Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening the Active Components of Tripterygium wilfordii
2.2. Screening the Targets of Active Compounds
2.3. Gene Screening of OLP-Related Genes
2.4. Construction of a Protein–Protein Interaction (PPI) Network
2.5. Construction of an Active Compound–Target Network
2.6. Hub Gene Analysis
2.7. Go and KEGG Enrichment Analyses
2.8. Molecular Docking
3. Results
3.1. Acquisition of Active Compounds and Targets of Tripterygium wilfordii and Therapeutic Targets for OLP
3.2. Venn Diagram
3.3. GO Enrichment and KEGG Pathway Analyses
3.4. Diagram of Active Component–Target Network
3.5. PPI Network Construction and Screening of Hub Genes
3.6. Molecular Docking Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OLP | Oral lichen planus |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GO | Gene Ontology |
PPI | Protein–protein interaction |
WHO | World Health Organization |
TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
ADME | Absorption, distribution, metabolism, and excretion |
DL | Drug-likeness |
OB | Oral bioavailability |
OMIM | Online Mendelian Inheritance in Man |
CTD | Comparative Toxicogenomics Database |
AKT1 | AKT serine/threonine kinase1 |
TNF | Tumor necrosis factor |
VEGFA | Vascular endothelial growth factor A |
TP53 | Tumor protein53 |
STAT3 | Signal transduction and transcriptional activator 3 |
CASP3 | Caspase 3 |
CXCL8 | C-X-C motif chemokine ligand 8 |
PTGS2 | Prostaglandin-endoperoxide synthase 2 |
BP | Biological process |
CC | Cellular component |
MF | Molecular function |
TCM | Traditional Chinese medicine |
References
- Tampa, M.; Caruntu, C.; Mitran, M.; Mitran, C.; Sarbu, I.; Rusu, L.C.; Matei, C.; Constantin, C.; Neagu, M.; Georgescu, S.R. Markers of Oral Lichen Planus Malignant Transformation. Dis. Markers 2018, 2018, 1959506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hallak, N.; Hamadah, O.; Mouhamad, M.; Kujan, O. Efficacy of injectable platelet-rich fibrin in the treatment of symptomatic oral lichen planus. Oral Dis. 2022, 29, 2256–2264. [Google Scholar] [CrossRef]
- Ghahremanlo, A.; Boroumand, N.; Ghazvini, K.; Hashemy, S.I. Herbal medicine in oral lichen planus. Phytother. Res. 2019, 33, 288–293. [Google Scholar] [CrossRef] [PubMed]
- El-Howati, A.; Thornhill, M.H.; Colley, H.E.; Murdoch, C. Immune mechanisms in oral lichen planus. Oral Dis. 2023, 29, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Darczuk, D.; Krzysciak, W.; Vyhouskaya, P.; Kesek, B.; Galecka-Wanatowicz, D.; Lipska, W.; Kaczmarzyk, T.; Gluch-Lutwin, M.; Mordyl, B.; Chomyszyn-Gajewska, M. Salivary oxidative status in patients with oral lichen planus. J. Physiol. Pharmacol. 2016, 67, 885–894. [Google Scholar]
- Li, Y.; Zhu, W.; He, H.; Garov, Y.A.; Bai, L.; Zhang, L.; Wang, J.; Wang, J.; Zhou, X. Efficacy and Safety of Tripterygium Wilfordii Hook. F for Connective Tissue Disease-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 691031. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhong, M.; Long, F.; Yang, R. Deciphering the Active Ingredients and Molecular Mechanisms of Tripterygium hypoglaucum (Levl.) Hutch against Rheumatoid Arthritis Based on Network Pharmacology. Evid. Based Complement. Alternat. Med. 2020, 2020, 361865. