Changes in Speckle Tracking Echocardiography Values of the Descending Thoracic Aorta with Rising Positive End-Expiratory Pressure Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Protocol
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Changes in PEEP Levels
2.6. Control Group
2.7. Image Acquisition and Processing
2.8. Statistical Analysis
3. Results
3.1. Cardiogenic Shock Patients
3.2. Changes in PEEP Levels
3.3. Descending Thoracic Artery Aorta
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | 3 Dimensional |
| AMI | Acute myocardial infarction. |
| ASE | American Society of Echocardiography |
| AUC | Area under ROC curve |
| CS | Cardiogenic Shock |
| DICOM | Digital Imaging and Communication in Medicine |
| DTA | Descending Thoracic Aortic |
| DVD | Digital Versatile Disc |
| ECMO | extracorporeal membrane oxygenation |
| ESC | European Society of Cardiology |
| HF | Heart Failure |
| ICU | Intensive care medicine |
| IVA | Isovolumetric acceleration contraction |
| LA | Left atrial. |
| LDLV | Longitudinal displacement of left ventricle by Speckle Tracking |
| LDRV | Longitudinal displacement of right ventricle by Speckle Tracking. |
| LV | Left ventricle |
| LVEF | Left ventricle ejection fraction |
| LVGLS | Left ventricular global longitudinal strain |
| LVLV | Longitudinal velocity of left ventricular by Speckle Tracking |
| LVOT | VTI Left ventricle outflow tract—velocity time integral |
| LVRV | Longitudinal velocity of right ventricular by Speckle Tracking |
| MR | Mitral regurgitation |
| MRI | Magnetic resonance imaging |
| MV | Mechanical Ventilation |
| OR | Odds Ratio |
| PAIDI CTS 606 | Estudios de las Cardiopatías Agudas. (Plan Andaluz de Investigación, Desarrollo e Innovación). Andalusian planning for investigation, development and innovation. |
| PCWP | Pulmonary capillary wedge pressure |
| PEEP | Positive end expiratory pressure |
| PPV | Possitive-pressure ventilation. |
| RDLV | Radial displacement of left ventricle by Speckle Tracking |
| RDRV | Radial displacement of right ventricle by Speckle Tracking. |
| RLAC | Right left atrial communication. Atrial septal defect and right- left shunt was confirmed by Serum agitated test or Sonovue® administration. |
| RA | Right atrial |
| ROC | Receiver Operating Characteristic |
| RV | Right ventricle |
| RVEF | Right ventricular ejection fraction |
| RVGLS | Right ventricular global longitudinal strain |
| RVGSR | Right ventricular Global longitudinal strain rate (s−1) |
| RVLV | Radial velocity of left ventricular by Speckle Tracking |
| RVOT VTI | Right Ventricular outflow tract velocity-time integral |
| RVOTSF | Right ventricular outflow tract shortening fraction |
| RVV | Right ventricular velocity by Speckle tracking |
| S | wave (cm/s) |
| S’ | wave velocity in the tricuspid annulus by tissue imaging |
| SBP | Systolic blood pressure |
| SpO2 | Oxygen peripheric Saturation |
| TAPSE | Tricuspid annular plane systolic excursion |
| TEE | Transesophageal echocardiography |
| TR | Tricuspid regurgitation |
| TTE | Transthoracic echocardiography |
