Comparative Effects of Abdominal Bracing and Valsalva Maneuver on Cerebral and Peripheral Hemodynamics in Healthy Adults: A Randomized Crossover Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Acquisition
2.3.1. Physiological Parameters Measurements
2.3.2. Vascular Hemodynamic Parameters Measurements
Carotid Pulse Wave Velocity (PWV) Measurements
Central Pulsed Doppler Measurements
Peripheral Pulse Wave Velocity Measurements
2.3.3. Cerebral Hemodynamic Parameters Measurements
2.4. Experimental Protocol
2.5. Data Analysis
3. Results
3.1. Physiological Parameters
3.2. Vascular Hemodynamic Parameters
3.3. Cerebral Hemodynamic Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AB | abdominal bracing |
| VM | Valsalva maneuver |
| CBF | cerebral blood flow |
| HR | heart rate |
| SpO2 | peripheral capillary oxygen saturation |
| SBP | systolic blood pressure |
| PI | pulsatility index |
| RI | resistive index |
| PWV | pulse wave velocity |
| B-mode | brightness mode |
| CCA | common carotid artery |
| rSO2 | regional oxygen saturation |
| HbO | oxyhemoglobin |
| NIRS | near-infrared spectroscopy |
| US | ultrasound |
References
- Boppana, A.; Lee, S.; Malhotra, R.; Halushka, M.; Gustilo, K.S.; Quardokus, E.M.; Herr, B.W.; Börner, K.; Weber, G.M. Anatomical Structures, Cell Types, and Biomarkers of the Healthy Human Blood Vasculature. Sci. Data 2023, 10, 452. [Google Scholar] [CrossRef]
- Criqui, M.H.; Aboyans, V. Epidemiology of Peripheral Artery Disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef]
- Schorr, E.N.; Peden-McAlpine, C.; Treat-Jacobson, D.; Lindquist, R. Characterization of the Peripheral Artery Disease Symptom Experience. Geriatr. Nurs. 2015, 36, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Meijer, W.T.; Grobbee, D.E.; Hunink, M.G.; Hofman, A.; Hoes, A.W. Determinants of Peripheral Arterial Disease in the Elderly: The Rotterdam Study. Arch. Intern. Med. 2000, 160, 2934–2938. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Jarosinski, M.C.; Kennedy, J.N.; Rudd, K.E.; Seymour, C.W.; Tzeng, E.; Marron, M.M.; Reitz, K.M. Peripheral Arterial Disease Prevalence among Sepsis Hospitalizations and Associated Outcomes. J. Vasc. Surg. 2025, 82, 1383–1391.e7. [Google Scholar] [CrossRef]
- Kullo, I.J.; Rooke, T.W. Peripheral Artery Disease. N. Engl. J. Med. 2016, 374, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Partington, T.; Farmery, A. Intracranial Pressure and Cerebral Blood Flow. Anaesth. Intensive Care Med. 2014, 15, 189–194. [Google Scholar] [CrossRef]
- Baron, J.-C. Perfusion Thresholds in Human Cerebral Ischemia: Historical Perspective and Therapeutic Implications. Cerebrovasc. Dis. 2010, 11 (Suppl. 1), 2–8. [Google Scholar] [CrossRef]
- Pstras, L.; Thomaseth, K.; Waniewski, J.; Balzani, I.; Bellavere, F. The Valsalva Manoeuvre: Physiology and Clinical Examples. Acta Physiol. 2016, 217, 103–119. [Google Scholar] [CrossRef]
- Ishida, H.; Suehiro, T.; Kurozumi, C.; Watanabe, S. Comparison between the Effectiveness of Expiration and Abdominal Bracing Maneuvers in Maintaining Spinal Stability Following Sudden Trunk Loading. J. Electromyogr. Kinesiol. 2016, 26, 125–129. [Google Scholar] [CrossRef]
- Nakai, Y.; Kijimuta, T.; Takeshita, Y.; Kiyama, R.; Araki, S.; Miyazaki, T.; Kawada, M. Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study. Sports 2023, 11, 217. [Google Scholar] [CrossRef]
