Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzner, D.; Simons, M. Chronic Progressive Multiple Sclerosis—Pathogenesis of Neurodegeneration and Therapeutic Strategies. Curr. Neuropharmacol. 2010, 8, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Compston, A.; Coles, A. Multiple Sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Santinelli, F.B.; Sebastião, E.; Kuroda, M.H.; Moreno, V.C.; Pilon, J.; Vieira, L.H.P.; Barbieri, F.A. Cortical Activity and Gait Parameter Characteristics in People With Multiple Sclerosis During Unobstructed Gait and Obstacle Avoidance. Gait Posture 2021, 86, 226–232. [Google Scholar] [CrossRef]
- Carpinella, I.; Gervasoni, E.; Anastasi, D.; Di Giovanni, R.; Tacchino, A.; Brichetto, G.; Confalonieri, P.; Rovaris, M.; Solaro, C.; Ferrarin, M.; et al. Instrumentally Assessed Gait Quality Is More Relevant Than Gait Endurance and Velocity to Explain patient-reported Walking Ability in early-stage Multiple Sclerosis. Eur. J. Neurol. 2021, 28, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Valet, M.; El Sankari, S.; Van Pesch, V.; Detrembleur, C.; Lejeune, T.; Stoquart, G. Effects of Prolonged-Release Fampridine on Multiple Sclerosis-Related Gait Impairments. A Crossover, Double-Blinded, Placebo-Controlled Study. Clin. Biomech. 2021, 86, 105382. [Google Scholar] [CrossRef]
- Pilutti, L.A. Adapted Exercise Interventions for Persons With Progressive Multiple Sclerosis. Appl. Physiol. Nutr. Metab. 2013, 38, 357. [Google Scholar] [CrossRef]
- Rietberg, M.B.; Brooks, D.; Uitdehaag, B.M.; Kwakkel, G. Exercise Therapy for Multiple Sclerosis. Cochrane Database Syst. Rev. 2005, 2005, CD003980. [Google Scholar] [CrossRef]
- Huisinga, J.M.; George, R.S.; Spain, R.; Overs, S.; Horak, F.B. Postural Response Latencies Are Related to Balance Control During Standing and Walking in Patients With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2014, 95, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Patti, F.; Ciancio, M.R.; Reggio, E.; Lopes, R.; Palermo, F.; Cacopardo, M.; Reggio, A. The Impact of Outpatient Rehabilitation on Quality of Life in Multiple Sclerosis. J. Neurol. 2002, 249, 1027–1033. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E.; Jakobsen, J.; Petersen, T.; Hansen, H.J.; Knudsen, C.; Overgaard, K.; Ingemann-Hansen, T. Resistance Training Improves Muscle Strength and Functional Capacity in Multiple Sclerosis. Neurology 2009, 73, 1478–1484. [Google Scholar] [CrossRef]
- Sabapathy, N.M.; Minahan, C.L.; Turner, G.T.; Broadley, S.A. Comparing Endurance- and Resistance-Exercise Training in People With Multiple Sclerosis: A Randomized Pilot Study. Clin. Rehabil. 2010, 25, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, J.; Gear, M.; Pauli, A.; Cowan, P.; Finnigan, C.; Hunter, H.; Mobberley, C.; Nock, A.; Sims, R.; Thain, J. The Effect of Core Stability Training on Balance and Mobility in Ambulant Individuals With Multiple Sclerosis: A Multi-Centre Series of Single Case Studies. Mult. Scler. J. 2010, 16, 1377–1384. [Google Scholar] [CrossRef]
- Snook, E.M.; Motl, R.W. Effect of Exercise Training on Walking Mobility in Multiple Sclerosis: A Meta-Analysis. Neurorehabilit. Neural Repair 2008, 23, 108–116. [Google Scholar] [CrossRef]
