Age-Specific Clinical and Laboratory Features and Renal Involvement in Children with MIS-C: A Single Tertiary Centre Experience from Vojvodina
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Participants
3.2. Clinical Characteristics
3.3. Laboratory Data
3.3.1. Laboratory Analyses According to Age Categories
3.3.2. Renal Function Parameters and AKI
3.4. Radiography and Imaging Data
3.5. Therapy
3.6. Long-Term Outcomes
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | American College of Rheumatology |
AKI | Acute Kidney Injury |
ALT | Alanine Aminotransferase |
ANOVA | One-Way Analysis of Variance |
aPTT | Activated Partial Thromboplastin Time |
ASA | Asa (Acetylsalicylic Acid) |
AST | Aspartate Aminotransferase |
BMI | Body Mass Index |
CDC | Centre For Disease Control |
COVID-19 | Coronavirus Disease 2019 |
CRP | C Reactive Protein |
GGT | Gamma-Glutamyl Transferase |
GI | Gastrointestinal |
IL-6 | Interleukin-6 |
IVIG | Intravenous Immunoglobulin |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MIS-C | Multisystem Inflammatory Syndrome in Children |
PCT | Procalcitonin |
PICU | Paediatrics Intensive Care Unit |
PT | Prothrombin Time |
RANTES | Regulated upon Activation, Normal T cell Expressed and Secreted |
RR | Reference Ranges |
Rt-PCR | Reverse Transcription Polymerase Chain Reaction |
STROBE | Strengthening The Reporting of Observational Studies in Epidemiology |
TNF-α | Tumour Necrosis Factor Alpha |
WHO | World Health Organization |
References
- Kapoor, R.; Chandra, T.; Singh, C.P.; Singh, R.; Pandey, I. Multisystem Inflammatory Syndrome in Children (MIS-C) Related to SARS-CoV-2 and 1-Year Follow-up. Indian J. Pediatr. 2023, 90, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.B.; Gilani, Z.; Godfred-Cato, S.; Belay, E.D.; Feldstein, L.R.; Patel, M.M.; Randolph, A.G.; Newhams, M.; Thomas, D.; Magleby, R.; et al. Incidence of Multisystem Inflammatory Syndrome in Children Among US Persons Infected with SARS-CoV-2. JAMA Netw. Open 2021, 4, e2116420. [Google Scholar] [CrossRef]
- Krasić, S.; Bajčetić, M.; Vukomanović, V. Multisistemski inflamatorni sindrom udružen sa COVID-19 u dece: Etiopatogeneza, klinička manifestacija i terapija. Med. Podml. 2024, 75, 48–55. [Google Scholar] [CrossRef]
- Mazer, M.B.; Bulut, Y.; Brodsky, N.N.; Lam, F.W.; Sturgill, J.L.; Miles, S.M.; Shein, S.L.; Carroll, C.L.; Remy, K.E.; on behalf of the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network and BLOODNET Immunology Section. Multisystem Inflammatory Syndrome in Children: Host Immunologic Responses. Pediatr Crit Care Med. 2022, 23, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tang, K.; Levin, M.; Irfan, O.; Morris, S.K.; Wilson, K.; Klein, J.D.; Bhutta, Z.A. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect. Dis. 2020, 20, e276–e288. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Pilania, R.K.; Bhatt, G.C.; Atlani, M.; Kumar, A.; Malik, S. Acute kidney injury following multisystem inflammatory syndrome associated with SARS-CoV-2 infection in children: A systematic review and meta-analysis. Pediatr. Nephrol. 2023, 38, 357–370. [Google Scholar] [CrossRef]
- Özen, H.; Aslan, A.D.; Balaban, B.; Perk, O.; Uçmak, H.; Özcan, S.; Gurbanov, A.; Uyar, E.; Kahveci, F.; Gün, E.; et al. Acute kidney injury in critically ill children with COVID-19 and MIS-C. Pediatr. Nephrol. 2023, 38, 3475–3482. [Google Scholar] [CrossRef]
- Stewart, D.J.; Mudalige, N.L.; Johnson, M.; Shroff, R.; du Pré, P.; Stojanovic, J. Acute kidney injury in paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is not associated with progression to chronic kidney disease. Arch. Dis. Child. 2022, 107, e21. [Google Scholar] [CrossRef] [PubMed]
- El-Halaby, H.; Eid, R.; Elagamy, A.; El-Hussiny, A.; Moustafa, F.; Hammad, A.; Zeid, M. A retrospective analysis of acute kidney injury in children with post-COVID-19 multisystem inflammatory syndrome: Insights into promising outcomes. Ital. J. Pediatr. 2024, 50, 23. [Google Scholar] [CrossRef]
- Ahmadian, E.; Khatibi, S.M.H.; Soofiyani, S.R.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Vahed, S.Z. COVID-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Kernan, K.F.; Schulert, G.S.; Seo, P.; et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated with SARS–CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 3. Arthritis Rheumatol. 2022, 74, E1–E20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19: Scientific Brief, 15 May 2020 [Internet]; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 7 May 2025).
