Virtual Reality-Based Assessment for Rehabilitation of the Upper Limb in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Measurements
2.2. Measurements during the Exergaming Test
2.2.1. Exercise A (Ex. A): The Trolley Test
2.2.2. Exercise B (Ex. B): The Mushroom Test
2.3. Statistics
3. Results
3.1. Clinical Characteristics of the Participants
3.2. Analysis of Correlations
4. Discussion
4.1. The Clinical Implications
4.2. Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D. The Prevalence of Parkinson’s Disease: A Systematic Review and Meta-analysis. Mov. Disord. 2014, 29, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Evans, A. Dopamine Agonist-Induced Substance Addiction: The next Piece of the Puzzle. J. Clin. Neurosci. 2011, 18, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W. The Natural History of Parkinson’s Disease. J. Neurol. 2006, 253, vii2–vii6. [Google Scholar] [CrossRef] [PubMed]
- Villafañe, J.H.; Isgrò, M.; Borsatti, M.; Berjano, P.; Pirali, C.; Negrini, S. Effects of Action Observation Treatment in Recovery after Total Knee Replacement: A Prospective Clinical Trial. Clin. Rehabil. 2017, 31, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Baizán, C.; García, M.P.F.; Díaz-Cáceres, E.; Menéndez-González, M.; Arias, J.L.; Méndez, M. Activities of Daily Living in Parkinson Disease: Are They Related to Short Term and Working Memory and Visuospatial Abilities? Top. Geriatr. Rehabil. 2022, 38, 285–295. [Google Scholar] [CrossRef]
- Altaher, A.; Chu, S.Y.; Tan, J.S.; Sathiyasenan, S.T.; Hersh, D.; Kamal, R.M. “His Tongue Seems Shorter”: Experiences of Caregivers of Managing Communication With People With Parkinson Disease in Malaysia. Top. Geriatr. Rehabil. 2023, 39, 203–211. [Google Scholar] [CrossRef]
- Negrini, S.; Imperio, G.; Villafañe, J.; Negrini, F.; Zaina, F. Systematic Reviews of Physical and Rehabilitation Medicine Cochrane Contents: Part 1. Disabilities Due to Spinal Disorders and Pain Syndromes in Adults. Eur. J. Phys. Rehabil. Med. 2013, 49, 597–609. [Google Scholar] [PubMed]
- Dockx, K.; Bekkers, E.M.; Van den Bergh, V.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual Reality for Rehabilitation in Parkinson’s Disease. Cochrane Database Syst. Rev. 2016, 12, CD010760. [Google Scholar] [CrossRef] [PubMed]
- Pitombeira Pereira-Pedro, K.; Machado de Oliveira, I.; Cancela Carral, J.M.; Mollinedo Cardalda, I. Effects of MOTOmed® Movement Therapy on the Motor Function and Main Symptoms of Patients with Parkinson’s Disease: A Systematic Review. Retos 2023, 47, 249–257. [Google Scholar] [CrossRef]
- Perrochon, A.; Borel, B.; Istrate, D.; Compagnat, M.; Daviet, J.-C. Exercise-Based Games Interventions at Home in Individuals with a Neurological Disease: A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2019, 62, 366–378. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Valdes, K.; Imperio, G.; Borboni, A.; Cantero-Téllez, R.; Galeri, S.; Negrini, S. Neural Manual vs. Robotic Assisted Mobilization to Improve Motion and Reduce Pain Hypersensitivity in Hand Osteoarthritis: Study Protocol for a Randomized Controlled Trial. J. Phys. Ther. Sci. 2017, 29, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-I.; Hwang, W.-J.; Fang, J.-J.; Kuo, J.-K.; Wang, C.-Y.; Leong, I.-F.; Wang, T.-Y. Effects of Virtual Reality Training on Functional Reaching Movements in People with Parkinson’s Disease: A Randomized Controlled Pilot Trial. Clin. Rehabil. 2011, 25, 892–902. [Google Scholar] [CrossRef]