- Berriozabalgoitia, R.; Bidaurrazaga-Letona, I.; Otxoa, E.; Urquiza, M.; Irazusta, J.; Rodriguez-Larrad, A. Overground Robotic Program Preserves Gait in Individuals With Multiple Sclerosis and Moderate to Severe Impairments: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 932–939. [Google Scholar] [CrossRef]
- Lotze, M.; Braun, C.; Birbaumer, N.; Anders, S.; Cohen, L.G. Motor Learning Elicited by Voluntary Drive. Brain 2003, 126, 866–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobkin, B.; Havton, L. Basic Advances and New Avenues in Therapy of Spinal Cord Injury. Annu. Rev. Med. 2004, 55, 255–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patt, N.; Kool, J.; Hersche, R.; Oberste, M.; Walzik, D.; Joisten, N.; Caminada, D.; Ferrara, F.; Gonzenbach, R.; Nigg, C.R.; et al. High-Intensity Interval Training and Energy Management Education, Compared With Moderate Continuous Training and Progressive Muscle Relaxation, for Improving Health-Related Quality of Life in Persons With Multiple Sclerosis: Study Protocol of a Randomized Controlled Superiority Trial With Six months’ Follow-up. BMC Neurol. 2021, 21, 65. [Google Scholar] [CrossRef]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic Sensorimotor Interactions in Locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef]
- Colombo, G.; Wirz, M.; Dietz, V. Driven Gait Orthosis for Improvement of Locomotor Training in Paraplegic Patients. Spinal Cord. 2001, 39, 252–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Łyp, M.; Stanisławska, I.; Witek, B.; Olszewska-Żaczek, E.; Czarny-Działak, M.; Kaczor, R. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study. Adv. Exp. Med. Biol. 2018, 1070, 111–115. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Lin, L.-F.; Tam, K.-W.; Tsai, C.-P.; Hong, C.-H.; Kuan, Y.-C. Efficacy of Robot-Assisted Gait Training in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2020, 41, 102034. [Google Scholar] [CrossRef]
- Manuli, A.; Maggio, M.G.; Tripoli, D.; Gullì, M.; Cannavò, A.; La Rosa, G.; Sciarrone, F.; Avena, G.; Calabrò, R.S. Patients’ Perspective and Usability of Innovation Technology in a New Rehabilitation Pathway: An Exploratory Study in Patients With Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102312. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrage, L. A More Portable Fortran Random Number Generator. ACM Trans. Math. Softw. 1979, 5, 132–138. [Google Scholar] [CrossRef]
- Lo, A.; Triche, E.W. Improving Gait in Multiple Sclerosis Using Robot-Assisted, Body Weight Supported Treadmill Training. Neurorehabilit. Neural Repair 2008, 22, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Riener, R. Technology of the Robotic Gait Orthosis Lokomat. In Neurorehabilitation Technology; Reinkensmeyer, D., Dietz, V., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lo, A.C.; Manoglou, D. The Expert Panel of the MS Lokomat Group: Hocoma Recommendations for Clinical Practice: Multiple Sclerosis. Neurorehabil. Neural Repair 2006. [Google Scholar] [CrossRef]