- Centers for Disease Control and Prevention. Case Definition for Multisystem Inflammatory Syndrome in Children (MIS-C) 2023 [Internet]; CDC: Atlanta, GA, USA, 2023. Available online: https://ndc.services.cdc.gov/case-definitions/multisystem-inflammatory-syndrome-in-children-mis-c-2023/ (accessed on 7 May 2025).
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pr. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Albanji, M.H.; Baghafar, A.A.; Alghanmi, Y.A.; Shaaban, M.M.; Alkashlan, E.A.; Sende, H.H.; Alzahrani, M.S.; Filfilan, N.N. Clinical Presentation and Management of Multisystem Inflammatory Syndrome in Children with COVID-19: A Systematic Review. Cureus 2023, 15, e46918. [Google Scholar] [CrossRef] [PubMed]
- Hoste, L.; Van Paemel, R.; Haerynck, F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 2021, 180, 2019–2034. [Google Scholar] [CrossRef] [PubMed]
- Rhedin, S.; Lundholm, C.; Horne, A.; Smew, A.I.; Osvald, E.C.; Haddadi, A.; Alfvén, T.; Kahn, R.; Król, P.; Brew, B.H.; et al. Risk factors for multisystem inflammatory syndrome in children—A population-based cohort study of over 2 million children. Lancet Reg. Heal.—Eur. 2022, 19, 100443. [Google Scholar] [CrossRef] [PubMed]
- Vijatov-Đurić, G.; Milanović, B.; Barišić, N.; Ivetić, J.; Đuretić, A.; Kesić, J.; Ležakov, O.; Vorgučin, I.; Vilotijević-Dautović, G.; Ristić, M.; et al. Characteristics of Multisystem Inflammatory Syndrome in Children Across COVID-19 Variants in Vojvodina. J. Clin. Med. 2024, 13, 6672. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, M.S.; Burrows, H.; Joseph, J.P.; Leveille, J.; Nihtianova, S.; Amirian, E.S. Multisystem inflammatory syndrome in children (MIS-C) and the coronavirus pandemic: Current knowledge and implications for public health. J. Infect. Public Health 2021, 14, 484–494. [Google Scholar] [CrossRef]
- Mims, M.P. Lymphocytosis, lymphocytopenia, hypergammaglobulinemia, and hypogammaglobulinemia. In Hematology: Basic Principles and Practice, 7th ed.; Hoffman, R., Benz, E.J., Silberstein, L.E., Heslop, H., Weitz, J., Anastasi, J., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 682–690. [Google Scholar]
- Consiglio, C.R.; Cotugno, N.; Sardh, F.; Pou, C.; Amodio, D.; Rodriguez, L.; Tan, Z.; Zicari, S.; Ruggiero, A.; Pascucci, G.R.; et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020, 183, 968–981.e7. [Google Scholar] [CrossRef]
- Kaser, A.; Brandacher, G.; Steurer, W.; Kaser, S.; Offner, F.A.; Zoller, H.; Theurl, I.; Widder, W.; Molnar, C.; Ludwiczek, O.; et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: Role in inflammatory thrombocytosis. Blood 2001, 98, 2720–2725. [Google Scholar] [CrossRef]
- Paiva Lourenção, L.F.; Suano-Souza, F.I.; Fonseca, F.L.A.; Simões, T.M.R.; da Silva, R.; Sarni, R.O.S. Impact of inflammation on anemia in children: A cross-sectional study. BMC Pediatr. 2025, 25, 272. [Google Scholar] [CrossRef]
