Comparative Effectiveness of Clopidogrel Versus Aspirin for Primary Prevention in High-Risk Patients with Type 2 Diabetes: A Nationwide Propensity Score–Matched Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Definition and Risk Assessment of DM
2.3. Aspirin and Clopidogrel Therapy
2.4. Definition of Other Comorbidities and Laboratory Data
2.5. Clinical Follow-Up and Definition of Endpoints
2.6. Statistical Analysis
2.7. Data and Resource Availability
3. Results
3.1. Baseline Characteristics
3.2. Outcome Analysis
3.3. Subgroup Analysis
4. Discussion
4.1. Perspective for Clinical Practice
4.2. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCVD | Atherosclerotic cardiovascular disease |
BARC | Bleeding Academic Research Consortium |
BMI | Body mass index |
CAPSTONE-DM | Clopidogrel versus AsPirin as a STrategy fOr the PreventioN of cardiovascular diseasEs in patients with Diabetes Mellitus |
GI | Gastrointestinal |
ICH | Intracranial hemorrhage |
MI | Myocardial infarction |
NACE | Net adverse clinical event |
NHIS | National Health Insurance System |
NHIS-NSC | National Health Insurance System National Sample Cohort |
PCI | Percutaneous coronary intervention |
PSM | Propensity score matching |
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.Y.; Scherer, P.E.; Kim, J.Y.; Lim, S.; Koh, K.K. Adiponectin and cardiometabolic trait and mortality: Where do we go? Cardiovasc. Res. 2022, 118, 2074–2084. [Google Scholar] [CrossRef]
- Jang, A.Y.; Lim, S.; Jo, S.H.; Han, S.H.; Koh, K.K. New Trends in Dyslipidemia Treatment. Circ. J. 2021, 85, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jang, Y. Inflammation in Atherosclerotic Cardiovascular Diseases: Biomarkers to Therapeutics in Clinical Settings. J. Cardiovasc. Interv. 2024, 3, 199–215. [Google Scholar] [CrossRef]
- Jang, A.Y.; Han, S.H.; Sohn, I.S.; Oh, P.C.; Koh, K.K. Lipoprotein(a) and Cardiovascular Diseases—Revisited. Circ. J. 2020, 84, 867–874. [Google Scholar] [CrossRef]
- Berger, M.; Marx, N.; Marx-Schütt, K. Cardiovascular Risk Reduction in Patients with Type 2 Diabetes: What Does the Cardiologist Need to Know? Eur. Cardiol. 2025, 20, e09. [Google Scholar] [CrossRef]
- Gasecka, A.; Zimodro, J.M.; Appelman, Y. Sex differences in antiplatelet therapy: State-of-the art. Platelets 2023, 34, 2176173. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Coppi, F.; Bucciarelli, V.; Gallina, S. Cardiovascular risk stratification in young women: The pivotal role of pregnancy. J. Cardiovasc. Med. 2023, 24, 793–797. [Google Scholar] [CrossRef]
- Butt Sara, A.; Retamales Mauricio, T.; Javed, Z.; Hagan, K.; Arshad Hassaan, B.; Khan, S.; Acquah, I.; Nikoloski, Z.; Mossialos, E.; Cainzos-Achirica, M.; et al. Multidimensional Poverty and Risk of Atherosclerotic Cardiovascular Disease. JACC Adv. 2024, 3, 100928. [Google Scholar] [CrossRef]
