peptide 2 is a hepatokine that predicts weight loss and complete remission of type 2 diabetes mellitus after vertical sleeve gastrectomy in Japanese individuals. Obes. Facts 2023, 16, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Uchida, A.; Zechner, J.F.; Mani, B.K.; Park, W.; Aguirre, V.; Zigman, J.M. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol. Metab. 2014, 3, 717–730. [Google Scholar] [CrossRef] [PubMed]
Hormone | Study/ Sample Type | Type of Surgery/Sample Size (n) | Follow-Up Period | Outcome | Ref. |
---|---|---|---|---|---|
LEAP-2 | |||||
Retrospective observational/obese individuals | VSG/n = 39 | 12 mo | No change was observed in fasting serum LEAP2 levels. | [115] | |
Experimental/C57BL/6J mice | VSG/n = 6 and 6 control | - | LEAP2 mRNA expression was almost undetectable in the stomach under normal physiological conditions, but it was reported to increase markedly after VSG surgery, while it decreased in the duodenum. | [16] | |
Observational cohort/obese individuals | RYGB/n = 14 | 3 mo 2 y | Fasting plasma LEAP2 levels were reported to be significantly lower 2 years after RYGB (n = 8), but no reduction was observed 3 months after surgery (n = 14). Postprandial plasma LEAP2 levels were reported to have significantly decreased 3 months after RYGB (n = 11). | [14] | |
VSG/n = 7 | 12 and 18 mo | A significant reduction in postprandial LEAP2 levels was reported 12–18 months after surgery. | |||
Acyl Ghrelin | |||||
Observational cohort/obese individuals | VSG/n = 7 | 12 and 18 mo | Fasting and postprandial plasma acyl ghrelin levels were reported to have significantly decreased approximately 12 to 18 months after surgery. | [14] | |
Experimental/obese individuals | SG/n = 12 | 3 mo | Fasting plasma AG levels were reported to have significantly decreased. | [26] | |
Prospective observational/obese individuals | SG/n = 8 | 6 wk, 3 mo | Fasting plasma AG levels were reported to have decreased 6 weeks and 3 months after surgery, with a more pronounced reduction compared with RYGB. | [23] | |
RYGB/n = 10 | 6 wk, 3 mo | Fasting AG levels decreased insignificantly after 6 weeks but rose toward baseline values after 3 months. Postprandial acyl ghrelin levels at 30 min decreased both 6 and 3 months after intervention compared with pre-surgery levels. | |||
Acyl Ghrelin | |||||
Prospective observational/obese individuals | SG/n = 5, RYGB/n = 9, and MGB/n = 9 | 6 and 12 mo | Lower fasting AG levels in the SG group compared with the MGB group after 6 months were reported. No significant difference in AG levels between the SG and MGB groups after 12 months was reported. | [113] | |
Experimental/Wistar rats | SG/n = 37 | 1 mo | Plasma fasting AG levels were reported to have remained unchanged after SG. | [112] | |
Prospective observational/morbidly obese individuals | SG/n = 61 | 6 and 12 mo | Plasma fasting AG levels were reported to have significantly decreased 6 and 12 months after SG. | [111] | |
Experimental/C57BL/6J mice | RYGB/n = 10 | 6 wk | Plasma fasting AG levels were reported to be significantly higher in the RYGB group compared with both ad libitum-fed obese mice (n = 10) and weight-matched, restricted-feeding obese mice (n = 10). | [116] | |
Des-Acyl Ghrelin | |||||
Experimental/Wistar rats | SG/n = 37 | 1 mo | A significant decrease in plasma fasting DAG levels after SG was reported. | [112] | |
Prospective observational/obese individuals | SG/n = 5, RYGB/n = 9, and MGB/n = 9 | 6 and 12 mo | A significant reduction in fasting and postprandial DAG levels in the SG group after 6 and 12 months was reported. Lower fasting and postprandial DAG levels in the SG group compared with the RYGB group after 12 months were reported. Lower fasting DAG levels were found in the SG group compared with the MGB group after 6 months, but no significant difference in DAG levels between the SG and MGB groups after 12 months was reported. | [113] | |
Prospective observational/morbidly obese individuals | SG/n = 61 | 6 and 12 mo | Plasma fasting DAG levels were reported to show a decreasing trend after 6 and 12 months, but this was not significant. | [111] | |
Experimental/C57BL/6J mice | RYGB/n = 10 | 6 wk | Plasma fasting DAG levels were reported to be higher in RYGB-treated mice (n = 10) compared with ad libitum-fed obese mice (n = 10) and weight-matched, restricted-feeding obese mice (n = 10). | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alic, N.; Ayaz, A. Ghrelin and LEAP2: Their Interaction Effect on Appetite Regulation and the Alterations in Their Levels Following Bariatric Surgery. Medicina 2025, 61, 1452. https://doi.org/10.3390/medicina61081452
Alic N, Ayaz A. Ghrelin and LEAP2: Their Interaction Effect on Appetite Regulation and the Alterations in Their Levels Following Bariatric Surgery. Medicina. 2025; 61(8):1452. https://doi.org/10.3390/medicina61081452
Chicago/Turabian StyleAlic, Nese, and Aylin Ayaz. 2025. "Ghrelin and LEAP2: Their Interaction Effect on Appetite Regulation and the Alterations in Their Levels Following Bariatric Surgery" Medicina 61, no. 8: 1452. https://doi.org/10.3390/medicina61081452
APA StyleAlic, N., & Ayaz, A. (2025). Ghrelin and LEAP2: Their Interaction Effect on Appetite Regulation and the Alterations in Their Levels Following Bariatric Surgery. Medicina, 61(8), 1452. https://doi.org/10.3390/medicina61081452