- Kang, S.; Kishimoto, T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021, 53, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Penna, M.; Pupa, L.; Lee, G.; Kim, S.J. Skin manifestations and related clinical characteristics of multisystem inflammatory syndrome in children: A descriptive retrospective cohort study at Texas Children’s Hospital. JAAD Int. 2024, 18, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef]
- Lipton, M.; Mahajan, R.G.; Kavanagh, C.; Shen, C.L.; Batal, I.; Dogra, S.; Jain, N.G.; Lin, F.; Uy, N.S. AKI in COVID-19–Associated Multisystem Inflammatory Syndrome in Children (MIS-C). Kidney360 2021, 2, 611–618. [Google Scholar] [CrossRef]
- Costagliola, G.; Spada, E.; Consolini, R. Age-related differences in the immune response could contribute to determine the spectrum of severity of COVID-19. Immunity Inflamm. Dis. 2021, 9, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, A.; Brodsky, N.N.; Sumida, T.S.; Comi, M.; Asashima, H.; Hoehn, K.B.; Li, N.; Liu, Y.; Shah, A.; Ravindra, N.G.; et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 2021, 54, 1083–1095. [Google Scholar] [CrossRef]
- Rybkina, K.; Bell, J.N.; Bradley, M.C.; Wohlbold, T.; Scafuro, M.; Meng, W.; Korenberg, R.C.; Davis-Porada, J.; Anderson, B.R.; Weller, R.J.; et al. SARS-CoV-2 infection and recovery in children: Distinct T cell responses in MIS-C compared to COVID-19. J. Exp. Med. 2023, 220, e20221518. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- García-Carro, C.; Vergara, A.; Bermejo, S.; Azancot, M.A.; Sellarés, J.; Soler, M.J. A Nephrologist Perspective on Obesity: From Kidney Injury to Clinical Management. Front. Med. 2021, 8, 655871. [Google Scholar] [CrossRef]
- Hwang, A.-C.; Lin, Y.-C.; Liu, P.-T.; Kao, Y.-M.; Chen, J.-D. Synergistic effect of gamma glutamyltransferase and obesity on metabolic syndrome, independent of hepatic steatosis. Ann. Epidemiol. 2012, 22, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Benvenuto, S.; Avcin, T.; Taddio, A. Multisystem inflammatory syndrome in children: A review. Acta Paediatr. 2024, 113, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2. JAMA 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Meneghel, A.; Masenello, V.; Alfier, F.; Giampetruzzi, S.; Sembenini, C.; Martini, G.; Tirelli, F.; Meneghesso, D.; Zulian, F. Renal Involvement in Multisystem Inflammatory Syndrome in Children: Not Only Acute Kidney Injury. Children 2023, 10, 1661. [Google Scholar] [CrossRef]
- Peco-Antić, A.; Paripović, D. Acute kidney injury in children. Srp. Arh. Celok. Lek. 2014, 142, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Wang, C.; Wang, R.; Feng, Z.; Zhang, J.; Yang, H.; Tan, Y.; Wang, H.; Wang, C.; Liu, L.; et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 2021, 12, 2506. [Google Scholar] [CrossRef]