- Sembera, M.; Busch, A.; Kobesova, A.; Hanychova, B.; Sulc, J.; Kolar, P. The Effect of Abdominal Bracing on Respiration during a Lifting Task: A Cross-Sectional Study. BMC Sports Sci. Med. Rehabil. 2023, 15, 112. [Google Scholar] [CrossRef]
- Mitra, K.; Kunte, S.A.; Taube, S.E.; Sankarlinkam, S.; Mohamed, L.; Adodo, E.; Green, C.L.; Fudim, M.; Richardson, E.S. Standing under Pressure: Hemodynamic Effects of Abdominal Compression Type and Intensity in Healthy Adults. Front. Physiol. 2025, 16, 1621617. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P. Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Lee, Y.-B.; Kang, C.-K. Effect of Controlled Expiratory Pressures on Cerebrovascular Changes During Valsalva Maneuver. Appl. Sci. 2024, 14, 10132. [Google Scholar] [CrossRef]
- Perry, B.G.; Cotter, J.D.; Mejuto, G.; Mündel, T.; Lucas, S.J.E. Cerebral Hemodynamics during Graded Valsalva Maneuvers. Front. Physiol. 2014, 5, 349. [Google Scholar] [CrossRef] [PubMed]
- Finch, H.; Arumugam, V. Assessing the Accuracy and Reliability of Direct Height Measurement for Use in Adult Neurological Patients with Contractures: A Comparison with Height from Ulna Length. J. Human. Nutr. Diet. 2013, 27, 48–56. [Google Scholar] [CrossRef]
- Nobrega, A.C.L.; O’Leary, D.; Silva, B.M.; Marongiu, E.; Piepoli, M.F.; Crisafulli, A. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents. Biomed. Res. Int. 2014, 2014, 478965. [Google Scholar] [CrossRef]
- Sato, K.; Ogoh, S.; Hirasawa, A.; Oue, A.; Sadamoto, T. The Distribution of Blood Flow in the Carotid and Vertebral Arteries during Dynamic Exercise in Humans. J. Physiol. 2011, 589, 2847–2856. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Hoshi, H.; Hirata, Y.; Ichikawa, S.; Fukasawa, K.; Gonda, T.; Poza, J.; Rodríguez-González, V.; Gómez, C.; Shigihara, Y. The Association between Carotid Blood Flow and Resting-State Brain Activity in Patients with Cerebrovascular Diseases. Sci. Rep. 2021, 11, 15225. [Google Scholar] [CrossRef]
- Wada, T.; Kodaira, K.; Fujishiro, K.; Okamura, T. Correlation of Common Carotid Flow Volume Measured by Ultrasonic Quantitative Flowmeter with Pathological Findings. Stroke 1991, 22, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-Y.; Cho, H.-Y.; Kang, C.-K. Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance. Int. J. Environ. Res. Public Health 2022, 19, 14254. [Google Scholar] [CrossRef]
- Yang, E.-S.; Jung, J.-Y.; Kang, C.-K. Effects of Low-Pressure Valsalva Maneuver on Changes in Cerebral Arterial Stiffness and Pulse Wave Velocity. PLoS ONE 2024, 19, e0308866. [Google Scholar] [CrossRef] [PubMed]
- Stolz, L.A.; Mosier, J.M.; Gross, A.M.; Douglas, M.J.; Blavais, M.; Adhikari, S. Can Emergency Physicians Perform Common Carotid Doppler Flow Measurements to Assess Volume Responsiveness? West. J. Emerg. Med. Integr. Emerg. Care Popul. Health 2015, 16, 255–259. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Lee, Y.-B.; Kang, C.-K. Novel Technique to Measure Pulse Wave Velocity in Brain Vessels Using a Fast Simultaneous Multi-Slice Excitation Magnetic Resonance Sequence. Sensors 2021, 21, 6352. [Google Scholar] [CrossRef]
- Lee, W. Effects of the Abdominal Hollowing and Abdominal Bracing Maneuvers on the Pelvic Rotation Angle during Leg Movement. J. Musculoskelet. Sci. Technol. 2020, 4, 70–75. [Google Scholar] [CrossRef]
- Babamohamadi, H.; Ameri, Z.; Asadi, I.; Asgari, M.R. Comparison of the Effect of EMLATM Cream and the Valsalva Maneuver on Pain Severity during Vascular Needle Insertion in Hemodialysis Patients: A Controlled, Randomized, Clinical Trial. Evid.-Based Complement. Altern. Med. 2022, 2022, 8383021. [Google Scholar] [CrossRef]