References
- Samsky, M.D.; Morrow, D.A.; Proudfoot, A.G.; Hochman, J.S.; Thiele, H.; Rao, S.V. Cardiogenic Shock After Acute Myocardial Infarction: A Review. JAMA 2021, 326, 1840–1850, Erratum in JAMA 2021, 326, 2333. https://doi.org/10.1001/jama.2021.21381. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bailén, M.; Cobo-Molinos, J.; Castillo-Rivera, A.M.; Iniesta-Carricondo, M.C.; Pola Gallego de Guzmán, M.D.; Cárdenas-Cruz, A. Increasing Levels of Positive End-expiratory Pressure Improve the Left Ventricular Strain. J. Thorac. Imaging 2017, 32, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bailén, M.; Fernández-Mondéjar, E.; Hurtado-Ruiz, B.; Colmenero-Ruiz, M.; Rivera-Fernández, R.; Guerrero-López, F.; Vázquez-Mata, G. Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit. Care Med. 1999, 27, 380–384, Erratum in Crit. Care Med. 1999, 27, 1696. [Google Scholar] [CrossRef]
- Franchi, F.; Faltoni, A.; Cameli, M.; Muzzi, L.; Lisi, M.; Cubattoli, L.; Cecchini, S.; Mondillo, S.; Biagioli, B.; Taccone, F.S.; et al. Influence of positive end-expiratory pressure on myocardial strain assessed by speckle tracking echocardiography in mechanically ventilated patients. BioMed Res. Int. 2013, 2013, 918548. [Google Scholar] [CrossRef]
- Ross, D.N. Torrent-Guasp’s anatomical legacy. Eur. J. Cardiothorac. Surg. 2006, 29 (Suppl. 1), S18–S20. [Google Scholar] [CrossRef]
- Abraham-Foscolo, M.M.; Blanco, R.; Chiabrando, J.G.; Llamedo, M.C.; Arenaza, D.P.; Falconi, M.L. Torrent Guasp’s helicoid pattern myocardial calcification. Arq. Bras. Cardiol. 2022, 118, 992–995. [Google Scholar] [CrossRef]
- Ruiz-Bailén, M.; Hidalgo-Martín, J.; Manetsberger, J.; Clau-Terré, F.; Martínez-Gámez, J.; Dagomar Lohman, J.; Lavilla-Lerma, M.L.; Matallana-Zapata, D.F.; Ballesteros-Barroso, M.; Rivera-Fernández, R.; et al. Usefulness of vector velocity imaging in the descending thoracic aorta. Med. Intensiva (Engl. Ed.) 2025, 502224. [Google Scholar] [CrossRef]
- Kundel, V.; Trivieri, M.G.; Karakatsanis, N.A.; Robson, P.M.; Mani, V.; Kizer, J.R.; Kaplan, R.; Fayad, Z.; Shah, N. Assessment of atherosclerotic plaque activity in patients with sleep apnea using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI): A feasibility study. Sleep Breath. 2018, 22, 1125–1135. [Google Scholar] [CrossRef]
- Yang, C.H.; Qiu, H.Q.; Wang, C.; Tang, Y.T.; Zhang, C.R.; Fan, Y.Y.; Jiao, X.Y. Levosimendan relaxes thoracic aortic smooth muscle in mice by inhibiting PKC and activating inwardly rectifying potassium channels. J. Cardiovasc. Pharmacol. 2023, 83, 474–481. [Google Scholar] [CrossRef]
- Hochman, J.S. Cardiogenic shock complicating acute myocardial infarction: Expanding the paradigm. Circulation 2003, 107, 2998–3002. [Google Scholar] [CrossRef]