- Diorio, C.; McNerney, K.O.; Lambert, M.; Paessler, M.; Anderson, E.M.; Henrickson, S.E.; Chase, J.; Liebling, E.J.; Burudpakdee, C.; Lee, J.H.; et al. Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Adv. 2020, 4, 6051–6063. [Google Scholar] [CrossRef]
- Grewal, M.K.; Gregory, M.J.; Jain, A.; Mohammad, D.; Cashen, K.; Ang, J.Y.; Thomas, R.L.; Valentini, R.P. Acute Kidney Injury in Pediatric Acute SARS-CoV-2 Infection and Multisystem Inflammatory Syndrome in Children (MIS-C): Is There a Difference? Front. Pediatr. 2021, 9, 692256. [Google Scholar] [CrossRef]
- Maniscalco, V.; Niccolai, R.; Marrani, E.; Maccora, I.; Bertini, F.; Pagnini, I.; Simonini, G.; Lasagni, D.; Trapani, S.; Mastrolia, M.V. Thrombotic Events in MIS-C Patients: A Single Case Report and Literature Review. Children 2023, 10, 618. [Google Scholar] [CrossRef]
- Kari, J.A.; Shalaby, M.A.; Albanna, A.S.; Alahmadi, T.S.; Alherbish, A.; Alhasan, K.A. Acute kidney injury in children with COVID-19: A retrospective study. BMC Nephrol. 2021, 22, 202. [Google Scholar] [CrossRef]
Characteristic | Total n = 64 (100%) | 0–2 Years n = 15 (23.4%) | 3–6 Years n = 11 (17.2%) | 7–12 Years n = 25 (39.1%) | 13–18 Years n = 13 (20.3%) | p | ||
---|---|---|---|---|---|---|---|---|
Fever Mean/SD * | 39.45C (SD = 0.67) | 39.43C (SD = 0.47) | 39.45C (SD = 0.84) | 39.60C (SD = 0.58) | 39.17C (SD = 0.84) | 0.323 | ||
Respiratory symptoms ** | Cough (%) | 13 (20.3) | 3 (20.0) | 2 (18.2) | 4 (16.0) | 4 (30.8) | 0.143 | |
Pharyngitis, (%) | 7 (10.9) | 0 (0.0) | 2 (18.2) | 4 (16.0) | 1 (7.7) | |||
Rhinorrhoea, (%) | 5 (7.8) | 2 (13.3) | 1 (9.1) | 0 (0.0) | 2 (15.4) | |||
Other (%) | 8 (12.5) | 3 (20.0) | 0 (0.0) | 2 (8.0) | 3 (23.1) | |||
GI symptoms ** | Vomiting, (%) | 33 (51.6) | 2 (13.3) | 8 (72.7) | 17 (68.0) | 6 (46.2) | 0.407 | |
Diarrhoea, (%) | 12 (18.8) | 9 (60.0) | 0 (0.0) | 2 (8.0) | 1 (7.7) | |||
Other (%) | 5 (7.8) | 0 (0.0) | 2 (18.2) | 1 (4.0) | 2 (15.4) | |||
Neurological symptoms ** | Headache (%) | 11(17.2) | 0 (0.0) | 1 (9.1) | 5 (20.0) | 5 (38.5) | 0.051 | 0.017 |
Meningism (%) | 1 (1.6) | 0 (0.0) | 0 (0.0) | 1 (4.0) | 0 (0.0) | 0.668 | ||
Seizures (%) | 1 (1.6) | 0 (0.0) | 0 (0.0) | 0 (7.7) | 1 (1.6) | 0.270 | ||
Skin and mucosal lesions | Rash (%) ** | 29 (45.3) | 4(26.7) | 9 (81.8) | 12 (48.0) | 4 (30.8) | 0.029 | |
Bulbar conjunctivitis, (%) ** | 22 (34.4) | 6 (40.0) | 5 (45.5) | 9 (36.0) | 2 (15.4) | 0.412 | ||
Mucositis, (%) ** | 23 (35.9) | 5 (33.3) | 7 (63.6) | 9 (36.0) | 2 (15.4) | 0.112 | ||
Lymphatic system | Cervical lymphadenopathy, (%) ** | 29 (45.3) | 8 (53.3) | 7 (63.6) | 11 (44.0) | 3 (23.1) | 0.219 | |
Extremities ** | Feet/Hand oedema, (%) ** | 8 (12.5) | 3 (20.0) | 1 (9.1) | 4 (16.0) | 0 (0.0) | 0.395 | |
Palmar/Plantar erythema, (%) ** | 10 (15.6) | 3 (20.0) | 2 (18.2) | 5 (20.0) | 0 (0.0) | 0.392 |
Variable | Total | 0–2 Years | 3–6 Years | 7–12 Years | 13–18 Years | p | |
---|---|---|---|---|---|---|---|
