Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzner, D.; Simons, M. Chronic Progressive Multiple Sclerosis—Pathogenesis of Neurodegeneration and Therapeutic Strategies. Curr. Neuropharmacol. 2010, 8, 305–315. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple Sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Santinelli, F.B.; Sebastião, E.; Kuroda, M.H.; Moreno, V.C.; Pilon, J.; Vieira, L.H.P.; Barbieri, F.A. Cortical Activity and Gait Parameter Characteristics in People With Multiple Sclerosis During Unobstructed Gait and Obstacle Avoidance. Gait Posture 2021, 86, 226–232. [Google Scholar] [CrossRef]
- Carpinella, I.; Gervasoni, E.; Anastasi, D.; Di Giovanni, R.; Tacchino, A.; Brichetto, G.; Confalonieri, P.; Rovaris, M.; Solaro, C.; Ferrarin, M.; et al. Instrumentally Assessed Gait Quality Is More Relevant Than Gait Endurance and Velocity to Explain patient-reported Walking Ability in early-stage Multiple Sclerosis. Eur. J. Neurol. 2021, 28, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Valet, M.; El Sankari, S.; Van Pesch, V.; Detrembleur, C.; Lejeune, T.; Stoquart, G. Effects of Prolonged-Release Fampridine on Multiple Sclerosis-Related Gait Impairments. A Crossover, Double-Blinded, Placebo-Controlled Study. Clin. Biomech. 2021, 86, 105382. [Google Scholar] [CrossRef]
- Pilutti, L.A. Adapted Exercise Interventions for Persons With Progressive Multiple Sclerosis. Appl. Physiol. Nutr. Metab. 2013, 38, 357. [Google Scholar] [CrossRef]
- Rietberg, M.B.; Brooks, D.; Uitdehaag, B.M.; Kwakkel, G. Exercise Therapy for Multiple Sclerosis. Cochrane Database Syst. Rev. 2005, 2005, CD003980. [Google Scholar] [CrossRef]
- Huisinga, J.M.; George, R.S.; Spain, R.; Overs, S.; Horak, F.B. Postural Response Latencies Are Related to Balance Control During Standing and Walking in Patients With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2014, 95, 1390–1397. [Google Scholar] [CrossRef]
- Patti, F.; Ciancio, M.R.; Reggio, E.; Lopes, R.; Palermo, F.; Cacopardo, M.; Reggio, A. The Impact of Outpatient Rehabilitation on Quality of Life in Multiple Sclerosis. J. Neurol. 2002, 249, 1027–1033. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E.; Jakobsen, J.; Petersen, T.; Hansen, H.J.; Knudsen, C.; Overgaard, K.; Ingemann-Hansen, T. Resistance Training Improves Muscle Strength and Functional Capacity in Multiple Sclerosis. Neurology 2009, 73, 1478–1484. [Google Scholar] [CrossRef]
- Sabapathy, N.M.; Minahan, C.L.; Turner, G.T.; Broadley, S.A. Comparing Endurance- and Resistance-Exercise Training in People With Multiple Sclerosis: A Randomized Pilot Study. Clin. Rehabil. 2010, 25, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Gear, M.; Pauli, A.; Cowan, P.; Finnigan, C.; Hunter, H.; Mobberley, C.; Nock, A.; Sims, R.; Thain, J. The Effect of Core Stability Training on Balance and Mobility in Ambulant Individuals With Multiple Sclerosis: A Multi-Centre Series of Single Case Studies. Mult. Scler. J. 2010, 16, 1377–1384. [Google Scholar] [CrossRef]
- Snook, E.M.; Motl, R.W. Effect of Exercise Training on Walking Mobility in Multiple Sclerosis: A Meta-Analysis. Neurorehabilit. Neural Repair 2008, 23, 108–116. [Google Scholar] [CrossRef]