- Samuel, G.S.; Oey, N.E.; Choo, M.; Ju, H.; Chan, W.Y.; Kok, S.; Ge, Y.; Van Dongen, A.M.; Ng, Y.S. Combining Levodopa and Virtual Reality-Based Therapy for Rehabilitation of the Upper Limb after Acute Stroke: Pilot Study Part II. Singapore Med. J. 2017, 58, 610. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.E.C.; Leyland, L.A.; Schrag, A.-E.; Lees, A.J.; Acosta-Cabronero, J.; Weil, R.S. Brain Iron Deposition Is Linked with Cognitive Severity in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Villafañe, J.H.; Valdes, K.; Buraschi, R.; Martinelli, M.; Bissolotti, L.; Negrini, S. Reliability of the Handgrip Strength Test in Elderly Subjects with Parkinson Disease. Hand 2016, 11, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and Pinch Strength: Normative Data for Adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar] [PubMed]
- Mathiowetz, V.; Rennells, C.; Donahoe, L. Effect of Elbow Position on Grip and Key Pinch Strength. J. Hand Surg. 1985, 10, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Bissolotti, L.; Gobbo, M.; Villafañe, J.H.; Negrini, S. Spinopelvic balance: New biomechanical insights with clinical implications for Parkinson’s disease. Eur. Spine J. 2014, 23, 576–583. [Google Scholar] [CrossRef]
- Georgiev, D.D.; Georgieva, I.; Gong, Z.; Nanjappan, V.; Georgiev, G.V. Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci. 2021, 11, 221. [Google Scholar] [CrossRef]
- Porras, D.C.; Siemonsma, P.; Inzelberg, R.; Zeilig, G.; Plotnik, M. Advantages of Virtual Reality in the Rehabilitation of Balance and Gait: Systematic Review. Neurology 2018, 90, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Pot-Kolder, R.; Veling, W.; Geraets, C.; Lokkerbol, J.; Smit, F.; Jongeneel, A.; Ising, H.; Van Der Gaag, M. Cost-Effectiveness of Virtual Reality Cognitive Behavioral Therapy for Psychosis: Health-Economic Evaluation within a Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e17098. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Stunden, C.; Deenadayalan, D.; Thomas, L. Economic Evaluation Comparing Virtual Reality with Child Life Programming for Non-Sedated Pediatric Medical Imaging: A Cost-Consequence Analysis. PharmacoEconomics-Open 2023, 7, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, B.; Sun, Q.; Jin, Y. Development and Validation of a Cost-effective Virtual Reality Educational Tool to Reduce Anxiety and Improve Set-up Accuracy in Radiotherapy Patients. Cancer Med. 2023, 12, 6161–6169. [Google Scholar] [CrossRef] [PubMed]
- Jesudian, G.; Dhanda, J.; Mugarura, R.; Muruiki, E. Training Rural Surgeons Using Virtual Reality in Surgery: An Efficient Cost-Effective Method. Trop. Dr. 2024, 54, 13. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.S.; Yip, B.H.; Young, A.L.; Yip, W.W.; Lam, N.M.; Li, K.K.; Ko, S.T.; Chan, W.H.; Aryasit, O.; Sikder, S. Cost-Effectiveness of Virtual Reality and Wet Laboratory Cataract Surgery Simulation. Medicine 2023, 102, e35067. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.M.; van Wier, M.F.; Tompa, E.; Bongers, P.M.; van der Beek, A.J.; van Tulder, M.W.; Bosmans, J.E. Trial-Based Economic Evaluations in Occupational Health: Principles, Methods, and Recommendations. J. Occup. Environ. Med. 2014, 56, 563. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, G.C.; Ben, Â.J.; Bosmans, J.E.; van Tulder, M.W.; Lin, C.-W.C.; Cabral, C.M.N.; van Dongen, J.M. Interpretation of Trial-Based Economic Evaluations of Musculoskeletal Physical Therapy Interventions. Braz. J. Phys. Ther. 2021, 25, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Rainoldi, L.; Zaina, F.; Villafañe, J.H.; Donzelli, S.; Negrini, S. Quality of Life in Normal and Idiopathic Scoliosis Adolescents before Diagnosis: Reference Values and Discriminative Validity of the SRS-22. A Cross-Sectional Study of 1205 Pupils. Spine J. 2015, 15, 662–667. [Google Scholar] [CrossRef]