64 (100%) | n = 15 (23.4%) | n = 11 (17.2%) | n = 25 (39.1%) | n = 13 (20.3%) | |||
Leukocytes | Mean, | 12.96 | 15.46 | 14.63 | 11.69 | 11.08 | 0.257 |
(RR 5–10 × 109/L) | SD * | 26.22 | 5.21 | 7.72 | 7.93 | 6.86 | |
Leucocytosis, (%) ** | 33 (51.6) | 11 (73.3) | 8 (72.7) | 9 (36.0) | 5 (38.5) | 0.046 | |
Leukopenia, (%) ** | 2 (3.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (15.4) | 0.047 | |
Neutrophils | Mean, | 10.38 | 10.99 | 11.9 | 10.06 | 9.01 | 0.698 |
(RR 2.5–8.5 × 109/L) | SD * | 6.28 | 4.53 | 6.69 | 7.21 | 6.04 | |
Neutrophilia (%) ** | 39 (60.9) | 11 (73.3) | 9 (81.8) | 13 (52.0) | 6 (46.2) | 0.176 | |
Lymphocytes | Mean, SD* | 1.72 | 3.19 | 1.65 | 1.15 | 1.19 | <0.001 |
(RR 1.3–4.5 × 109/L) | 1.28 | 1.49 | 0.78 | 0.69 | 0.98 | ||
Lymphopenia (%) ** | 22 (34.38) | 0 (0.0) | 1 (9.1) | 13 (52.0) | 8 (61.5) | <0.001 | |
Haemoglobin | Mean, SD * | 108.59 | 99.33 | 98.55 | 109.52 | 126 | <0.001 |
(RR 100–140 g/L), | 17.38 | 9.46 | 13.46 | 16.98 | 14.94 | ||
Anaemia (%) ** | 40 (62.5) | 14 (93.3) | 10 (90.9) | 14 (56.0) | 2 (15.4) | <0.001 | |
Platelets | Mean, SD * | 296.94 | 381.73 | 287.91 | 287.68 | 224.54 | 0.019 |
(RR 150–400 × 109/L) | 136.78 | 117.23 | 122.21 | 124.07 | 58.47 | ||
Thrombocytosis (%) ** | 9 (14.1) | 4 (26.7) | 1 (9.1) | 4 (16.0) | 0 (0.0) | 0.228 | |
Albumin | Mean, SD * | 30.18/5.65 | 29.26/3.44 | 27.21/3.07 | 29.56/4.89 | 34.91/7.98 | 0.003 |
(RR 38–54 g/L) | Hypoalbuminemia, (%) ** | 56 (87.5) | 15 (100.0) | 11 (100.0) | 23 (92.0) | 7 (53.8) | 0.001 |
Gamma–glutamyl transferase | Mean, SD* | 0.82/0.81 | 0.36/0.28 | 0.72/0.50 | 1.18/1.07 | 0.76/0.59 | 0.016 |
(RR 0.07–0.37 ukat/L) | Raised GGT, (%) ** | 41 (64.1) | 4 (26.7) | 8 (72.7) | 19 (76.0) | 10 (76.9) | 0.008 |
Aspartate aminotransferase | Mean, SD * | 1.09/1.84 | 0.52/0.19 | 2.27/4.15 | 0.99/0.69 | 0.96/0.86 | 0.104 |
(RR 0.08–0.6 ukat/L) | Raised AST, (%) ** | 32 (50.0) | 3 (20.0) | 7 (63.6) | 16 (64.0) | 6 (46.2) | 0.043 |
Alanine aminotransferase | Mean, SD * | 0.91/1.41 | 0.35/0.29 | 1.72/3.03 | 0.80/0.59 | 1.07/0.98 | 0.094 |
(RR 0.20–0.98 ukat/L) | Raised ALT, (%) ** | 25 (39.1) | 1 (6.7) | 6 (54.5) | 12 (48.8) | 6 (46.2) | 0.034 |
Lipase *** | Mean, SD * | 2.73/ 2.93 | 1.35/ 0.21 | 1.81/ 0.86 | 2.27/ 1.88 | 4.39/ 4.68 | 0.355 |
Elevated blood lipase ** | 18/23 (78.3) | 2/2 (100.0) | 3/4 (75.0) | 7/10 (70.0) | 6/7 (85.7) | 0.763 | |
Amylase **** | Mean, SD * | 2.88/ 2.41 | 1.25/ 0.70 | 3.16/ 0.68 | 2.99/ 2.61 | 3.01/ 3.10 | 0.820 |
Elevated blood amylase ** | 16/24 (66.7) | 0/2 (0.0) | 4/4 (100.0) | 8/11 (72.7) | 4/7 (57.1) | 0.102 | |
Organ dysfunction | 25 (39.1) | 2 (13.3) | 3 (27.3) | 15 (60.0) | 5 (38.5) | 0.026 |
Variable | Total | 0–2 Years | 3–6 Years | 7–12 Years | 13–18 Years | p | |
---|---|---|---|---|---|---|---|
64 (100%) | n = 15 (23.4%) | n = 11 (17.2%) | n = 25 (39.1%) | n = 13 (20.3%) | |||
