Effectiveness of Combined Whole-Body Vibration and Intensive Therapeutic Exercise on Functional Capacity in Children with Cerebral Palsy: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Masking
2.4. Intervention
2.5. Data Collection
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Comparative Analysis
3.2.1. Gross Motor Function
3.2.2. Muscle Tone and Strength
3.2.3. Balance Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CG | Control group |
CI | Confidence interval |
CP | Cerebral palsy |
EG | Experimental group |
GMFCS | Gross Motor Function Classification System |
GMFM | Gross Motor Function Measure |
kgf | Kilogram force |
MAS | Modified Ashworth Scale |
SD | Standard deviation |
WBV | Whole-body vibration |
References
- McIntyre, S.; Goldsmith, S.; Webb, A.; Ehlinger, V.; Hollung, S.J.; McConnell, K.; Arnaud, C.; Smithers-Sheedy, H.; Oskoui, M.; Khandaker, G. Global prevalence of cerebral palsy: A systematic analysis. Dev. Med. Child. Neurol. 2022, 64, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef]
- Paul, S.; Nahar, A.; Bhagawati, M.; Kunwar, A.J. A Review on Recent Advances of Cerebral Palsy. Oxid. Med. Cell Longev. 2022, 2022, 2622310. [Google Scholar] [CrossRef]
- Rana, M.; Upadhyay, J.; Rana, A.; Durgapal, S.; Jantwal, A. A systematic review on etiology, epidemiology, and treatment of cerebral palsy. Int. J. Nutr. Pharmacol. Neurol. Dis. 2017, 7, 76–83. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Himmelmann, K.; Beckung, E.; Hagberg, G.; Uvebrant, P. Bilateral spastic cerebral palsy—Prevalence through four decades, motor function and growth. Eur. J. Paediatr. Neurol. 2007, 11, 215–222. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child. Neurol. Suppl. 2007, 109, 8–14. [Google Scholar]
- Ha, S.Y.; Sung, Y.H. Effects of Vojta approach on diaphragm movement in children with spastic cerebral palsy. J. Exerc. Rehabil. 2018, 14, 1005. [Google Scholar] [CrossRef]
- Salazar, A.P.; Pagnussat, A.S.; Pereira, G.A.; Scopel, G.; Lukrafka, J.L. Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: A meta-analysis. Braz. J. Phys. Ther. 2019, 23, 378–386. [Google Scholar] [CrossRef]
- Tekin, F.; Kavlak, E.; Cavlak, U.; Altug, F. Effectiveness of Neuro-Developmental Treatment (Bobath Concept) on postural control and balance in Cerebral Palsied children. J. Back. Musculoskelet. Rehabil. 2018, 31, 397–403. [Google Scholar] [CrossRef]
- Wells, H.; Marquez, J.; Wakely, L. Garment therapy does not improve function in children with cerebral palsy: A systematic review. Phys. Occup. Ther. Pediatr. 2018, 38, 395–416. [Google Scholar] [CrossRef]
- Toovey, R.; Bernie, C.; Harvey, A.R.; Mcginley, J.L.; Spittle, A.J. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: A systematic review. BMJ Paediatr. Open 2017, 1, e000078. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 2008, 51, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Reedman, S.; Boyd, R.N.; Sakzewski, L. The efficacy of interventions to increase physical activity participation of children with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2017, 59, 1011–1018. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Noyes, J.; Spencer, L.H.; Kubis, H.P.; Hastings, R.P.; Whitaker, R. Systematic review of physical activity and exercise interventions to improve health, fitness and well-being of children and young people who use wheelchairs. BMJ Open Sport. Exerc. Med. 2016, 2, e000109. [Google Scholar] [CrossRef] [PubMed]