- Batchelor Wayne, B.; Anwaruddin, S.; Wang Dee, D.; Perpetua Elizabeth, M.; Krishnaswami, A.; Velagapudi, P.; Wyman Janet, F.; Fullerton, D.; Keegan, P.; Phillips, A.; et al. The Multidisciplinary Heart Team in Cardiovascular Medicine. JACC Adv. 2023, 2, 100160. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Lin, S.; Hyun, K.; Hafiz, N.; Manandi, D.; Koh, A.S.; Redfern, J. The effects of multidisciplinary collaborative care on cardiovascular risk factors among patients with diabetes in primary care settings: A systematic review and meta-analysis. Prim. Care Diabetes 2024, 18, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Sguanci, M.; Mancin, S.; Carù, V.; Simonelli, N.; Cangelosi, G.; Morales Palomares, S.; Ferrara, G.; Lo Cascio, A. Exploring the Role of Advanced Practice Nurses in Cardiology: A Scoping Review. Int. Nurs. Rev. 2025, 72, e70054. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.Y.; Urwin, J.W.; Wasfy, J.H. Medicaid Expansion Under the Affordable Care Act and Association With Cardiac Care: A Systematic Review. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009753. [Google Scholar] [CrossRef] [PubMed]
- Gaalema, D.E.; Khadanga, S.; Savage, P.D.; Yant, B.; Katz, B.R.; DeSarno, M.; Ades, P.A. Improving Cardiac Rehabilitation Adherence in Patients With Lower Socioeconomic Status: A Randomized Clinical Trial. JAMA Intern. Med. 2024, 184, 1095–1104. [Google Scholar] [CrossRef]
- Ford, E.S.; Ajani, U.A.; Croft, J.B.; Critchley, J.A.; Labarthe, D.R.; Kottke, T.E.; Giles, W.H.; Capewell, S. Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000. N. Engl. J. Med. 2007, 356, 2388–2398. [Google Scholar] [CrossRef]
- Jang, Y.; Park, S.D.; Lee, J.P.; Choi, S.H.; Kong, M.G.; Won, Y.S.; Kim, M.; Lee, K.H.; Han, S.H.; Kwon, S.W.; et al. One-month dual antiplatelet therapy followed by prasugrel monotherapy at a reduced dose: The 4D-ACS randomised trial. EuroIntervention 2025, 21, e796–e809. [Google Scholar] [CrossRef]
- Yang, T.; Jang, Y.; Chung, W.J. The Impact of the Novel Sodium-Dependent Glucose Cotransporter 2 Inhibitor, Enavogliflozin, on Cardiac Reverse Remodeling in Heart Failure Patients With Type 2 Diabetes Mellitus: A Case Series. Int. J. Heart Fail. 2024, 6, 176–178. [Google Scholar] [CrossRef]
- Jang, A.Y.; Kim, M.; Lee, J.; Seo, J.; Shin, Y.H.; Oh, P.C.; Suh, S.Y.; Lee, K.; Kang, W.C.; Ahn, T.; et al. Real-World Treatment Selection Factors and 7-Year Clinical Outcomes between Percutaneous Coronary Intervention and Coronary Artery Bypass Graft Surgery in Left Main Disease. J. Clin. Med. 2022, 11, 503. [Google Scholar] [CrossRef]
- Jang, A.Y.; Yu, J.; Oh, P.C.; Kim, M.; Suh, S.Y.; Lee, K.; Han, S.H.; Kang, W.C. Real-World Long-Term Clinical Outcomes of Ultrathin Strut Biodegradable Polymer Drug-Eluting Stents in Korean ST-Segment-Elevation Myocardial Infarction (STEMI) Patients with or without Acute Heart Failure Undergoing Primary Percutaneous Coronary Intervention. J. Clin. Med. 2021, 10, 5898. [Google Scholar] [CrossRef]
- Baigent, C.; Blackwell, L.; Collins, R.; Emberson, J.; Godwin, J.; Peto, R.; Buring, J.; Hennekens, C.; Kearney, P.; Meade, T. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009, 373, 1849–1860. [Google Scholar] [CrossRef]