Urea | Mean, SD * | 4.33/2.40 | 3.02/1.01 | 3.58/1.16 | 5.39/3.09 | 4.45/1.99 | 0.012 |
(RR 2.5–6 mmol/L) | Raised urea, (%) ** | 7 (10.9) | 0 (0.0) | 0 (0.0) | 6 (24.0) | 1 (7.7) | 0.055 |
Creatinine Clearance | Mean, SD * | 165.6 | 168.66 | 175.78 | 164.25 | 155.09 | 0.842 |
(ml/min/1.73 m2) | 52.56 | 62.66 | 42.32 | 62.09 | 34.58 | ||
24 h proteinuria g/24 h *** | Mean, SD * | 0.27/0.17 | 0.13/0.17 | 0.22/0.16 | 0.29/0.16 | 0.27/0.2 | 0.647 |
Raised values (%) ** | 14/23 (60.9) | 0/2 (0.0) | 1/3 (33.3) | 8/10 (80.0) | 5/8 (62.5) | 0.147 | |
Urine | Sterile pyuria ** | 4 (6.3) | 0 (0.0) | 1 (9.1) | 2 (8.0) | 1 (7.7) | 0.727 |
AKI ** | 4 (6.3) | 0 (0.0) | 0 (0.0) | 3 (12.0) | 1 (7.7) | 0.370 |
Therapy | Frequency (%, n) | Mean Dose (Dose Range) | Mean Duration of Therapy |
---|---|---|---|
IVIG | 100% (64) | 2 g/kg | Single administration |
Methylprednisolone | 95.3% (61) | 1.28 mg/kg (1–2 mg/kg) | 5.84 weeks |
Pulse methylprednisolone | 2.56% (4) | 23.75 mg/kg (15–30 mg/kg) | 3 days |
ASA | 92.2% (59) | 3.83 mg/kg (2–5 mg/kg) | 5.95 weeks |
Dobutamine | 4.7% (3) | – | 4 days |
Variable | Dose of ASA | ||
---|---|---|---|
Average Value (mg/kg) | SD | p | |
No-AKI | 3.9 | 0.93 | 0.063 |
AKI | 3.00 | 0.00 | |
Dose of methylprednisolone | |||
No-AKI | 1.28 | 0.42 | 0.902 |
AKI | 1.25 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanović, B.; Stojanović, V.; Vijatov-Ðurić, G.; Savin, M.; Ðuretić, A.; Kesić, J.; Barišić, N.; Ležakov, O.; Vorgučin, I.; Vilotijević-Dautović, G.; et al. Age-Specific Clinical and Laboratory Features and Renal Involvement in Children with MIS-C: A Single Tertiary Centre Experience from Vojvodina. Medicina 2025, 61, 1142. https://doi.org/10.3390/medicina61071142
Milanović B, Stojanović V, Vijatov-Ðurić G, Savin M, Ðuretić A, Kesić J, Barišić N, Ležakov O, Vorgučin I, Vilotijević-Dautović G, et al. Age-Specific Clinical and Laboratory Features and Renal Involvement in Children with MIS-C: A Single Tertiary Centre Experience from Vojvodina. Medicina. 2025; 61(7):1142. https://doi.org/10.3390/medicina61071142
Chicago/Turabian StyleMilanović, Borko, Vesna Stojanović, Gordana Vijatov-Ðurić, Marijana Savin, Andrea Ðuretić, Jelena Kesić, Nenad Barišić, Ognjen Ležakov, Ivana Vorgučin, Gordana Vilotijević-Dautović, and et al. 2025. "Age-Specific Clinical and Laboratory Features and Renal Involvement in Children with MIS-C: A Single Tertiary Centre Experience from Vojvodina" Medicina 61, no. 7: 1142. https://doi.org/10.3390/medicina61071142
APA StyleMilanović, B., Stojanović, V., Vijatov-Ðurić, G., Savin, M., Ðuretić, A., Kesić, J., Barišić, N., Ležakov, O., Vorgučin, I., Vilotijević-Dautović, G., & Koprivšek, K. (2025). Age-Specific Clinical and Laboratory Features and Renal Involvement in Children with MIS-C: A Single Tertiary Centre Experience from Vojvodina. Medicina, 61(7), 1142. https://doi.org/10.3390/medicina61071142