- Rudick, R.; Antel, J.; Confavreux, C.; Cutter, G.; Ellison, G.; Fischer, J.; Lublin, F.; Miller, A.; Petkau, J.; Rao, S.; et al. Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann. Neurol. 1997, 42, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Rasova, K.; Martinkova, P.; Vyskotova, J.; Sedova, M. Assessment Set for Evaluation of Clinical Outcomes in Multiple Sclerosis: Psychometric Properties. Patient Relat. Outcome Meas. 2012, 3, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Rossier, P.; Wade, D.T. Validity and Reliability Comparison of 4 Mobility Measures in Patients Presenting With Neurologic Im-Pairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the Six-Minute Walk in Multiple Sclerosis Subjects and Healthy Controls. Mult. Scler. J. 2008, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Gouelle, A. Use of Functional Ambulation Performance Score As Measurement of Gait Ability: Review. J. Rehabil. Res. Dev. 2014, 51, 665–674. [Google Scholar] [CrossRef]
- Fjeldstad, C.; Pardo, G.; Frederiksen, C.; Bemben, D.; Bemben, M. Assessment of Postural Balance in Multiple Sclerosis. Int. J. MS Care 2009, 11, 1–5. [Google Scholar] [CrossRef]
- Beer, S.; Aschbacher, B.; Manoglou, D.; Gamper, E.; Kool, J.; Kesselring, J. Robot-Assisted Gait Training in Multiple Sclerosis: A Pilot Randomized Trial. Mult. Scler. J. 2007, 14, 231–236. [Google Scholar] [CrossRef]
- Tesio, L.; Granger, C.V.; Perucca, L.; Franchignoni, F.P.; Battaglia, M.A.; Russell, C.F. The FIM Instrument in the United States and Italy: A Comparative Study. Am. J. Phys. Med. Rehabil. 2002, 81, 168–176. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor and Francis: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jensen, H.; Mamoei, S.; Ravnborg, M.; Dalgas, U.; Stenager, E. Distribution-Based Estimates of Minimum Clinically Important Difference in Cognition, Arm Function and Lower Body Function After Slow Release-Fampridine Treatment of Patients With Multiple Sclerosis. Mult. Scler. Relat. Disord. 2016, 7, 58–60. [Google Scholar] [CrossRef]
- Giesser, B.; Beres-Jones, J.; Budovitch, A.; Herlihy, E.; Harkema, S. Locomotor Training Using Body Weight Support on a Treadmill Improves Mobility in Persons With Multiple Sclerosis: A Pilot Study. Mult. Scler. J. 2007, 13, 224–231. [Google Scholar] [CrossRef]
- Swinnen, E.; Beckwée, D.; Pinte, D.; Meeusen, R.; Baeyens, J.-P.; Kerckhofs, E. Treadmill Training in Multiple Sclerosis: Can Body Weight Support or Robot Assistance Provide Added Value? A Systematic Review. Mult. Scler. Int. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Schwartz, I.; Sajin, A.; Moreh, E.; Fisher, I.; Neeb, M.; Forest, A.; Vaknin-Dembinsky, A.; Karusis, D.; Meiner, Z. Robot-Assisted Gait Training in Multiple Sclerosis Patients: A Randomized Trial. Mult. Scler. J. 2011, 18, 881–890. [Google Scholar] [CrossRef]
- Vaney, C.; Gattlen, B.; Lugon-Moulin, V.; Meichtry, A.; Hausmmann, R.; Foinant, D.; Anchici-Bellwald, A.-M.; Palaci, C.; Hilfiker, R. Robotic-Assisted Step Training (Lokomat) Not Superior to Equal Intensity of Over-Ground Rehabilitation in Patients With Multiple Sclerosis. Neurorehabil. Neural Repair 2012, 26, 212–221. [Google Scholar] [CrossRef]