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Han, D.; Wang, B.; Zhang, W.; Zhao, Y.; Xu, J.; Meng, L.; Mou, K.; Lu, S.; Zhu, W.; et al. Topical Treatment of Colquhounia Root Relieves Skin Inflammation and Itch in Imiquimod-Induced Psoriasiform Dermatitis in Mice. Mediat. Inflamm. 2022, 2022, 5782922. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Li, C.; Zhang, Y.; Lin, N. Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin. Med. 2022, 17, 2. [Google Scholar] [CrossRef]
- Tao, X.; Lipsky, P.E. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum. Dis. Clin. N. Am. 2000, 26, 29–50. [Google Scholar] [CrossRef]
- Luo, Y.; Kuai, L.; Chen, J.; Sun, X.; Liu, L.; Luo, Y.; Ru, Y.; Xing, M.; Ding, X.; Zhou, M.; et al. Efficacy and safety of Tripterygium wilfordii Hook. f. for oral lichen planus: Evidence from 18 randomized controlled trials. Phytother. Res. 2020, 34, 2180–2191. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.F.; Zhao, L.; Huang, P.; Hu, F.L.; Jiao, J.Y.; Xiang, K.L.; Wang, Z.Z.; Qu, J.L.; Shang, D. Qing-Yi Decoction in the Treatment of Acute Pancreatitis: An Integrated Approach Based on Chemical Profile, Network Pharmacology, Molecular Docking and Experimental Evaluation. Front. Pharmacol. 2021, 12, 590994. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Shi, Y.; Zuo, L.; Xin, M.; Guo, X.; Sun, J.; Chen, S.; Zhao, B.; Yang, Z.; Sun, Z.; et al. Identification of Biomarkers Associated with Cancerous Change in Oral Leukoplakia Based on Integrated Transcriptome Analysis. J. Oncol. 2022, 2022, 4599305. [Google Scholar] [CrossRef]
- Zucoloto, M.L.; Shibakura, M.E.W.; Pavanin, J.V.; Garcia, F.T.; da Silva Santos, P.S.; Maciel, A.P.; de Barros Gallo, C.; Souza, N.V.; Innocentini, L.; Humberto, J.S.M.; et al. Severity of oral lichen planus and oral lichenoid lesions is associated with anxiety. Clin. Oral Investig. 2019, 23, 4441–4448. [Google Scholar] [CrossRef]
- Samimi, M.; Le Gouge, A.; Boralevi, F.; Passeron, T.; Pascal, F.; Bernard, P.; Agbo-Godeau, S.; Leducq, S.; Fricain, J.C.; Vaillant, L.; et al. Topical rapamycin versus betamethasone dipropionate ointment for treating oral erosive lichen planus: A randomized, double-blind, controlled study. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2384–2391. [Google Scholar] [CrossRef]
- Nosratzehi, T.; Arbabi-Kalati, F.; Hamishehkar, H.; Bagheri, S. Comparison of the Effects of Curcumin Mucoadhesive Paste and Local Corticosteroid on the Treatment of Erosive Oral Lichen Planus Lesions. J. Natl. Med. Assoc. 2018, 110, 92–97. [Google Scholar] [CrossRef]
- Reddy, R.L.; Reddy, R.S.; Ramesh, T.; Singh, T.R.; Swapna, L.A.; Laxmi, N.V. Randomized trial of aloe vera gel vs. triamcinolone acetonide ointment in the treatment of oral lichen planus. Quintessence Int. 2012, 43, 793–800. [Google Scholar]
- Li, X.J.; Jiang, Z.Z.; Zhang, L.Y. Triptolide: Progress on research in pharmacodynamics and toxicology. J. Ethnopharmacol. 2014, 155, 67–79. [Google Scholar]
- Zhou, W.; Wang, Y.; Lu, A.; Zhang, G. Systems Pharmacology in Small Molecular Drug Discovery. Int. J. Mol. Sci. 2016, 17, 246. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Ma, W.; Wang, X.; Chen, S.; Zou, S.; Wei, J.; Yang, Y.; Li, J.; Yang, X.; Wang, H.; et al. A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. J. Ethnopharmacol. 2019, 242, 112055. [Google Scholar] [CrossRef]