- Delecluse, C.; Roelants, M.; Verschueren, S. Strength increases after whole-body vibration compared with resistance training. Med. Sci. Sports Exerc. 2003, 35, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, R.; Stark, C.; Krause, A. Vibration therapy in patients with cerebral palsy: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 1607–1625. [Google Scholar] [CrossRef]
- Leonard, C.T.; Moritani, T.; Hirschfeld, H.; Forssberg, H. Deficits in reciprocal inhibition of children with cerebral palsy as revealed by H reflex testing. Dev. Med. Child. Neurol. 1990, 32, 974–984. [Google Scholar] [CrossRef]
- Cai, X.; Qian, G.; Cai, S.; Wang, F.; Da, Y.; Ossowski, Z. The effect of whole-body vibration on lower extremity function in children with cerebral palsy: A meta-analysis. PLoS ONE 2023, 18, e0282604. [Google Scholar] [CrossRef]
- Han, Y.G.; Kim, M.-K. Effectiveness of whole-body vibration in patients with cerebral palsy: A systematic review and meta-analysis. Medicine 2023, 102, e36441. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef] [PubMed]
- Groves, T. Enhancing the quality and transparency of health research. BMJ 2008, 337, a718. [Google Scholar] [CrossRef] [PubMed]
- Moses, L.E.; Oakford, R.V. Tables of Random Permutations; Stanford University Press: Stanford, CA, USA, 1963. [Google Scholar]
- van Vulpen, L.F.; de Groot, S.; Rameckers, E.A.A.; Becher, J.G.; Dallmeijer, A.J. Effectiveness of Functional Power Training on Walking Ability in Young Children With Cerebral Palsy: Study Protocol of a Double-Baseline Trial. Pediatr. Phys. Ther. 2017, 29, 275–282. [Google Scholar] [CrossRef]
- Gusso, S.; Munns, C.F.; Colle, P.; Derraik, J.G.B.; Biggs, J.B.; Cutfield, W.S.; Hofman, P.L. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy. Sci. Rep. 2016, 6, 22518. [Google Scholar] [CrossRef]
- Pin, T.W.; Butler, P.B.; Purves, S. Use of whole-body vibration therapy in individuals with moderate severity of cerebral palsy—A feasibility study. BMC Neurol. 2019, 19, 80. [Google Scholar] [CrossRef]
- Ferre-Fernández, M.; Murcia-González, M.A.; Ríos-Díaz, J. Intra-and Interrater Reliability of the Spanish Version of the Gross Motor Function Measure (GMFM-SP-88). Pediatr. Phys. Ther. 2022, 34, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation System’s Test: The mini-BESTest. J. Rehabil. Med. 2010, 42, 323. [Google Scholar] [CrossRef]
- Crompton, J.; Galea, M.P.; Phillips, B. Hand-held dynamometry for muscle strength measurement in children with cerebral palsy. Dev. Med. Child. Neurol. 2007, 49, 106–111. [Google Scholar] [CrossRef]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand. J. Med. Sci. Sports 2010, 20, 493–501. [Google Scholar] [CrossRef]
- Marrugat, J. Calculadora de Tamaño muestral GRANMO [Internet]; IMIM: Barcelona, Spain, 2012. [Google Scholar]
- The Jamovi Project. Jamovi (Version 2.4.12) [Computer Software]. 2022. Available online: https://www.jamovi.org (accessed on 19 March 2024).
- Pulay, M.Á.; Nagy, R.; Kói, T.; Harnos, A.; Zimonyi, N.; Garami, M.; Gasparics, Á.; Hegyi, P.; Túri, I.; Szabó, É.F. The effect of additional whole-body vibration on musculoskeletal system in children with cerebral palsy: A systematic review and meta-analysis of randomized clinical trials. J. Clin. Med. 2023, 12, 6759. [Google Scholar] [CrossRef]