- Ruiz, J.; Labas, M.P.; Triche, E.W.; Lo, A.C. Combination of Robot-Assisted and Conventional Body-Weight–Supported Treadmill Training Improves Gait in Persons With Multiple Sclerosis. J. Neurol. Phys. Ther. 2013, 37, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Munari, D.; Waldner, A.; Tamburin, S.; Marchioretto, F.; Smania, N. Robot-Assisted Vs. Sensory Integration Training in Treating Gait and Balance Dysfunctions in Patients With Multiple Sclerosis: A Randomized Controlled Trial. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Straudi, S.; Benedetti, M.; Venturini, E.; Manca, M.; Foti, C.; Basaglia, N. Does Robot-Assisted Gait Training Ameliorate Gait Abnormalities in Multiple Sclerosis? A Pilot Randomized-Control Trial. Neurorehabilitation 2013, 33, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Barosio, E.C.; Colombo, R.; Ciocca, M.E.; Pistarini, C. La Riabilitazione Neuromotoria Assistita Da Robot: Revisione Sistematica Della Letteratura. MR G. Ital. Med. Riabil. 2011, 25, 34–44. [Google Scholar]
- Wier, L.M.; Hatcher, M.S.; Triche, E.W.; Lo, A.C. Effect of Robot-Assisted Versus Conventional Body-Weight-Supported Treadmill Training on Quality of Life for People With Multiple Sclerosis. J. Rehabil. Res. Dev. 2011, 48, 483. [Google Scholar] [CrossRef]
- Straudi, S.; Fanciullacci, C.; Martinuzzi, C.; Pavarelli, C.; Rossi, B.; Chisari, C.; Basaglia, N. The Effects of Robot-Assisted Gait Training in Progressive Multiple Sclerosis: A Randomized Controlled Trial. Mult. Scler. J. 2015, 22, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Pompa, A.; Morone, G.; Iosa, M.; Pace, L.; Catani, S.; Casillo, P.; Clemenzi, A.; Troisi, E.; Tonini, A.; Paolucci, S.; et al. Does Robot-Assisted Gait Training Improve Ambulation in Highly Disabled Multiple Sclerosis People? A Pilot Randomized Control Trial. Mult. Scler. J. 2016, 23, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Sun, H.; Zeng, Q.; Lu, P.; Zhao, Y.; Fan, T.; Huang, G. Do Patients With Multiple Sclerosis Derive More Benefit from Robot-Assisted Gait Training Compared With Conventional Walking Therapy on Motor Function? A Meta-Analysis. Front. Neurol. 2017, 8, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.; Bramanti, P. Robotic Gait Training in Multiple Sclerosis Rehabilitation: Can Virtual Reality Make the Difference? Findings from a Randomized Controlled Trial. J. Neurol. Sci. 2017, 377, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Straudi, S.; Manfredini, F.; Lamberti, N.; Zamboni, P.; Bernardi, F.; Marchetti, G.; Pinton, P.; Bonora, M.; Secchiero, P.; Tisato, V.; et al. The Effectiveness of Robot-Assisted Gait Training Versus Conventional Therapy on Mobility in Severely Disabled ProgressIve MultiplE Sclerosis Patients (RAGTIME): Study Protocol for a Randomized Controlled Trial. Trials 2017, 18, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | (N) |
---|---|
Gender | |
Female | 16 |
Male | 3 |
Type of Multiple Sclerosis | |
Relapsing Remitting | 7 |
Progressive Relapsing | 4 |
Secondary Progressive | 5 |
Primary Progressive | 3 |
EDSS | |
3.5–4.5 | 5 |
5–6 | 7 |
6.5–7 | 7 |
PRE (T2) | POST (T3) | Δ% | ES | ES Interpretation | ES Difference (95% Confidence Intervals) | Main Treatment Effects | |||
---|---|---|---|---|---|---|---|---|---|
F | p | Partial η2 | |||||||
25FW | |||||||||
RAGT | 45.3 ± 12.8 | 38.7 ± 11.6 *** | −14.9 | −0.52 | Medium | 0.33 (0.24–0.42) | 13.4 | 0.004 | 0.549 |