- Hochman, J.S.; Boland, J.; Sleeper, L.A.; Porway, M.; Brinker, J.; Col, J.; Jacobs, A.; Slater, J.; Miller, D.; Wasserman, H.; et al. Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an International Registry. Circulation 1995, 91, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Buller, C.E.; Sleeper, L.A.; Boland, J.; Dzavik, V.; Sanborn, T.A.; Godfrey, E.; White, H.D.; Lim, J.; LeJemtel, T. Cardiogenic shock complicating acute myocardial infarction—Aetiologies, management and outcome: A report from the SHOCK Trial Registry. J. Am. Coll. Cardiol. 2000, 36 (Suppl. A), 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Britsch, S.; Britsch, M.; Hahn, L.; Langer, H.; Lindner, S.; Akin, I.; Helbing, T.; Duerschmied, D.; Becher, T. Prognostic performance of the SCAI shock classification at admission and during ICU treatment: A retrospective, observational cohort study. Heart Lung 2024, 68, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.S.; Tunick, P.A.; Rusinek, H.; Ribakove, G.; Spencer, F.C.; Kronzon, I. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: Experience with intraoperative transesophageal echocardiography. J. Am. Coll. Cardiol. 1992, 20, 70–77. [Google Scholar] [CrossRef]
- De Bakker, J.M.K.; De Korte, C.L.; Saris, A.E.C.M. Cascaded Plane Wave Ultrasound for Blood Velocity Vector Imaging in the Carotid Artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bailén, M.; Rucabado-Aguilar, L.; Expósito-Ruiz, M.; Morante-Valle, A.; Castillo-Rivera, A.; Pintor-Mármol, A.; Rosell-Ortiz, F.; Mellado-Vergel, F.J.; Machado-Casas, J.; Tejero-Pedregosa, A.; et al. Cardiogenic shock in acute coronary syndrome. Med. Sci. Monit. 2009, 15, RA57–RA66. [Google Scholar] [PubMed]
- Ruiz-Bailén, M.; Rucabado-Aguilar, L.; Castillo-Rivera, A.M.; Expósito-Ruiz, M.; Morante-Valle, A.; Rodríguez-García, J.J.; Pintor-Mármol, A.; Galindo-Rodríguez, S.; Ruiz-García, M.I.; Gómez-Jiménez, F.J.; et al. Cardiogenic shock in acute coronary syndrome in the Spanish population. Med. Sci. Monit. 2008, 14, PH46–PH57. [Google Scholar] [PubMed]
- Ruiz-Bailén, M.; Romero-Bermejo, F.J.; Ramos-Cuadra, J.Á.; Rucabado-Aguilar, L.; Chibouti-Bouichrat, K.; Castillo-Rivera, A.M.; Pintor-Mármol, A.; Expósito-Ruiz, M.; García, M.I.; Dolores-Pola-Gallego-de-Guzmán, M.; et al. Evaluation of the performance of echocardiography in acute coronary syndrome patients during their stay in coronary units. Acute Card. Care 2011, 13, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Choi, K.H.; Ko, Y.G.; Ahn, C.M.; Yu, C.W.; Chun, W.J.; Jang, W.J.; Kim, H.J.; Kim, B.S.; Bae, J.W.; et al. Clinical Characteristics and Predictors of In-Hospital Mortality in Patients with Cardiogenic Shock: Results From the RESCUE Registry. Circ. Heart Fail. 2021, 14, e008141. [Google Scholar] [CrossRef] [PubMed]
- Kataja, A.; Tarvasmäki, T.; Lassus, J.; Køber, L.; Sionis, A.; Spinar, J.; Parissis, J.; Carubelli, V.; Cardoso, J.; Banaszewski, M.; et al. Altered mental status predicts mortality in cardiogenic shock—Results from the CardShock study. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 38–44. [Google Scholar] [CrossRef]