- Katusic, A.; Alimovic, S.; Mejaski-Bosnjak, V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: A randomized controlled trial. NeuroRehabilitation 2013, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-K.; Chon, S.C. Effect of whole-body vibration training on mobility in children with cerebral palsy: A randomized controlled experimenter-blinded study. Clin. Rehabil. 2013, 27, 599–607. [Google Scholar] [CrossRef]
- Yan, S.Z.; Jin, J.; Chen, S.D.; Zhang, C.; Yu, B. Effect of whole-body vibration on gait speed and gross motor function of pediatric patients with spastic cerebral palsy: A study of 20 cases. Chin. J. Pract. Pediatr. 2021, 36, 33–37. [Google Scholar] [CrossRef]
- Yin, H.; Li, H.; Zhang, X.; Wang, H.; Nguyen, W.; Du, Y.; Che, Y. Effect of whole-body vibration therapy on lower limb motor function in children with spastic diplegia. Chin. J. Phys. Med. Rehabil. 2019, 41, 752–756. [Google Scholar] [CrossRef]
- El-Shamy, S.M. Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. Am. J. Phys. Med. Rehabil. 2018, 97, 164–169. [Google Scholar] [CrossRef]
- Hegazy, R.G.; Abdel-Aziem, A.A.; EL Hadidy, E.I.; Ali, Y.M. Effect of Whole-Body Vibration Exercise on Hamstrings-to-Quadriceps Ratio, Walking Performance, and Postural Control in Children with Hemiparetic Cerebral Palsy: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2021, 45, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Eid, M.A.; Moawd, S.A. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children. Egypt. J. Med. Hum. Genet. 2014, 15, 173–179. [Google Scholar] [CrossRef]
- Arienti, C.; Buraschi, R.; Pollet, J.; Lazzarini, S.G.; Cordani, C.; Negrini, S.; Gobbo, M. A systematic review opens the black box of “usual care” in stroke rehabilitation control groups and finds a black hole. Eur. J. Phys. Rehabil. Med. 2022, 58, 520–529. [Google Scholar] [CrossRef]
Variables | CG | EG | T; x2 | p | |
---|---|---|---|---|---|
Age | Mean ± SD | 11.2 ± 2.0 | 10.5 ± 1.7 | 1.08 | 0.29 |
Sex | Male Female | 6 (40%) 9 (60%) | 8 (53.3%) 7 (46.7%) | 0.54 | 0.46 |
Topographical pattern | Deprecia Right Hemiparesia Left Hemiparesia Tetraparesia | 8 (26.7%) 2 (6.7%) 4 (13.3%) 0 (0%) | 8 (26.7%) 3 (10%) 2 (6.7%) 1(3.3%) | 3.74 | 0.73 |
GMFS | I II III | 4 (13.3%) 10 (33.3%) 1 (3.3%) | 10 (33.3%) 4 (13.3%) 1 (3.3%) | 5.14 | 0.08 |
Variables | Mean ± SD | Student’s T | Levene | ||||
---|---|---|---|---|---|---|---|
CG | EG | T | p | F | p | ||
Gross Motor GMFM88 | Dimension D | 32.7 ± 4.1 | 33.7 ± 3.3 | −0.73 | 0.47 | 0.22 | 0.64 |
Dimension E | 60.5 ± 10.4 | 60.5 ± 9.0 | 0.02 | 0.98 | 0.03 | 0.86 | |
Muscle tone (MAS) | Hip Adductors | 0.6 ± 0.6 | 0.4 ± 0.5 | 0.98 | 0.34 | 1.25 | 0.27 |
Hip Flexors | 0.3 ± 0.4 | 0.3 ± 0.5 | 0.63 | 0.53 | 0.02 | 0.88 | |
Knee Flexors | 1.1 ± 0.6 | 1.1 ± 0.6 | 0.08 | 0.94 | 0.23 | 0.64 | |
Knee Extensors | 0.5 ± 0.6 | 0.5 ± 0.80 | −0.13 | 0.90 | 0.05 | 0.83 | |
PF-Soleus | 1.1 ± 0.5 | 1.1 ± 0.3 | −0.53 | 0.60 | 0.69 | 0.41 | |
PF-Gastrocnemius | 1.4 ± 0.3 | 1.7 ± 0.4 | −0.13 | 0.90 | 0.75 | 0.39 | |
Muscle Strength (Handheld dynamometry) | Hip Abductors | 9.8 ± 3.3 | 11.0 ± 3.3 | −0.98 | 0.34 | 0.15 | 0.70 |
Hip Flexors | 11.1 ± 3.1 | 12.1 ± 2.6 | −0.90 | 0.38 | 0.44 | 0.51 | |
Hip Extensor | 8.1 ± 3.7 | 10.5 ± 4.3 | −1.65 | 0.11 | 0.89 | 0.35 | |