- Berriozabalgoitia, R.; Bidaurrazaga-Letona, I.; Otxoa, E.; Urquiza, M.; Irazusta, J.; Rodriguez-Larrad, A. Overground Robotic Program Preserves Gait in Individuals With Multiple Sclerosis and Moderate to Severe Impairments: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 932–939. [Google Scholar] [CrossRef]
- Lotze, M.; Braun, C.; Birbaumer, N.; Anders, S.; Cohen, L.G. Motor Learning Elicited by Voluntary Drive. Brain 2003, 126, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.; Havton, L. Basic Advances and New Avenues in Therapy of Spinal Cord Injury. Annu. Rev. Med. 2004, 55, 255–282. [Google Scholar] [CrossRef] [PubMed]
- Patt, N.; Kool, J.; Hersche, R.; Oberste, M.; Walzik, D.; Joisten, N.; Caminada, D.; Ferrara, F.; Gonzenbach, R.; Nigg, C.R.; et al. High-Intensity Interval Training and Energy Management Education, Compared With Moderate Continuous Training and Progressive Muscle Relaxation, for Improving Health-Related Quality of Life in Persons With Multiple Sclerosis: Study Protocol of a Randomized Controlled Superiority Trial With Six months’ Follow-up. BMC Neurol. 2021, 21, 65. [Google Scholar] [CrossRef]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic Sensorimotor Interactions in Locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef]
- Colombo, G.; Wirz, M.; Dietz, V. Driven Gait Orthosis for Improvement of Locomotor Training in Paraplegic Patients. Spinal Cord. 2001, 39, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Łyp, M.; Stanisławska, I.; Witek, B.; Olszewska-Żaczek, E.; Czarny-Działak, M.; Kaczor, R. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study. Adv. Exp. Med. Biol. 2018, 1070, 111–115. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Lin, L.-F.; Tam, K.-W.; Tsai, C.-P.; Hong, C.-H.; Kuan, Y.-C. Efficacy of Robot-Assisted Gait Training in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2020, 41, 102034. [Google Scholar] [CrossRef]
- Manuli, A.; Maggio, M.G.; Tripoli, D.; Gullì, M.; Cannavò, A.; La Rosa, G.; Sciarrone, F.; Avena, G.; Calabrò, R.S. Patients’ Perspective and Usability of Innovation Technology in a New Rehabilitation Pathway: An Exploratory Study in Patients With Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102312. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Schrage, L. A More Portable Fortran Random Number Generator. ACM Trans. Math. Softw. 1979, 5, 132–138. [Google Scholar] [CrossRef]
- Lo, A.; Triche, E.W. Improving Gait in Multiple Sclerosis Using Robot-Assisted, Body Weight Supported Treadmill Training. Neurorehabilit. Neural Repair 2008, 22, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Riener, R. Technology of the Robotic Gait Orthosis Lokomat. In Neurorehabilitation Technology; Reinkensmeyer, D., Dietz, V., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lo, A.C.; Manoglou, D. The Expert Panel of the MS Lokomat Group: Hocoma Recommendations for Clinical Practice: Multiple Sclerosis. Neurorehabil. Neural Repair 2006. [Google Scholar] [CrossRef]
- Rudick, R.; Antel, J.; Confavreux, C.; Cutter, G.; Ellison, G.; Fischer, J.; Lublin, F.; Miller, A.; Petkau, J.; Rao, S.; et al. Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann. Neurol. 1997, 42, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Rasova, K.; Martinkova, P.; Vyskotova, J.; Sedova, M. Assessment Set for Evaluation of Clinical Outcomes in Multiple Sclerosis: Psychometric Properties. Patient Relat. Outcome Meas. 2012, 3, 59–70. [Google Scholar] [CrossRef]