- Guo, Y.; Nie, Q.; MacLean, A.L.; Li, Y.; Lei, J.; Li, S. Multiscale Modeling of Inflammation-Induced Tumorigenesis Reveals Competing Oncogenic and Oncoprotective Roles for Inflammation. Cancer Res. 2017, 77, 6429–6441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, H.; Sun, J.; Wei, J.; Zhang, X.; Chen, B.; Lin, Y. Kaempferol Protects Blood Vessels From Damage Induced by Oxidative Stress and Inflammation in Association with the Nrf2/HO-1 Signaling Pathway. Front. Pharmacol. 2020, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Jayaraman, S. An update on beta-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, X.; Liu, J.; Cai, E.; Zhu, H.; Li, H.; Zhang, L.; Li, P.; Zhao, Y. Beta-sitosterol and its derivatives repress lipopolysaccharide/d-galactosamine-induced acute hepatic injury by inhibiting the oxidation and inflammation in mice. Bioorg. Med. Chem. Lett. 2018, 28, 1525–1533. [Google Scholar] [CrossRef]
- Zheng, C.X.; Chen, Z.H.; Zeng, C.H.; Qin, W.S.; Li, L.S.; Liu, Z.H. Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro. Kidney Int. 2008, 74, 596–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, M.; Cheng, Y.; Han, F.; Chang, Y.; Yang, Y.; Li, X.; Chen, L.; Lu, Y.; Sun, B.; Chen, L. Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease. Int. J. Biol. Sci. 2018, 14, 1545–1557. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Xu, L.H.; Deng, C.; Zhong, X.; Xie, K.H.; Han, R.Y.; Su, H.W.; Tan, R.Z.; Wang, L. Hederagenin ameliorates renal fibrosis in chronic kidney disease through blocking ISG15 regulated JAK/STAT signaling. Int. Immunopharmacol. 2023, 118, 110122. [Google Scholar] [CrossRef]
- Shen, Y.; Teng, L.; Qu, Y.; Huang, Y.; Peng, Y.; Tang, M.; Fu, Q. Hederagenin Suppresses Inflammation and Cartilage Degradation to Ameliorate the Progression of Osteoarthritis: An In vivo and In vitro Study. Inflammation 2023, 46, 655–678. [Google Scholar] [CrossRef]
- Hers, I.; Vincent, E.E.; Tavare, J.M. Akt signalling in health and disease. Cell. Signal. 2011, 23, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.J.; Tan, Y.Q.; Zhou, G. Aberrant IGF1-PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus. Immunobiology 2019, 224, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Chia, J.S.; Wang, J.T.; Chiang, C.P. Levamisole can reduce the high serum tumour necrosis factor-alpha level to a normal level in patients with erosive oral lichen planus. Clin. Exp. Dermatol. 2007, 32, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, M.; Zhang, S.; Wang, Z.; Jiang, L.; Shen, J.; Bai, J.; Gao, F.; Zhou, M.; Chen, Q. NF-kappaB-dependent cytokines in saliva and serum from patients with oral lichen planus: A study in an ethnic Chinese population. Cytokine 2008, 41, 144–149. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, Y.; Zhang, Z.; Li, W.; Ji, X.; Liu, X.; Jin, J.; Xu, S.; Cui, H.; Cheng, Z.; et al. Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus. Biomed. Pharmacother. 2018, 105, 151–158. [Google Scholar] [CrossRef]