Knee Flexors | 7.6 ± 2.6 | 8.1 ± 3.1 | −0.47 | 0.65 | 0.67 | 0.42 | |
Knee Extensors | 12.7 ± 5.3 | 13.4 ± 2.8 | −0.46 | 0.65 | 8.80 | 0.01 | |
Dorsal Flexors | 6.1 ± 2.5 | 6.4 ± 1.4 | −0.14 | 0.90 | 4.46 | 0.04 | |
Plantar Flexors | 14.5 ± 4.6 | 15.1 ± 3.8 | −0.39 | 0.70 | 1.74 | 0.20 | |
Balance (Mini-BESTest) | Anticipatory | 3.7 ± 1.0 | 4.1 ± 0.7 | −0.78 | 0.44 | 0.33 | 0.57 |
Reactive PC | 3.8 ± 1.5 | 3.6 ± 1.8 | 0.46 | 0.65 | 1.88 | 0.18 | |
Sensory Orientation | 4.3 ± 1.6 | 4.9 ± 1.4 | −1.01 | 0.32 | 2.87 | 0.10 | |
Dynamic Gait | 7.5 ± 1.5 | 8.0 ± 1.1 | −1.00 | 0.33 | 0.99 | 0.33 |
GMFM 88 | Pre | 1 Month | 2 Months | 6 Months | Moment (M) | Group (G) | Mx × G | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | F | p | F | p | F | p | ||
D | CG | 32.7 ± 4.1 | 34.9 ± 3.2 | 34.9 ± 3.0 | 34.5 ± 3.7 | 26.73 | <0.001 | 0.07 | 0.80 | 22.69 | 0.09 |
EG | 33.7 ± 3.4 | 35.2 ± 3.1 | 34.8 ± 3.1 | 34.2 ± 3.4 | |||||||
E | CG | 60.5 ± 10.4 | 63.8 ± 9.2 | 63.6 ± 10.0 | 62.9 ± 10.0 | 35.54 | <0.001 | 0.01 | 0.91 | 0.25 | 0.86 |
EG | 60.5 ± 9.2 | 64.3 ± 7.0 | 64.0 ± 6.8 | 62.6 ± 7.8 |
Muscle Tone (MAS) | Muscle Strength (Handheld Dynamometry) | |||
---|---|---|---|---|
F | p | F | p | |
Moment | 28.13 | <0.001 | 0.37 | <0.001 |
Group | 0.06 | 0.80 | 98.18 | 0.55 |
Muscle | 203.12 | <0.001 | 245.99 | <0.001 |
Moment × Group | 0.18 | 0.91 | 1.48 | 0.22 |
Moment × Muscle | 1.02 | 0.44 | 2.03 | 0.01 |
Group × Muscle | 1.43 | 0.21 | 1.25 | 0.28 |
Group × Moment × Muscle | 0.27 | 0.99 | 0.37 | 0.99 |
Anticipatory | Reactive PC | Sensory Orientation | Dynamic Gait | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
Moment | 20.50 | <0.001 | 37.96 | <0.001 | 8.83 | <0.001 | 14.01 | <0.001 |
Group | 0.69 | 0.41 | 0.01 | 0.94 | 1.42 | 0.24 | 0.47 | 0.49 |
Moment × Group | 0.95 | 0.42 | 0.75 | 0.52 | 0.29 | 0.83 | 0.70 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monzón-Tobalina, I.; Ortiz-Gutiérrez, R.M.; Álvarez-Melcón, Á.C.; Pérez-Somarriba, Á.; Martín-Casas, P.; Díaz-Arribas, M.J. Effectiveness of Combined Whole-Body Vibration and Intensive Therapeutic Exercise on Functional Capacity in Children with Cerebral Palsy: A Randomized Controlled Trial. Medicina 2025, 61, 873. https://doi.org/10.3390/medicina61050873
Monzón-Tobalina I, Ortiz-Gutiérrez RM, Álvarez-Melcón ÁC, Pérez-Somarriba Á, Martín-Casas P, Díaz-Arribas MJ. Effectiveness of Combined Whole-Body Vibration and Intensive Therapeutic Exercise on Functional Capacity in Children with Cerebral Palsy: A Randomized Controlled Trial. Medicina. 2025; 61(5):873. https://doi.org/10.3390/medicina61050873
Chicago/Turabian StyleMonzón-Tobalina, Iñigo, Rosa María Ortiz-Gutiérrez, Ángela Concepción Álvarez-Melcón, Álvaro Pérez-Somarriba, Patricia Martín-Casas, and María José Díaz-Arribas. 2025. "Effectiveness of Combined Whole-Body Vibration and Intensive Therapeutic Exercise on Functional Capacity in Children with Cerebral Palsy: A Randomized Controlled Trial" Medicina 61, no. 5: 873. https://doi.org/10.3390/medicina61050873
APA StyleMonzón-Tobalina, I., Ortiz-Gutiérrez, R. M., Álvarez-Melcón, Á. C., Pérez-Somarriba, Á., Martín-Casas, P., & Díaz-Arribas, M. J. (2025). Effectiveness of Combined Whole-Body Vibration and Intensive Therapeutic Exercise on Functional Capacity in Children with Cerebral Palsy: A Randomized Controlled Trial. Medicina, 61(5), 873. https://doi.org/10.3390/medicina61050873