- Rossier, P.; Wade, D.T. Validity and Reliability Comparison of 4 Mobility Measures in Patients Presenting With Neurologic Im-Pairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the Six-Minute Walk in Multiple Sclerosis Subjects and Healthy Controls. Mult. Scler. J. 2008, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Gouelle, A. Use of Functional Ambulation Performance Score As Measurement of Gait Ability: Review. J. Rehabil. Res. Dev. 2014, 51, 665–674. [Google Scholar] [CrossRef]
- Fjeldstad, C.; Pardo, G.; Frederiksen, C.; Bemben, D.; Bemben, M. Assessment of Postural Balance in Multiple Sclerosis. Int. J. MS Care 2009, 11, 1–5. [Google Scholar] [CrossRef]
- Beer, S.; Aschbacher, B.; Manoglou, D.; Gamper, E.; Kool, J.; Kesselring, J. Robot-Assisted Gait Training in Multiple Sclerosis: A Pilot Randomized Trial. Mult. Scler. J. 2007, 14, 231–236. [Google Scholar] [CrossRef]
- Tesio, L.; Granger, C.V.; Perucca, L.; Franchignoni, F.P.; Battaglia, M.A.; Russell, C.F. The FIM Instrument in the United States and Italy: A Comparative Study. Am. J. Phys. Med. Rehabil. 2002, 81, 168–176. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor and Francis: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jensen, H.; Mamoei, S.; Ravnborg, M.; Dalgas, U.; Stenager, E. Distribution-Based Estimates of Minimum Clinically Important Difference in Cognition, Arm Function and Lower Body Function After Slow Release-Fampridine Treatment of Patients With Multiple Sclerosis. Mult. Scler. Relat. Disord. 2016, 7, 58–60. [Google Scholar] [CrossRef]
- Giesser, B.; Beres-Jones, J.; Budovitch, A.; Herlihy, E.; Harkema, S. Locomotor Training Using Body Weight Support on a Treadmill Improves Mobility in Persons With Multiple Sclerosis: A Pilot Study. Mult. Scler. J. 2007, 13, 224–231. [Google Scholar] [CrossRef]
- Swinnen, E.; Beckwée, D.; Pinte, D.; Meeusen, R.; Baeyens, J.-P.; Kerckhofs, E. Treadmill Training in Multiple Sclerosis: Can Body Weight Support or Robot Assistance Provide Added Value? A Systematic Review. Mult. Scler. Int. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Schwartz, I.; Sajin, A.; Moreh, E.; Fisher, I.; Neeb, M.; Forest, A.; Vaknin-Dembinsky, A.; Karusis, D.; Meiner, Z. Robot-Assisted Gait Training in Multiple Sclerosis Patients: A Randomized Trial. Mult. Scler. J. 2011, 18, 881–890. [Google Scholar] [CrossRef]
- Vaney, C.; Gattlen, B.; Lugon-Moulin, V.; Meichtry, A.; Hausmmann, R.; Foinant, D.; Anchici-Bellwald, A.-M.; Palaci, C.; Hilfiker, R. Robotic-Assisted Step Training (Lokomat) Not Superior to Equal Intensity of Over-Ground Rehabilitation in Patients With Multiple Sclerosis. Neurorehabil. Neural Repair 2012, 26, 212–221. [Google Scholar] [CrossRef]
- Ruiz, J.; Labas, M.P.; Triche, E.W.; Lo, A.C. Combination of Robot-Assisted and Conventional Body-Weight–Supported Treadmill Training Improves Gait in Persons With Multiple Sclerosis. J. Neurol. Phys. Ther. 2013, 37, 187–193. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Munari, D.; Waldner, A.; Tamburin, S.; Marchioretto, F.; Smania, N. Robot-Assisted Vs. Sensory Integration Training in Treating Gait and Balance Dysfunctions in Patients With Multiple Sclerosis: A Randomized Controlled Trial. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