- Hillmer, E.J.; Zhang, H.; Li, H.S.; Watowich, S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hadzi-Mihailovic, M.; Petrovic, R.; Raybaud, H.; Stanimirovic, D.; Ozar Koray, M. Expression and role of p53 in oral lichen planus patients. J. BUON 2017, 22, 1278–1286. [Google Scholar]
- Bernard, A.; Chevrier, S.; Beltjens, F.; Dosset, M.; Viltard, E.; Lagrange, A.; Derangere, V.; Oudot, A.; Ghiringhelli, F.; Collin, B.; et al. Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance. Cancer Res. 2019, 79, 5958–5970. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, J.; Wang, C.; Zhao, Z.; Fan, Y. Systematic Review and Meta-Analysis of Oxidative Stress and Antioxidant Markers in Oral Lichen Planus. Oxid. Med. Cell. Longev. 2021, 2021, 9914652. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Xu, Y.; Sun, W.; Man, Z.; Zhu, L.; Xia, X.; Zhao, L.; Zhao, Y.; Wang, X. The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-kappaB signaling pathway activation in oral lichen planus. Gene 2012, 508, 157–164. [Google Scholar] [CrossRef]
- Vidya, M.K.; Kumar, V.G.; Sejian, V.; Bagath, M.; Krishnan, G.; Bhatta, R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 2018, 37, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zeng, X.; Han, Q.; Lin, M.; Long, L.; Dan, H.; Zhou, G.; Chen, Q. Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of oral lichen planus. Mediat. Inflamm. 2014, 2014, 701094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mol ID | Molecule Name | MW | Hdon | Hacc | OB | DL |
---|---|---|---|---|---|---|
MOL000296 | hederagenin | 414.79 | 1 | 1 | 36.91 | 0.75 |
MOL003182 | (+)-Medioresinol di-O-beta-D-glucopyranoside_qt | 388.45 | 2 | 7 | 60.69 | 0.62 |
MOL003184 | 81827-74-9 | 342.47 | 1 | 4 | 45.42 | 0.53 |
MOL003185 | (1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one | 346.51 | 2 | 4 | 48.84 | 0.38 |
MOL003187 | triptolide | 360.44 | 1 | 6 | 51.29 | 0.68 |
MOL003188 | Tripchlorolide | 396.9 | 2 | 6 | 78.72 | 0.72 |
MOL003189 | WILFORLIDE A | 486.81 | 2 | 4 | 35.66 | 0.72 |
MOL003192 | Triptonide | 344.39 | 0 | 6 | 67.66 | 0.7 |
MOL003196 | Tryptophenolide | 312.44 | 1 | 3 | 48.5 | 0.44 |
MOL003198 | 5 alpha-Benzoyl-4 alpha-hydroxy-1 beta,8 alpha-dinicotinoyl-dihydro-agarofuran | 600.72 | 1 | 10 | 35.26 | 0.72 |
MOL003199 | 5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin | 352.31 | 3 | 7 | 61.85 | 0.54 |
MOL003206 | Canin | 278.33 | 1 | 5 | 77.41 | 0.33 |
MOL003208 | Celafurine | 369.51 | 2 | 6 | 72.94 | 0.44 |
MOL003209 | Celallocinnine | 405.59 | 2 | 5 | 83.47 | 0.59 |
MOL003210 | Celapanine | 569.66 | 0 | 11 | 30.18 | 0.82 |
MOL003242 | Triptofordinine A2 | 741.85 | 1 | 13 | 30.78 | 0.47 |
MOL003241 | Triptofordin F4 | 652.75 | 3 | 12 | 31.37 | 0.67 |
MOL003239 | Triptofordin F2 | 668.75 | 2 | 13 | 33.62 | 0.67 |
MOL003238 | Triptofordin F1 | 694.79 | 2 | 13 | 33.91 | 0.6 |
MOL003236 | Triptofordin D2 | 650.78 | 1 | 11 | 30.38 | 0.69 |
MOL003235 | Triptofordin D1 | 606.72 | 1 | 10 | 32 | 0.75 |
MOL003234 | Triptofordin C2 | 610.71 | 2 | 11 | 30.16 | 0.76 |
MOL003233 | Triptofordin B2 | 608.69 | 1 | 11 | 107.71 | 0.76 |
MOL003232 | Triptofordin B1 | 478.63 | 1 | 6 | 39.55 | 0.84 |
MOL003231 | Triptoditerpenic acid B | 328.49 | 1 | 3 | 40.02 | 0.36 |
MOL003229 | Triptinin B | 314.46 | 2 | 3 | 34.73 | 0.32 |