- Sarma, D.; Jentzer, J.C. Cardiogenic Shock: Pathogenesis, Classification, and Management. Crit. Care Clin. 2024, 40, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Sanghavi, D.; Patel, P.C.; Bhattacharyya, A.; van Diepen, S.; Herasevich, V.; Gajic, O.; Kashani, K.B. Prognosis performance of serial determination of the SCAI shock classification in adults with critical illness. Shock 2024, 61, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Zapata, L.; Gómez-López, R.; Llanos-Jorge, C.; Duerto, J.; Martin-Villen, L. Cardiogenic shock as a health issue. Physiology, classification, and detection. Med. Intensiv. (Engl. Ed.) 2024, 48, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Baldan, B.U.; Hegeman, R.R.M.J.J.; Bos, N.M.J.P.; Smeenk, H.G.; Klautz, R.J.M.; Klein, P. Comparative Analysis of Therapeutic Strategies in Post-Cardiotomy Cardiogenic Shock: Insight into a High-Volume Cardiac Surgery Center. J. Clin. Med. 2024, 13, 2118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watson, S.A.; Mohanan, S.; Abdrazak, M.; Roy, R.; Parczewska, A.; Kanyal, R.; McGarvey, M.; Dworakowski, R.; Webb, I.; O’Gallagher, K.; et al. Validation of the CREST model & Comparison with SCAI Shock Classification for Prediction of Circulatory Death in Resuscitated Out of Hospital Cardiac Arrest. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 605–614. [Google Scholar]
- Hu, Y.; Lui, A.; Goldstein, M.; Sudarshan, M.; Tinsay, A.; Tsui, C.; Maidman, S.D.; Medamana, J.; Jethani, N.; Puli, A.; et al. Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 472–480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tavazzi, G. Mechanical ventilation in cardiogenic shock. Curr. Opin. Crit. Care 2021, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bailén, M.; Cobo-Molinos, J.; Castillo-Rivera, A.; Pola-Gallego-de-Guzmán, M.D.; Cárdenas-Cruz, A.; Martínez-Amat, A.; Sevilla-Martínez, M.; Hernández-Caballero, C. Stress echocardiography in patients who experienced mechanical ventilation weaning failure. J. Crit. Care 2017, 39, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mihalatos, D.G.; Gopal, A.S.; Kates, R.; Toole, R.S.; Bercow, N.R.; Lamendola, C.; Berkay, S.H.; Damus, P.; Robinson, N.; Grimson, R.; et al. Intraoperative assessment of mitral regurgitation: Role of phenylephrine challenge. J. Am. Soc. Echocardiogr. 2006, 19, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Vural, M.G.; Cetin, S.; Firat, H.; Akdemir, R.; Yeter, E. Impact of continuous positive airway pressure therapy on left atrial function in patients with obstructive sleep apnoea: Assessment by conventional and two-dimensional speckle-tracking echocardiography. Acta Cardiol. 2014, 69, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Çetin, S.; Vural, M.; Akdemir, R.; Fırat, H. Left atrial remodelling may predict exercise capacity in obstructive sleep apnoea patients. Acta Cardiol. 2018, 73, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Mandoli, G.E.; Borrelli, C.; Cameli, M.; Mondillo, S.; Ghiadoni, L.; Taddei, C.; Passino, C.; Emdin, M.; Giannoni, A. Speckle tracking echocardiography in heart failure development and progression in patients with apneas. Heart Fail. Rev. 2022, 27, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Haruki, N.; Takeuchi, M.; Kanazawa, Y.; Tsubota, N.; Shintome, R.; Nakai, H.; Lang, R.M.; Otsuji, Y. Continuous positive airway pressure ameliorates sleep-induced subclinical left ventricular systolic dysfunction: Demonstration by two-dimensional speckle-tracking echocardiography. Eur. J. Echocardiogr. 2010, 11, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Pérez, J.M. Arterial distensibility: One more parameter to evaluate cardiovascular risk. Semergen 2008, 34, 284–290. [Google Scholar] [CrossRef]