- Looga, R. The Valsalva Manoeuvre—Cardiovascular Effects and Performance Technique: A Critical Review. Respir. Physiol. Neurobiol. 2005, 147, 39–49. [Google Scholar] [CrossRef]
- Jozwiak, M.; Teboul, J.-L. Heart–Lungs Interactions: The Basics and Clinical Implications. Ann. Intensive Care 2024, 14, 122. [Google Scholar] [CrossRef]
- Furst, B.; González-Alonso, J. The Heart, a Secondary Organ in the Control of Blood Circulation. Exp. Physiol. 2025, 110, 649–665. [Google Scholar] [CrossRef]
- Golob, I.; Opara Zupančič, M.; Kozinc, Ž. Abdominal Hollowing vs. Abdominal Bracing: A Scoping Review of Clinical Trials on Effectiveness for Trunk Stability and Rehabilitation. J. Funct. Morphol. Kinesiol. 2024, 9, 193. [Google Scholar] [CrossRef]
- Grenier, S.G.; McGill, S.M. Quantification of Lumbar Stability by Using 2 Different Abdominal Activation Strategies. Arch. Phys. Med. Rehabil. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Mısırlıoğlu, T.Ö.; Eren, İ.; Canbulat, N.; Çobanoğlu, E.; Günerbüyük, C.; Demirhan, M. Does a Core Stabilization Exercise Program Have a Role on Shoulder Rehabilitation? A Comparative Study in Young Females. Turk. J. Phys. Med. Rehabil. 2018, 64, 328–336. [Google Scholar] [CrossRef]
- Tayashiki, K.; Maeo, S.; Usui, S.; Miyamoto, N.; Kanehisa, H. Effect of Abdominal Bracing Training on Strength and Power of Trunk and Lower Limb Muscles. Eur. J. Appl. Physiol. 2016, 116, 1703–1713. [Google Scholar] [CrossRef]
- Carter, S.A.; Birkhead, N.C.; Wood, E.H. Effect of Valsalva Maneuver on Oxygen Saturation in Patients with Intracardiac Shunts. Circulation 1959, 20, 574–586. [Google Scholar] [CrossRef]
- Smith, G.; Boyle, M.J. The 10 mL Syringe Is Useful in Generating the Recommended Standard of 40 mmHg Intrathoracic Pressure for the Valsalva Manoeuvre. Emerg. Med. Australas. 2009, 21, 449–454. [Google Scholar] [CrossRef]
- Baffour-Awuah, B.; Pearson, M.J.; Dieberg, G.; Wiles, J.D.; Smart, N.A. An Evidence-Based Guide to the Efficacy and Safety of Isometric Resistance Training in Hypertension and Clinical Implications. Clin. Hypertens. 2023, 29, 9. [Google Scholar] [CrossRef]
- Lima, N.S.; Jackson, R.E.; Hibner, B.A.; Sherman, S.R.; Fernhall, B.; Baynard, T.; Crandall, C.; Phillips, S.A.; Zejnullahi, R.; Clifford, P.S. Mechanisms of Exercise-Induced Reduction in Peripheral Arterial Stiffness. Eur. J. Appl. Physiol. 2025. epub ahead of print. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Jae, S.Y.; Edwards, D.G.; Kelly, E.E.; Fernhall, B. Arterial Stiffness Following Repeated Valsalva Maneuvers and Resistance Exercise in Young Men. Appl. Physiol. Nutr. Metab. 2007, 32, 257–264. [Google Scholar] [CrossRef]
- Petri, C.R.; Hayes, M.M.; Schwartzstein, R.M. “Belly Breathing”: The Physiologic Underpinnings of Abdominal Rounding. Ann. ATS 2020, 17, 513–516. [Google Scholar] [CrossRef]
- Pinti, P.; Siddiqui, M.F.; Levy, A.D.; Jones, E.J.H.; Tachtsidis, I. An Analysis Framework for the Integration of Broadband NIRS and EEG to Assess Neurovascular and Neurometabolic Coupling. Sci. Rep. 2021, 11, 3977. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring Tissue Oxygenation by near Infrared Spectroscopy (NIRS): Background and Current Applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Vadas, D.; Kalichman, L.; Hadanny, A.; Efrati, S. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance. Front. Integr. Neurosci. 