- Moon, H.-J.; Han, S. Perspective: Present and Future of Virtual Reality for Neurological Disorders. Brain Sci. 2022, 12, 1692. [Google Scholar] [CrossRef]
- Earhart, G.M.; Cavanaugh, J.T.; Ellis, T.; Ford, M.P.; Foreman, K.B.; Dibble, L. The 9-Hole PEG Test of Upper Extremity Function: Average Values, Test-Retest Reliability, and Factors Contributing to Performance in People with Parkinson Disease. J. Neurol. Phys. Ther. 2011, 35, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Murata, S.; Kodama, T.; Nakae, H.; Soma, M. Effect of Rhythmic Finger Movement Training on Freezing of Gait and Electroencephalography Activity in People With Parkinson Disease: A Case Study. Top. Geriatr. Rehabil. 2023, 39, 185–190. [Google Scholar] [CrossRef]
- Abasi, A.; Hoseinabadi, R.; Raji, P.; Friedman, J.H.; Hadian, M.-R. Evaluating Oculomotor Tests before and after Vestibular Rehabilitation in Patients with Parkinson’s Disease: A Pilot Pre-Post Study. Parkinsons Dis. 2022, 2022, 6913691. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.K.; Mittinty, M.M.; March, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Woolf, A.D.; Haile, L.M.; Hagins, H. Global, Regional, and National Burden of Other Musculoskeletal Disorders, 1990–2020, and Projections to 2050: A Systematic Analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e670–e682. [Google Scholar] [CrossRef] [PubMed]
UPDRS-M (UL) | Box and Block Test (BBT) | Nine-Hole Peg Test (9HPT) | Ex. A | Ex. B | |
---|---|---|---|---|---|
BBT | −0.392 * | - | −0.622 * | 0.390 * | 0.272 |
9HPT | 0.557 * | −0.622 * | - | −0.447 * | −0.225 |
Ex. A | −0.392 * | 0.390 * | −0.447 * | - | - |
Ex. B | −0.325 * | 0.272 | −0.225 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bissolotti, L.; Artiles-Sánchez, J.; Alonso-Pérez, J.L.; Fernández-Carnero, J.; Abuín-Porras, V.; Sinatti, P.; Villafañe, J.H. Virtual Reality-Based Assessment for Rehabilitation of the Upper Limb in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study. Medicina 2024, 60, 555. https://doi.org/10.3390/medicina60040555
Bissolotti L, Artiles-Sánchez J, Alonso-Pérez JL, Fernández-Carnero J, Abuín-Porras V, Sinatti P, Villafañe JH. Virtual Reality-Based Assessment for Rehabilitation of the Upper Limb in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study. Medicina. 2024; 60(4):555. https://doi.org/10.3390/medicina60040555
Chicago/Turabian StyleBissolotti, Luciano, Justo Artiles-Sánchez, José Luís Alonso-Pérez, Josué Fernández-Carnero, Vanesa Abuín-Porras, Pierluigi Sinatti, and Jorge Hugo Villafañe. 2024. "Virtual Reality-Based Assessment for Rehabilitation of the Upper Limb in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study" Medicina 60, no. 4: 555. https://doi.org/10.3390/medicina60040555
APA StyleBissolotti, L., Artiles-Sánchez, J., Alonso-Pérez, J. L., Fernández-Carnero, J., Abuín-Porras, V., Sinatti, P., & Villafañe, J. H. (2024). Virtual Reality-Based Assessment for Rehabilitation of the Upper Limb in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study. Medicina, 60(4), 555. https://doi.org/10.3390/medicina60040555