- Celeste-Carrero, M.; Constantin, I.; Masson, G.; Benger, J.; Cintora, F.; Makhoul, S.; Baratta, S.; Bagnati, R.; Asch, F.M. Looking for a definition of aortic dilatation in overweight and obese individuals: Body surface area-indexed values versus height-indexed diameters. Arch. Cardiol. Mex. 2023, 93, 139–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bohoran, T.A.; Parke, K.S.; Graham-Brown, M.P.M.; Meisuria, M.; Singh, A.; Wormleighton, J.; Adlam, D.; Gopalan, D.; Davies, M.J.; Williams, B.; et al. Resource efficient aortic distensibility calculation by end to end spatiotemporal learning of aortic lumen from multicentre multivendor multidisease CMR images. Sci. Rep. 2023, 13, 21794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minderhoud, S.C.S.; van Montfoort, R.; Meijs, T.A.; Korteland, S.A.; Bruse, J.L.; Kardys, I.; Wentzel, J.J.; Voskuil, M.; Hirsch, A.; Roos-Hesselink, J.W.; et al. Aortic geometry and long-term outcome in patients with a repaired coarctation. Open Heart 2024, 11, e002642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vrublevsky, A.V.; Boshchenko, A.A.; Bogdanov, Y.I.; Saushkin, V.V.; Shnaider, O.L. Structural and Functional Disturbances of the Thoracic Aorta in Atherosclerosis of Various Gradations. Kardiologiia 2023, 63, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Stonko, D.P.; Edwards, J.; Abdou, H.; Treffalls, R.N.; Walker, P.; DeMartino, R.R.; Mendes, B.C.; Hicks, C.W.; Morrison, J.J. Thoracic Endovascular Aortic Repair Acutely Augments Left Ventricular Biomechanics in An Animal Model: A Mechanism for Postoperative Heart Failure and Hypertension. Ann. Vasc. Surg. 2023, 97, 18–26. [Google Scholar] [CrossRef]
- Favero, A.M.; Rosales, T.O.; Scheschowitsch, K.; Gonçalves, M.C.; Benedet, P.O.; Sordi, R.; Nardi, G.M.; Assreuy, J. Blockade of sympathetic ganglia improves vascular dysfunction in septic shock. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 6551–6562. [Google Scholar] [CrossRef] [PubMed]
- Merdji, H.; Kassem, M.; Chomel, L.; Clere-Jehl, R.; Helms, J.; Kurihara, K.; Chaker, A.B.; Auger, C.; Schini-Kerth, V.; Toti, F.; et al. Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascul. Pharmacol. 2021, 141, 106922. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Aparin, P.G.; Stoclet, J.C.; Kleschyov, A.L. Glycyrrhetinic acid reverses the lipopolysaccharide-induced hypocontractility to noradrenaline in rat aorta: Implications to septic shock. J. Pharmacol. Sci. 2014, 125, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Heydari, A.H.; Heydari, S.; Heidari, M.E. Satralizumab, Novel Interleukine-6 Inhibitor for Preventing Descending Thoracic Aorta Aneurysm Development. Cardiovasc. Drugs Ther. 2023, 37, 239–244. [Google Scholar] [CrossRef] [PubMed]