- Mahmoud, A.N.; Gad, M.M.; Elgendy, A.Y.; Elgendy, I.Y.; Bavry, A.A. Efficacy and safety of aspirin for primary prevention of cardiovascular events: A meta-analysis and trial sequential analysis of randomized controlled trials. Eur. Heart J. 2019, 40, 607–617. [Google Scholar] [CrossRef]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Brotons, C.; Coppolecchia, R.; Cricelli, C.; Darius, H.; Gorelick, P.B.; Howard, G.; Pearson, T.A.; Rothwell, P.M.; Ruilope, L.M. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet 2018, 392, 1036–1046. [Google Scholar] [CrossRef]
- Bowman, L.; Mafham, M.; Stevens, W.; Haynes, R.; Aung, T.; Chen, F.; Buck, G.; Collins, R.; Armitage, J. ASCEND: A Study of Cardiovascular Events iN Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15,480 people with diabetes. Am. Heart J. 2018, 198, 135–144. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 1996, 348, 1329–1339. [CrossRef]
- Koo, B.-K.; Kang, J.; Park, K.W.; Rhee, T.-M.; Yang, H.-M.; Won, K.-B.; Rha, S.-W.; Bae, J.-W.; Lee, N.H.; Hur, S.-H.; et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): An investigator-initiated, prospective, randomised, open-label, multicentre trial. Lancet 2021, 397, 2487–2496. [Google Scholar] [CrossRef]
- Jang, A.Y.; Lee, H.H.; Lee, H.; Kim, H.C.; Chung, W.J. Epidemiology of PAH in Korea: An Analysis of the National Health Insurance Data, 2002-2018. Korean Circ. J. 2023, 53, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.S.; Park, S.H.; Shin, S.A.; Kim, K. Cohort Profile: The National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int. J. Epidemiol. 2017, 46, e15. [Google Scholar] [CrossRef]
- Choi, E.K. Cardiovascular Research Using the Korean National Health Information Database. Korean Circ. J. 2020, 50, 754–772. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Cho, B.; Guallar, E. Korean National Health Insurance Database. JAMA Intern. Med. 2016, 176, 138. [Google Scholar] [CrossRef]
- Grant, P.J.; Cosentino, F. The 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: New features and the ‘Ten Commandments’ of the 2019 Guidelines are discussed by Professor Peter J. Grant and Professor Francesco Cosentino, the Task Force chairmen. Eur. Heart J. 2019, 40, 3215–3217. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.R.; Ha, K.H.; Lee, K.; Kim, D.J. Diabetic Retinopathy and Related Clinical Practice for People with Diabetes in Korea: A 10-Year Trend Analysis. Diabetes Metab. J. 2020, 44, 928–932. [Google Scholar] [CrossRef]
- Moon, S.S.; Kim, C.H.; Kang, S.M.; Kim, E.S.; Oh, T.J.; Yun, J.S.; Cho, H.C.; Kim, D.J.; Park, T.S. Status of Diabetic Neuropathy in Korea: A National Health Insurance Service-National Sample Cohort Analysis (2006 to 2015). Diabetes Metab. J. 2021, 45, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, M.-S.; Kim, J.-E.; Song, T.-J. Validity of the diagnosis of diabetic microvascular complications in Korean national health insurance claim data. ACN 2022, 24, 7–16. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Martin, S.S.; Blaha, M.J.; Elshazly, M.B.; Toth, P.P.; Kwiterovich, P.O.; Blumenthal, R.S.; Jones, S.R. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. Jama 2013, 310, 2061–2068. [Google Scholar] [CrossRef]