MOL003225 | Hypodiolide A | 318.5 | 1 | 3 | 76.13 | 0.49 |
MOL003224 | Tripdiotolnide | 360.44 | 2 | 6 | 56.4 | 0.67 |
MOL003222 | Salazinic acid | 402.33 | 4 | 10 | 36.34 | 0.76 |
MOL003217 | Isoxanthohumol | 354.43 | 2 | 5 | 56.81 | 0.39 |
MOL003211 | Celaxanthin | 550.94 | 1 | 1 | 47.37 | 0.58 |
MOL003210 | Celapanine | 569.66 | 0 | 11 | 30.18 | 0.82 |
MOL003209 | Celallocinnine | 405.59 | 2 | 5 | 83.47 | 0.59 |
MOL003208 | Celafurine | 369.51 | 2 | 6 | 72.94 | 0.44 |
MOL003206 | Canin | 278.33 | 1 | 5 | 77.41 | 0.33 |
MOL003199 | 5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin | 352.31 | 3 | 7 | 61.85 | 0.54 |
MOL003198 | 5 alpha-Benzoyl-4 alpha-hydroxy-1 beta,8 alpha-dinicotinoyl-dihydro-agarofuran | 600.72 | 1 | 10 | 35.26 | 0.72 |
MOL003196 | Tryptophenolide | 312.44 | 1 | 3 | 48.5 | 0.44 |
MOL003192 | Triptonide | 344.39 | 0 | 6 | 67.66 | 0.7 |
MOL003189 | WILFORLIDE A | 486.81 | 2 | 4 | 35.66 | 0.72 |
MOL003188 | Tripchlorolide | 396.9 | 2 | 6 | 78.72 | 0.72 |
MOL003187 | triptolide | 360.44 | 1 | 6 | 51.29 | 0.68 |
MOL003185 | (1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one | 346.51 | 2 | 4 | 48.84 | 0.38 |
MOL003184 | 81827-74-9 | 342.47 | 1 | 4 | 45.42 | 0.53 |
MOL003182 | (+)-Medioresinol di-O-beta-D-glucopyranoside_qt | 388.45 | 2 | 7 | 60.69 | 0.62 |
MOL002058 | 40957-99-1 | 388.45 | 2 | 7 | 57.2 | 0.62 |
MOL000449 | Stigmasterol | 412.77 | 1 | 1 | 43.83 | 0.76 |
MOL000422 | kaempferol | 286.25 | 4 | 6 | 41.88 | 0.24 |
MOL000358 | beta-sitosterol | 414.79 | 1 | 1 | 36.91 | 0.75 |
MOL000296 | hederagenin | 414.79 | 1 | 1 | 36.91 | 0.75 |
MOL000211 | Mairin | 456.78 | 2 | 3 | 55.38 | 0.78 |
Intersection Gene Name | |||||||||
---|---|---|---|---|---|---|---|---|---|
ADH1B | RELA | CDKN1A | STAT1 | IL4 | CCR7 | AR | MAOA | HMOX1 | GSTP1 |
ADH1C | STAT3 | PLAU | CXCL8 | CD80 | CD1A | PPARG | AKT1 | CYP1A2 | AHR |
PTGS2 | VEGFA | TNF | TGFB1 | CD86 | CD40 | KDR | BAX | ICAM1 | INSR |
NOS3 | BCL2 | CASP3 | IL2 | CD274 | CD14 | DPP4 | MMP1 | SELE | SLPI |
CA2 | FOS | TP53 | IFNG | IL23A | ESR1 | MAOB | CDK1 | VCAM1 | SLC6A4 |
CASP8 |
No. | Target | PDB ID | Compound | Minimum Binding Energy (kcal/mol) |
---|---|---|---|---|
1 | AKT1 | 5AAR | kaempferol | −8.592 |
2 | CASP3 | 5JFT | β-sitosterol | −11.912 |
3 | PTGS2 | 1PXX | hederagenin | −8.175 |
4 | TNF | 4QPY | kaempferol | −7.266 |
5 | TNF | 4QPY | triptolide | −8.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Huang, X.; Yang, L.; Han, W.; Zhu, Z.; Wang, Y.; Chen, R. Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus. Medicina 2023, 59, 1448. https://doi.org/10.3390/medicina59081448
Huang W, Huang X, Yang L, Han W, Zhu Z, Wang Y, Chen R. Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus. Medicina. 2023; 59(8):1448. https://doi.org/10.3390/medicina59081448
Chicago/Turabian StyleHuang, Wenkai, Xu Huang, Lin Yang, Wenjia Han, Zhongqing Zhu, Yuanyin Wang, and Ran Chen. 2023. "Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus" Medicina 59, no. 8: 1448. https://doi.org/10.3390/medicina59081448
APA StyleHuang, W., Huang, X., Yang, L., Han, W., Zhu, Z., Wang, Y., & Chen, R. (2023). Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus. Medicina, 59(8), 1448. https://doi.org/10.3390/medicina59081448