- Straudi, S.; Benedetti, M.; Venturini, E.; Manca, M.; Foti, C.; Basaglia, N. Does Robot-Assisted Gait Training Ameliorate Gait Abnormalities in Multiple Sclerosis? A Pilot Randomized-Control Trial. Neurorehabilitation 2013, 33, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Barosio, E.C.; Colombo, R.; Ciocca, M.E.; Pistarini, C. La Riabilitazione Neuromotoria Assistita Da Robot: Revisione Sistematica Della Letteratura. MR G. Ital. Med. Riabil. 2011, 25, 34–44. [Google Scholar]
- Wier, L.M.; Hatcher, M.S.; Triche, E.W.; Lo, A.C. Effect of Robot-Assisted Versus Conventional Body-Weight-Supported Treadmill Training on Quality of Life for People With Multiple Sclerosis. J. Rehabil. Res. Dev. 2011, 48, 483. [Google Scholar] [CrossRef]
- Straudi, S.; Fanciullacci, C.; Martinuzzi, C.; Pavarelli, C.; Rossi, B.; Chisari, C.; Basaglia, N. The Effects of Robot-Assisted Gait Training in Progressive Multiple Sclerosis: A Randomized Controlled Trial. Mult. Scler. J. 2015, 22, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Pompa, A.; Morone, G.; Iosa, M.; Pace, L.; Catani, S.; Casillo, P.; Clemenzi, A.; Troisi, E.; Tonini, A.; Paolucci, S.; et al. Does Robot-Assisted Gait Training Improve Ambulation in Highly Disabled Multiple Sclerosis People? A Pilot Randomized Control Trial. Mult. Scler. J. 2016, 23, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Sun, H.; Zeng, Q.; Lu, P.; Zhao, Y.; Fan, T.; Huang, G. Do Patients With Multiple Sclerosis Derive More Benefit from Robot-Assisted Gait Training Compared With Conventional Walking Therapy on Motor Function? A Meta-Analysis. Front. Neurol. 2017, 8, 260. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.; Bramanti, P. Robotic Gait Training in Multiple Sclerosis Rehabilitation: Can Virtual Reality Make the Difference? Findings from a Randomized Controlled Trial. J. Neurol. Sci. 2017, 377, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Straudi, S.; Manfredini, F.; Lamberti, N.; Zamboni, P.; Bernardi, F.; Marchetti, G.; Pinton, P.; Bonora, M.; Secchiero, P.; Tisato, V.; et al. The Effectiveness of Robot-Assisted Gait Training Versus Conventional Therapy on Mobility in Severely Disabled ProgressIve MultiplE Sclerosis Patients (RAGTIME): Study Protocol for a Randomized Controlled Trial. Trials 2017, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | (N) |
---|---|
Gender | |
Female | 16 |
Male | 3 |
Type of Multiple Sclerosis | |
Relapsing Remitting | 7 |
Progressive Relapsing | 4 |
Secondary Progressive | 5 |
Primary Progressive | 3 |
EDSS | |
3.5–4.5 | 5 |
5–6 | 7 |
6.5–7 | 7 |
PRE (T2) | POST (T3) | Δ% | ES | ES Interpretation | ES Difference (95% Confidence Intervals) | Main Treatment Effects | |||
---|---|---|---|---|---|---|---|---|---|
F | p | Partial η2 | |||||||
25FW | |||||||||
RAGT | 45.3 ± 12.8 | 38.7 ± 11.6 *** | −14.9 | −0.52 | Medium | 0.33 (0.24–0.42) | 13.4 | 0.004 | 0.549 |
Control | 43.0 ± 13.7 | 40.5 ± 12.9 ** | −5.7 | −0.19 | Trivial | ||||
EDSS | |||||||||
RAGT | 5.6 ± 1.0 | 5.2 ± 1.0 *** | −7.2 | −0.39 | Small | 0.31 (0.14–0.48) | 0.02 | 0.892 | 0.002 |