- Jeong, Y.W.; Koo, J.H.; Huh, J.H.; Kim, Y.J.; Jeong, H.; Kim, E.Y.; Kang, D.R. Comparison of Newly Proposed LDL-Cholesterol Estimation Equations. J. Korean Med. Sci. 2023, 38, e145. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Hilliard, M.E.; Isaacs, D.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S158–S190. [Google Scholar] [CrossRef]
- Kang, S.H.; Pack, K.; Kim, J.H.; Jang, Y. The effect of sarpogrelate compared to aspirin in high- or very-high-risk diabetes for primary prevention. Sci. Rep. 2025, 15, 3616. [Google Scholar] [CrossRef]
- Tan, B.E.X.; Wong, P.Y.; Baibhav, B.; Thakkar, S.; Azhar, A.Z.; Rao, M.; Cheung, J.W. Clopidogrel Vs Aspirin Monotherapy Following Dual Antiplatelet Therapy After Percutaneous Coronary Intervention: A Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2023, 48, 101174. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, G.M.; Ding, J. Aspirin Versus Clopidogrel Monotherapy for the Treatment of Patients with Stable Coronary Artery Disease: A Systematic Review and Meta-Analysis. Adv. Ther. 2019, 36, 2062–2071. [Google Scholar] [CrossRef]
- Paciaroni, M.; Ince, B.; Hu, B.; Jeng, J.-S.; Kutluk, K.; Liu, L.; Lou, M.; Parfenov, V.; Wong, K.S.L.; Zamani, B.; et al. Benefits and Risks of Clopidogrel vs. Aspirin Monotherapy after Recent Ischemic Stroke: A Systematic Review and Meta-Analysis. Cardiovasc. Ther. 2019, 2019, 1607181. [Google Scholar] [CrossRef]
- Zheng, S.L.; Roddick, A.J. Association of Aspirin Use for Primary Prevention With Cardiovascular Events and Bleeding Events: A Systematic Review and Meta-analysis. Jama 2019, 321, 277–287. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Dreyer, R.P.; Marsh, T.W.; Thanassoulis, G.; Raparelli, V.; D’Onofrio, G.; Engert, J.C.; Pilote, L. Sex Differences in Clopidogrel Effects Among Young Patients With Acute Coronary Syndrome: A Role for Genetics? CJC Open 2022, 4, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.S.; Jun, E.J.; Kim, B.; Won, K.B.; Koo, B.K.; Kang, J.; Park, K.W.; Rhee, T.M.; Yang, H.M.; Han, J.K.; et al. Association of Clinical Outcomes With Sex in Patients Receiving Chronic Maintenance Antiplatelet Monotherapy After Percutaneous Coronary Intervention: A Post Hoc Gender Analysis of the HOST-EXAM Study. J. Am. Heart Assoc. 2023, 12, e026770. [Google Scholar] [CrossRef]
- Ranucci, M.; Aloisio, T.; Di Dedda, U.; Menicanti, L.; de Vincentiis, C.; Baryshnikova, E. Gender-based differences in platelet function and platelet reactivity to P2Y12 inhibitors. PLoS ONE 2019, 14, e0225771. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Coppi, F.; Migaldi, M.; Farinetti, A. Physical activity in premenopausal women with asymptomatic peripheral arterial disease. J. Cardiovasc. Med. 2018, 19, 677–680. [Google Scholar] [CrossRef]
- Oliva, A.; Cao, D.; Spirito, A.; Nicolas, J.; Pileggi, B.; Kamaleldin, K.; Vogel, B.; Mehran, R. Personalized Approaches to Antiplatelet Treatment for Cardiovascular Diseases: An Umbrella Review. Pharmgenom. Pers. Med. 2023, 16, 973–990. [Google Scholar] [CrossRef] [PubMed]