Control | 43.0 ± 13.7 | 40.5 ± 12.9 ** | −5.7 | −0.19 | Trivial | ||||
EDSS | |||||||||
RAGT | 5.6 ± 1.0 | 5.2 ± 1.0 *** | −7.2 | −0.39 | Small | 0.31 (0.14–0.48) | 0.02 | 0.892 | 0.002 |
Control | 5.5 ± 1.1 | 5.4 ± 1.0 | −1.4 | −0.08 | Trivial | ||||
Motricity | |||||||||
RAGT | 114 ± 27 | 124 ± 30 * | 9 | 0.35 | Small | 0.15 (0.01–0.28) | 3.0 | 0.108 | 0.218 |
Control | 113 ± 26 | 119 ± 27 ** | 5 | 0.20 | Small | ||||
10 TWT | |||||||||
RAGT | 0.45 ± 0.19 | 0.55 ± 0.21 *** | 23.2 | 0.46 | Small | 0.26 (0.15–0.35) | 0.965 | 0.347 | 0.081 |
Control | 0.49 ± 0.24 | 0.54 ± 0.24 *** | 11.8 | 0.20 | Small | ||||
Tinetti E | |||||||||
RAGT | 9.11 ± 3.40 | 11.41 ± 3.84 *** | 28.0 | 0.61 | Medium | 0.26 (0.04–0.46) | 0.313 | 0.587 | 0.028 |
Control | 9.35 ± 3.46 | 10.64 ± 3.83 ** | 14.4 | 0.35 | Small | ||||
Tinetti A | |||||||||
RAGT | 6.05 ± 2.41 | 8.05 ± 2.33 ** | 46.4 | 0.78 | Medium | 0.41 (0.13–0.67) | 0.01 | 0.981 | 0.001 |
Control | 6.58 ± 2.55 | 7.52 ± 2.42 * | 21.9 | 0.37 | Small | ||||
SF36 P | |||||||||
RAGT | 30.4 ± 6.7 | 35.7 ± 7.3 * | 19.6 | 0.70 | Medium | 0.48 (−0.38–0.28) | 0.02 | 0.873 | 0.002 |
Control | 31.7 ± 8.3 | 33.5 ± 8.1 | 7.2 | 0.22 | Small | ||||
SF36 M | |||||||||
RAGT | 48.6 ± 13.7 | 49.3 ± 13.7 | 2.8 | 0.05 | Trivial | −0.05 (−0.38–0.28) | 2.6 | 0.134 | 0.192 |
Control | 47.3 ± 13.7 | 48.6 ± 12.2 | 5.1 | 0.10 | Trivial | ||||
KP | |||||||||
RAGT | 18.3 ± 11.4 | 21.8 ± 13.6 ** | 18.5 | 0.31 | Small | 0.30 (0.17–0.44) | 0.001 | 0.974 | <0.001 |
Control | 20.0 ± 12.7 | 20.1 ± 13.0 | 0.2 | 0.01 | Trivial | ||||
6MWT | |||||||||
RAGT | 137 ± 84 | 158 ± 89 *** | 19.2 | 0.24 | Small | 0.11 (0.01–0.21) | 7.13 | 0.022 | 0.393 |
Control | 146 ± 95 | 159 ± 98 ** | 10.6 | 0.13 | Trivial | ||||
FIM | |||||||||
RAGT | 101.2 ± 14.7 | 106.9 ± 12.5 ** | 6.0 | 0.41 | Small | 0.28 (0.10–0.46) | 3.0 | 0.110 | 0.216 |
Control | 103.0 ± 13.1 | 104.7 ± 13.3 * | 1.6 | 0.13 | Trivial | ||||
DST | |||||||||
RAGT | 42.5 ± 10.8 | 39.2 ± 12.6 * | −9.1 | −0.28 | Small | 0.27 (0.17–0.37) | 0.595 | 0.457 | 0.051 |
Control | 42.0 ± 10.9 | 42.0 ± 12.2 | −0.8 | −0.01 | Trivial | ||||
ASH | |||||||||
RAGT | 4.6 ± 4.4 | 3.3 ± 2.9 * | −25 | −0.34 | Small | 0.20 (0.03–0.36) | 0.158 | 0.698 | 0.014 |
Control | 4.2 ± 4.55 | 3.7 ± 3.6 | −11 | −0.14 | Trivial | ||||
SLR | |||||||||
RAGT | 0.86 ± 0.06 | 0.91 ± 0.05 ** | 6.5 | 0.83 | Large | 0.38 (−0.01–0.77) | 1.1 | 0.304 | 0.096 |
Control | 0.87 ± 0.06 | 0.90 ± 0.06 * | 3.6 | 0.45 | Small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sconza, C.; Negrini, F.; Di Matteo, B.; Borboni, A.; Boccia, G.; Petrikonis, I.; Stankevičius, E.; Casale, R. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina 2021, 57, 713. https://doi.org/10.3390/medicina57070713
Sconza C, Negrini F, Di Matteo B, Borboni A, Boccia G, Petrikonis I, Stankevičius E, Casale R. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina. 2021; 57(7):713. https://doi.org/10.3390/medicina57070713
Chicago/Turabian StyleSconza, Cristiano, Francesco Negrini, Berardo Di Matteo, Alberto Borboni, Gennaro Boccia, Ignas Petrikonis, Edgaras Stankevičius, and Roberto Casale. 2021. "Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial" Medicina 57, no. 7: 713. https://doi.org/10.3390/medicina57070713