| Patients | CS People (n [%]) |
|---|---|
| Acute myocardial infarction location | |
| Anterior | 40 (64.51) |
| Inferior | 22 (35.48) |
| Comorbidity | |
| Pulmonary disease | 12 (19.35) |
| Hypertension | 38 (61.29) |
| Diabetes | 28 (45.16) |
| Hypercholesterolemia | 24 (38.71) |
| Tobacco use | 18 (29.03) |
| Previous Acute Coronary Syndrome | 31 (50%) |
| Complications | |
| Infectious process | 18 (29.03) |
| Ventricular fibrillation | 19 (30.64) |
| Variables | ZEEP | PEEP 5 | PEEP 10 | PEEP 15 | p |
|---|---|---|---|---|---|
| Systolic blood pressure (mm Hg) | 115.26 ± 14.08 | 112.88 ± 11.21 | 100.45 ± 9.161 | 94.14 ± 5.31 | 0.032 |
| Diastolic blood pressure (mm Hg) | 56.45 ± 6.88 | 51.32 ± 5.54 | 62.37 ± 3.38 | 41.32 ± 4.31 | NS |
| Heart rate (bpm) | 96.52 ± 3.27 | 101.21 ± 6.01 | 104.32 ± 9.41 | 105.38 ± 3.21 | NS |
| Respiratory rate | 21.18 ± 10.15 | 21.18 ± 10.15 | 21.18 ± 10.15 | 21.18 ± 10.15 | NS |
| SpO2 (%) | 91.90 ± 0.75 | 95.44 ± 0.22 | 98.77 ± 0.28 | 97.88 ± 0.14 | 0.001 |
| Dynamic resistance (cm H2O/L/s) | 24.47 ± 1.37 | 19.99 ± 0.88 | 15.71 ± 0.88 | 16.32 ± 0.23 | 0.001 |
| Plateau pressure (cm H2O) | 24.32 ± 3.17 | 21.18 ± 09.8 | 28.32 ± 0.71 | 34.44± 0.71 | 0.028 |
| Peak pressure (cm H2O) | 36.22 ± 0.13 | 37.28 ± 0.12 | 41.33 ± 0.89 | 45.38 ± 0.19 | 0.0011 |
| Static compliance (mL/cm H2O) | 33.11 ± 0.115 | 44.15 ± 09.32 | 42.24 ± 1.59 | 32.27 ± 1.32 | 0.04 |
| AutoPEEP (cm H2O) | 5.31 ± 0.22 | 4.98 ± 03.73 | 7.25 ± 03.10 | 9.88 ± 0.719 | 0.01 |
| Variables | ZEEP | PEEP 5 | PEEP 10 | PEEP 15 | p |
|---|---|---|---|---|---|
| LVEF 3D (%) | 36.45 ± 0.17 | 46.54 ± 0.34 | 47.21 ± 0.09 | 46.02 ± 0.032 | NS |
| LVEF 2D (%) | 27.43 ± 0.015 | 34.21 ± 0.21 | 41.69 ± 0.083 | 45.15 ± 0.12 | NS |
| Septal wave S velocity (m/s) | 0.059 ± 0.0054 | 0.062 ± 0.0058 | 0.068 ± 0.0024 | 0.065 ± 0.0087 | NS |
| Basal-lateral wave S velocity (m/s) | 0.068 ± 0.0044 | 0.076 ± 0.0021 | 0.078 ± 0.0032 | 0.045 ± 0.0097 | NS |
| VTI in LVOT (cm) | 9.21 ± 0.02 | 11.77 ± 0.07 | 12.91 ± 0.04 | 8.33 ± 0.09 | 0.021 |
| LVGLS (%) | −11.27 ± 0.188 | −14.37 ± 0.375 | −16.31 ± 0.57 | −14.88 ± 0.53 | 0.0032 |
| LVGLSR (1/s) | −0.96 ± 0.04 | −1.04 ± 0.24 | −1.36 ± 0.28 | −1.28 ± 0.44 | 0.0001 |
| LV Longitudinal Strain delay (ms) | 285.57 ± 14.034 | 156.54 ± 32.54 | 134.89 ± 11.01 | 245.88 ± 17.88 | 0.0001 |
| LVGLSR delay (ms) | 155.32 ± 13.27 | 132.45 ± 11.32 | 110.87 ± 14.28 | 134.72 ± 17.09 | 0.0001 |
| Lateral right S’ wave (m/s) | 0.079 ± 0.0054 | 0.087 ± 0.0034 | 0.088 ± 0.0024 | 0.085 ± 0.0087 | NS |
| TAPSE (mm) | 16.98 ± 0.23 | 17.23 ± 0.12 | 18.44 ± 0.19 | 17.77 ± 0.12 | NS |
| RVGLS | −18.22 ± 0.24 | −21.12 ± 0.28 | −17.11 ± 0.18 | −9.34 ± 0.74 | 0.014 |
| Variables | Control Group (n = 30) | PEEP 5 (n = 62) | p Value |
|---|---|---|---|
| Systolic arterial pressure (mm Hg) | 122.32 ± 0.89 | 112.88 ± 20.21 | N.S. |
| Diastolic arterial pressure (mm Hg) | 72.85 ± 09.17 | 51.32 ± 14.52 | 0.03 |