Pre-Matched | Post-Matched | |||||||
---|---|---|---|---|---|---|---|---|
Total (N = 10,453) | Aspirin (N = 9550) | Clopidogrel (N = 903) | p | Total (N = 1804) | Aspirin (N = 902) | Clopidogrel (N = 902) | p | |
Demographic data | ||||||||
Age (years) | 63 ± 11 | 62 ± 11 | 66 ± 11 | 0.1587 | 66 ± 11 | 66 ± 11 | 66 ± 11 | 0.2095 |
Male, N (%) | 5876 (56.2) | 5406 (56.6) | 470 (52.1) | 0.0092 | 920 (51.0) | 451 (50.0) | 469 (52.0) | 0.4233 |
Body mass index (kg/m2) | 26 ± 3 | 26 ± 3 | 26 ± 3 | 0.4455 | 26 ± 3 | 26 ± 3 | 26 ± 3 | 0.5383 |
<18.5 | 54 (0.52) | 49 (0.5) | 5 (0.6) | 0.7849 | 14 (0.8) | 9 (1.0) | 5 (0.6) | 0.2676 |
18.5–24.9 | 3000 (28.7) | 2729 (28.6) | 271 (30.0) | 509 (28.2) | 238 (26.4) | 271 (30.0) | ||
25.0–29.9 | 6653 (63.7) | 6086 (63.7) | 5467 (62.8) | 1159 (64.3) | 593 (65.7) | 566 (62.8) | ||
≥30 | 746 (7.1) | 686 (7.2) | 60 (6.6) | 122 (6.8) | 62 (6.9) | 60 (6.7) | ||
Income | ||||||||
1st tertile (high) | 2182 (20.9) | 2012 (21.1) | 170 (18.8) | 0.0933 | 370 (20.5) | 200 (22.2) | 170 (18.9) | 0.0706 |
2nd tertile | 3337 (31.9) | 3060 (32.0) | 277 (30.7) | 516 (28.6) | 239 (26.5) | 277 (30.7) | ||
3rd tertile | 4934 (47.2) | 4478 (46.9) | 456 (50.5) | 918 (50.9) | 463 (51.3) | 455 (50.4) | ||
Hypertension, N (%) | 9200 (88.0) | 8411 (88.1) | 789 (87.4) | 0.5731 | 1594 (88.4) | 806 (89.4) | 788 (87.4) | 0.2120 |
Chronic kidney disease, N (%) | 259 (2.5) | 223 (2.3) | 36 (4.0) | 0.0033 | 50 (2.8) | 14 (1.6) | 36 (4.0) | 0.0026 |
Atrial fibrillation, N (%) | 119 (1.1) | 97 (1.0) | 22 (2.4) | 0.0002 | 49 (2.7) | 28 (3.1) | 21 (2.3) | 0.3848 |
Heart failure, N (%) | 413 (4.0) | 369 (3.9) | 44 (4.9) | 0.1621 | 94 (5.2) | 50 (5.5) | 44 (4.9) | 0.5963 |
Duration of antiplatelet therapy (months) | 50 ± 37 | 51 ± 37 | 37 ± 33 | <0.0001 | 36 ± 32 | 36 ± 31 | 37 ± 33 | 0.2292 |
Risk associated with DM | ||||||||
DM risk | ||||||||
Very high-risk, N (%) | 10,347 (99.0) | 9457 (99.0) | 890 (98.6) | 0.2454 | 1782 (98.8) | 893 (99.0) | 889 (98.6) | 0.5199 |
High-risk, N (%) | 106 (1.0) | 93 (1.0) | 13 (1.4) | 22 (1.2) | 9 (1.0) | 13 (1.4) | ||
Duration of DM (months) | 60 ± 49 | 59 ± 48 | 64 ± 58 | <0.0001 | 61 ± 54 | 59 ± 50 | 64 ± 58 | <0.0001 |
Insulin, N (%) | 90 (0.9) | 81 (0.9) | 9 (1.0) | 0.7846 | 15 (0.8) | 6 (0.7) | 9 (1.0) | 0.6041 |
Target organ damage, N (%) | 4935 (47.2) | 4524 (47.4) | 411 (45.6) | 0.3014 | 808 (44.8) | 397 (44.0) | 411 (45.6) | 0.5382 |
Diabetic retinopathy, N (%) | 2584 (24.7) | 2372 (24.8) | 212 (23.5) | 0.3868 | 406 (22.5) | 194 (21.5) | 212 (23.5) | 0.3379 |
Diabetic neuropathy, N (%) | 2915 (27.9) | 2654 (27.8) | 261 (28.9) | 0.5002 | 518 (28.7) | 257 (28.5) | 261 (28.9) | 0.8759 |
Diabetic nephropathy, N (%) | 1517 (14.5) | 1397 (14.6) | 120 (13.3) | 0.2971 | 240 (13.3) | 120 (13.3) | 120 (13.3) | 1.0000 |
Laboratory data | ||||||||
Fasting blood glucose (mg/dL) | 139 ± 38 | 139 ± 39 | 135 ± 32 | 0.0895 | 135 ± 36 | 136 ± 39 | 135 ± 32 | 0.1654 |