Control | 5.5 ± 1.1 | 5.4 ± 1.0 | −1.4 | −0.08 | Trivial | ||||
Motricity | |||||||||
RAGT | 114 ± 27 | 124 ± 30 * | 9 | 0.35 | Small | 0.15 (0.01–0.28) | 3.0 | 0.108 | 0.218 |
Control | 113 ± 26 | 119 ± 27 ** | 5 | 0.20 | Small | ||||
10 TWT | |||||||||
RAGT | 0.45 ± 0.19 | 0.55 ± 0.21 *** | 23.2 | 0.46 | Small | 0.26 (0.15–0.35) | 0.965 | 0.347 | 0.081 |
Control | 0.49 ± 0.24 | 0.54 ± 0.24 *** | 11.8 | 0.20 | Small | ||||
Tinetti E | |||||||||
RAGT | 9.11 ± 3.40 | 11.41 ± 3.84 *** | 28.0 | 0.61 | Medium | 0.26 (0.04–0.46) | 0.313 | 0.587 | 0.028 |
Control | 9.35 ± 3.46 | 10.64 ± 3.83 ** | 14.4 | 0.35 | Small | ||||
Tinetti A | |||||||||
RAGT | 6.05 ± 2.41 | 8.05 ± 2.33 ** | 46.4 | 0.78 | Medium | 0.41 (0.13–0.67) | 0.01 | 0.981 | 0.001 |
Control | 6.58 ± 2.55 | 7.52 ± 2.42 * | 21.9 | 0.37 | Small | ||||
SF36 P | |||||||||
RAGT | 30.4 ± 6.7 | 35.7 ± 7.3 * | 19.6 | 0.70 | Medium | 0.48 (−0.38–0.28) | 0.02 | 0.873 | 0.002 |
Control | 31.7 ± 8.3 | 33.5 ± 8.1 | 7.2 | 0.22 | Small | ||||
SF36 M | |||||||||
RAGT | 48.6 ± 13.7 | 49.3 ± 13.7 | 2.8 | 0.05 | Trivial | −0.05 (−0.38–0.28) | 2.6 | 0.134 | 0.192 |
Control | 47.3 ± 13.7 | 48.6 ± 12.2 | 5.1 | 0.10 | Trivial | ||||
KP | |||||||||
RAGT | 18.3 ± 11.4 | 21.8 ± 13.6 ** | 18.5 | 0.31 | Small | 0.30 (0.17–0.44) | 0.001 | 0.974 | <0.001 |
Control | 20.0 ± 12.7 | 20.1 ± 13.0 | 0.2 | 0.01 | Trivial | ||||
6MWT | |||||||||
RAGT | 137 ± 84 | 158 ± 89 *** | 19.2 | 0.24 | Small | 0.11 (0.01–0.21) | 7.13 | 0.022 | 0.393 |
Control | 146 ± 95 | 159 ± 98 ** | 10.6 | 0.13 | Trivial | ||||
FIM | |||||||||
RAGT | 101.2 ± 14.7 | 106.9 ± 12.5 ** | 6.0 | 0.41 | Small | 0.28 (0.10–0.46) | 3.0 | 0.110 | 0.216 |
Control | 103.0 ± 13.1 | 104.7 ± 13.3 * | 1.6 | 0.13 | Trivial | ||||
DST | |||||||||
RAGT | 42.5 ± 10.8 | 39.2 ± 12.6 * | −9.1 | −0.28 | Small | 0.27 (0.17–0.37) | 0.595 | 0.457 | 0.051 |
Control | 42.0 ± 10.9 | 42.0 ± 12.2 | −0.8 | −0.01 | Trivial | ||||
ASH | |||||||||
RAGT | 4.6 ± 4.4 | 3.3 ± 2.9 * | −25 | −0.34 | Small | 0.20 (0.03–0.36) | 0.158 | 0.698 | 0.014 |
Control | 4.2 ± 4.55 | 3.7 ± 3.6 | −11 | −0.14 | Trivial | ||||
SLR | |||||||||
RAGT | 0.86 ± 0.06 | 0.91 ± 0.05 ** | 6.5 | 0.83 | Large | 0.38 (−0.01–0.77) | 1.1 | 0.304 | 0.096 |
Control | 0.87 ± 0.06 | 0.90 ± 0.06 * | 3.6 | 0.45 | Small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sconza, C.; Negrini, F.; Di Matteo, B.; Borboni, A.; Boccia, G.; Petrikonis, I.; Stankevičius, E.; Casale, R. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina 2021, 57, 713. https://doi.org/10.3390/medicina57070713
Sconza C, Negrini F, Di Matteo B, Borboni A, Boccia G, Petrikonis I, Stankevičius E, Casale R. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina. 2021; 57(7):713. https://doi.org/10.3390/medicina57070713
Chicago/Turabian StyleSconza, Cristiano, Francesco Negrini, Berardo Di Matteo, Alberto Borboni, Gennaro Boccia, Ignas Petrikonis, Edgaras Stankevičius, and Roberto Casale. 2021. "Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial" Medicina 57, no. 7: 713. https://doi.org/10.3390/medicina57070713
APA StyleSconza, C., Negrini, F., Di Matteo, B., Borboni, A., Boccia, G., Petrikonis, I., Stankevičius, E., & Casale, R. (2021). Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina, 57(7), 713. https://doi.org/10.3390/medicina57070713