2017, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Messere, A.; Tschakovsky, M.; Seddone, S.; Lulli, G.; Franco, W.; Maffiodo, D.; Ferraresi, C.; Roatta, S. Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression. Front. Physiol. 2018, 9, 1078. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-S.; Kim, M.-J.; Kim, D.-H.; Lee, Y.-B.; Kang, C.-K. Functional Near-Infrared Spectroscopy Analysis of Cerebral Physiological Changes in Response to Atmospheric Gas Concentrations. Appl. Sci. 2024, 14, 11525. [Google Scholar] [CrossRef]




| Repeated-Measures Comparison | Post Hoc Comparison (Tukey) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Group | Parameter | Variable | Mean ± SD | F | p | Repeated-Measures Factors | t | pTukey | |
| VM | PI | Pre | 1.76 ± 0.28 | 4.48 | 0.008 * | Pre | Post2 | −3.29 | 0.020 * |
| Post1 | 1.82 ± 0.33 | ||||||||
| Post2 | 1.87 ± 0.33 | ||||||||
| Post3 | 1.84 ± 0.32 | ||||||||
| Post4 | 1.81 ± 0.30 | ||||||||
| rSO2 (Lt) | Pre | 45.37 ± 13.09 | 5.70 | 0.005 * | Pre | Post1 | 3.26 | 0.023 * | |
| Post1 | 41.12 ± 13.64 | ||||||||
| Post2 | 44.24 ± 14.03 | ||||||||
| Post3 | 43.61 ± 14.90 | ||||||||
| Post4 | 43.74 ± 14.27 | ||||||||
| rSO2 (Rt) | Pre | 48.46 ± 13.78 | 10.99 | <0.001 * | Pre | Post1 | 4.06 | 0.003 * | |
| Post1 | 43.02 ± 14.91 | ||||||||
| Post2 | 47.68 ± 13.88 | Post1 | Post2 | −3.23 | 0.025 * | ||||
| Post3 | 47.63 ± 13.82 | Post3 | −3.40 | 0.016 * | |||||
| Post4 | 47.86 ± 13.38 | Post4 | −3.53 | 0.012 * | |||||
| AB | SpO2 | Pre | 98.43 ± 0.71 | 5.56 | <0.001 * | Pre | Post1 | 3.17 | 0.027 * |
| Post1 | 97.49 ± 1.76 | ||||||||
| Post2 | 97.68 ± 1.45 | ||||||||
| Post3 | 98.30 ± 0.75 | ||||||||
| Post4 | 98.30 ± 0.75 | ||||||||
| rSO2 (Lt) | Pre | 44.32 ± 14.03 | 6.15 | 0.001 * | Pre | Post1 | 3.47 | 0.014 * | |
| Post1 | 40.83 ± 15.09 | ||||||||
| Post2 | 41.66 ± 16.26 | Post2 | 3.08 | 0.035 * | |||||
| Post3 | 42.30 ± 15.39 | Post3 | 3.32 | 0.020 * | |||||
| Post4 | 42.60 ± 15.09 | ||||||||
| rSO2 (Rt) | Pre | 48.74 ± 13.95 | 5.95 | 0.002 * | Pre | Post1 | 3.36 | 0.018 * | |
| Post1 | 45.00 ± 15.48 | ||||||||
| Post2 | 46.58 ± 15.21 | ||||||||
| Post3 | 47.13 ± 14.62 | ||||||||
| Post4 | 46.70 ± 15.32 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-H.; Jung, J.-Y.; Lee, Y.-B.; Shim, J.-M.; Son, Y.-D.; Yang, J.; Kang, C.-K. Comparative Effects of Abdominal Bracing and Valsalva Maneuver on Cerebral and Peripheral Hemodynamics in Healthy Adults: A Randomized Crossover Study. Medicina 2025, 61, 2031. https://doi.org/10.3390/medicina61112031
Yu J-H, Jung J-Y, Lee Y-B, Shim J-M, Son Y-D, Yang J, Kang C-K. Comparative Effects of Abdominal Bracing and Valsalva Maneuver on Cerebral and Peripheral Hemodynamics in Healthy Adults: A Randomized Crossover Study. Medicina. 2025; 61(11):2031. https://doi.org/10.3390/medicina61112031
Chicago/Turabian StyleYu, Ji-Hyeon, Ju-Yeon Jung, Yeong-Bae Lee, Jeong-Min Shim, Young-Don Son, Jiwon Yang, and Chang-Ki Kang. 2025. "Comparative Effects of Abdominal Bracing and Valsalva Maneuver on Cerebral and Peripheral Hemodynamics in Healthy Adults: A Randomized Crossover Study" Medicina 61, no. 11: 2031. https://doi.org/10.3390/medicina61112031
APA StyleYu, J.-H., Jung, J.-Y., Lee, Y.-B., Shim, J.-M., Son, Y.-D., Yang, J., & Kang, C.-K. (2025). Comparative Effects of Abdominal Bracing and Valsalva Maneuver on Cerebral and Peripheral Hemodynamics in Healthy Adults: A Randomized Crossover Study. Medicina, 61(11), 2031. https://doi.org/10.3390/medicina61112031