Total cholesterol (mg/dL) | 192 ± 41 | 192 ± 42 | 189 ± 34 | 0.6485 | 190 ± 34 | 190 ± 33 | 189 ± 34 | 0.7266 |
Triglyceride (mg/dL) | 173 ± 124 | 174 ± 126 | 166 ± 96 | 0.7143 | 167 ± 90 | 167 ± 82 | 166 ± 96 | 0.4603 |
LDL cholesterol (mg/dL) | 109 ± 46 | 109 ± 47 | 107 ± 30 | 0.4151 | 108 ± 30 | 108 ± 29 | 107 ± 30 | 0.7592 |
HDL cholesterol (mg/dL) | 51 ± 17 | 51 ± 18 | 51 ± 10 | 0.3596 | 51 ± 10 | 51 ± 10 | 51 ± 10 | 0.5697 |
Hemoglobin | 14 ± 1 | 14 ± 1 | 14 ± 1 | 0.3156 | 14 ± 1 | 14 ± 1 | 14 ± 1 | 0.8739 |
Creatinine | 1.0 ± 0.7 | 1.0 ± 0.7 | 1.0 ± 0.5 | 0.3322 | 1.0 ± 0.6 | 1.0 ± 0.7 | 1.0 ± 0.5 | 0.3972 |
Medication | ||||||||
Statin, N (%) | 8700 (83.2) | 7901 (82.7) | 799 (88.5) | <0.0001 | 1602 (88.8) | 804 (89.1) | 798 (88.5) | 0.7089 |
Aspirin | Clopidogrel | HR (95% CI) | |
---|---|---|---|
NACE | |||
Pre-matched | 1676/9550 (17.6) | 171/903 (18.9) | 1.78 (1.52–2.09) |
Post-matched | 217/902 (24.1) | 170/902 (18.9) | 0.97 (0.79–1.19) |
Efficacy endpoint * | |||
Pre-matched | 1511/9550 (15.8) | 161/903 (17.8) | 1.88 (0.60–2.22) |
Post-matched | 199/902 (22.1) | 160/902 (17.7) | 1.02 (0.82–1.26) |
GI bleeding | |||
Pre-matched | 192/9550 (2.0) | 11/903 (1.2) | 0.89 (0.49–1.64) |
Post-matched | 25/902 (2.8) | 10/902 (1.1) | 0.48 (0.23–1.01) |
ICH | |||
Pre-matched | 106/9550 (1.1) | 15/903(1.7) | 2.20 (1.28–3.79) |
Post-matched | 13/902 (1.4) | 15/902 (1.7) | 1.36 (0.64–2.88) |
Myocardial infarction | |||
Pre-matched | 46/9550 (0.5) | 2/903 (0.2) | 0.65 (0.16–2.69) |
Post-matched | 5/902 (0.6) | 2/902 (0.2) | 0.52 (0.10–2.83) |
Stroke | |||
Pre-matched | 100/9550 (1.1) | 17/903 (1.9) | 2.62 (1.57–4.40) |
Post-matched | 16/902 (1.8) | 16/902 (1.8) | 1.22 (0.60–2.48) |
All-cause death | |||
Pre-matched | 1445/9550 (15.1) | 158/903 (17.5) | 1.87 (1.58–2.20) |
Post-matched | 190/902 (21.1) | 157/902 (17.4) | 1.07 (0.86–1.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.H.; Lee, J.; Kim, J.H.; Jang, Y. Comparative Effectiveness of Clopidogrel Versus Aspirin for Primary Prevention in High-Risk Patients with Type 2 Diabetes: A Nationwide Propensity Score–Matched Cohort Study. Medicina 2025, 61, 1730. https://doi.org/10.3390/medicina61101730
Kang SH, Lee J, Kim JH, Jang Y. Comparative Effectiveness of Clopidogrel Versus Aspirin for Primary Prevention in High-Risk Patients with Type 2 Diabetes: A Nationwide Propensity Score–Matched Cohort Study. Medicina. 2025; 61(10):1730. https://doi.org/10.3390/medicina61101730
Chicago/Turabian StyleKang, Soo Hyun, Joonpyo Lee, Jung Ho Kim, and Youngwoo Jang. 2025. "Comparative Effectiveness of Clopidogrel Versus Aspirin for Primary Prevention in High-Risk Patients with Type 2 Diabetes: A Nationwide Propensity Score–Matched Cohort Study" Medicina 61, no. 10: 1730. https://doi.org/10.3390/medicina61101730
APA StyleKang, S. H., Lee, J., Kim, J. H., & Jang, Y. (2025). Comparative Effectiveness of Clopidogrel Versus Aspirin for Primary Prevention in High-Risk Patients with Type 2 Diabetes: A Nationwide Propensity Score–Matched Cohort Study. Medicina, 61(10), 1730. https://doi.org/10.3390/medicina61101730