| Heart rate (bpm) | 72.32 ± 11.37 | 101.21 ± 18.34 | <0.001 |
| Respiratory rate | 15.42 ± 7.22 | 21.18 ± 10.15 | <0.001 |
| SpO2 (%) | 96.32 ± 0.97 | 95.44 ± 5.22 | N.S. |
| LVEF 3D (%) | 66.32 ± 0.09 | 46.12 ± 0.34 | <0.001 |
| LVEF 2D (%) | 5.289 ± 0.12 | 34.23 ± 0.21 | <0.001 |
| Septal S wave velocity (m/s) | 0.10 ± 0.032 | 0.062 ± 0.058 | <0.001 |
| Basolateral S wave velocity (m/s) | 0.12 ± 0.037 | 0.076 ± 0.021 | <0.001 |
| LVGLS (%) | −21.87 ± 2.15 | −14.37 ± 3.75 | <0.001 |
| LVGLSR (1/s) | −1.64 ± 0.28 | −1.04 ± 0.24 | <0.001 |
| LV Strain delay (ms) | 122.32 ± 12.18 | 156.54 ± 32.54 | N.S. |
| LV Strain Rate delay (ms) | 144.57 ± 21.18 | 132.45 ± 51.21 | N.S. |
| Right lateral wave S’ velocity (m/s) | 0.12 ± 0.037 | 0.087 ± 0.034 | <0.001 |
| FSA (%) | 0.56 ± 0.28 | 0.52 ± 0.18 | N.S. |
| TAPSE (mm) | 24.18 ± 2.01 | 17.23 ± 0.12 | <0.001 |
| DTA Rotational velocity (°/s) | 54.44 ± 11.22 | 107.39 ± 0.19 | <0.001 |
| DTA Radial Velocity (cm/s) | 1.18 ± 0.34 | 2.21 ± 0.27 | <0.001 |
| DTA Circumferential Strain (%) | −10.23 ± 0.45 | −11.86 ± 0.07 | N.S. |
| DTA Strain Rate Circumferential (1/s) | −1.67 ± 0.56 | −1.91 ± 0.25 | N.S. |
| DTA Rotational displacement (°) | 7.38 ± 1.87 | 15.71 ± 0.13 | <0.001 |
| DTA Radial displacement (mm) | 0.99 ± 0.32 | 1.58 ± 0.15 | <0.022 |
| RVGLS (%) | −26.25 ± 1.78 | −21.12 ± 0.285 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Lechuga, M.B.; Hidalgo-Martín, J.; Ramos Cuadra, J.Á.; Manetsberger, J.; Blanco-Serrano, A.; Todaro, V.; Heras-La-Calle, G.; Lerma, M.L.L.; Fernández-Guerrero, J.C.; Ruiz-Bailén, M. Changes in Speckle Tracking Echocardiography Values of the Descending Thoracic Aorta with Rising Positive End-Expiratory Pressure Levels. Medicina 2025, 61, 1865. https://doi.org/10.3390/medicina61101865
Martínez-Lechuga MB, Hidalgo-Martín J, Ramos Cuadra JÁ, Manetsberger J, Blanco-Serrano A, Todaro V, Heras-La-Calle G, Lerma MLL, Fernández-Guerrero JC, Ruiz-Bailén M. Changes in Speckle Tracking Echocardiography Values of the Descending Thoracic Aorta with Rising Positive End-Expiratory Pressure Levels. Medicina. 2025; 61(10):1865. https://doi.org/10.3390/medicina61101865
Chicago/Turabian StyleMartínez-Lechuga, María Belén, Javier Hidalgo-Martín, José Ángel Ramos Cuadra, Julia Manetsberger, Ana Blanco-Serrano, Veronica Todaro, Gabriel Heras-La-Calle, María Leyre Lavilla Lerma, Juan Carlos Fernández-Guerrero, and Manuel Ruiz-Bailén. 2025. "Changes in Speckle Tracking Echocardiography Values of the Descending Thoracic Aorta with Rising Positive End-Expiratory Pressure Levels" Medicina 61, no. 10: 1865. https://doi.org/10.3390/medicina61101865
APA StyleMartínez-Lechuga, M. B., Hidalgo-Martín, J., Ramos Cuadra, J. Á., Manetsberger, J., Blanco-Serrano, A., Todaro, V., Heras-La-Calle, G., Lerma, M. L. L., Fernández-Guerrero, J. C., & Ruiz-Bailén, M. (2025). Changes in Speckle Tracking Echocardiography Values of the Descending Thoracic Aorta with Rising Positive End-Expiratory Pressure Levels. Medicina, 61(10), 1865. https://doi.org/10.3390/medicina61101865

