Physical Activity in Puberty Is Associated with Total Body and Femoral Neck Bone Mineral Characteristics in Males at 18 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Anthropometry and Sexual Maturation
2.3. Physical Activity
2.4. Bone Mineral Density
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osteoporosis prevention, diagnosis, and therapy. NIH Consens. Statement Online 2000, 17, 1–36.
- Ferrari, S.; Bianchi, M.L.; Eisman, J.A.; Foldes, A.J.; Adami, S.; Wahl, D.A.; Stepan, J.J.; de Vernejoul, M.-C.; Kaufman, J.-M. Osteoporosis in young adults: Pathophysiology, diagnosis, and management. Osteoporos. Int. 2012, 23, 2735–2748. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Abrams, S.; Dawson-Hughes, B.; Looker, A.; Marcus, R.; Matkovic, V.; Weaver, C. Peak bone mass. Osteoporos. Int. 2000, 11, 985–1009. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef]
- Bachrach, L.K. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol. Metab. 2001, 12, 22–28. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.Z. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 275A, 1081–1101. [Google Scholar] [CrossRef]
- Iwaniec, U.T.; Turner, R.T. Influence of body weight on bone mass, architecture, and turnover. J. Endocrinol. 2016, 230, 115–130. [Google Scholar] [CrossRef]
- Vicente-Rodríguez, G. How does exercise affect bone development during growth? Sports Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Tan, V.P.S.; Macdonald, H.M.; Kim, S.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef] [PubMed]
- Ducher, G.; Daly, R.M.; Bass, S.L. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. J. Bone Miner. Res. 2009, 24, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Cairney, J.; Veldhuizen, S.; Kwan, M.; Hay, J.; Faught, B.E. Biological age and sex-related declines in physical activity during adolescence. Med. Sci. Sports Exerc. 2014, 46, 730–735. [Google Scholar] [CrossRef]
- Ortega, F.B.; Konstabel, K.; Pasquali, E.; Ruiz, J.R.; Hurtig-Wennlöf, A.; Mäestu, J.; Löf, M.; Harro, J.; Bellocco, R.; Labayen, I.; et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: A cohort study. PLoS ONE 2013, 8, e60871. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, B.S.; Hosking, J.; Jeffery, A.N.; Henley, W.E.; Wilkin, T.J. Exploring the adolescent fall in physical activity: A 10-yr cohort study (EarlyBird 41). Med. Sci. Sports Exerc. 2015, 47, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.L.; Morrissey, J.L.; Letuchy, E.M.; Levy, S.M.; Janz, K.F. Ten-year objective physical activity tracking: Iowa Bone Development Study. Med. Sci. Sports Exerc. 2013, 45, 1508–1514. [Google Scholar] [CrossRef]
- Gracia-Marco, L.; Rey-López, J.P.; Santaliestra-Pasías, A.M.; Jiménez-Pavón, D.; Díaz, L.E.; Moreno, L.A.; Vicente-Rodríguez, G. Sedentary behaviours and its association with bone mass in adolescents: The HELENA cross-sectional study. BMC Public Health 2012, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Ivuškāns, A.; Jürimäe, T.; Lätt, E.; Jürimäe, J.; Purge, P.; Saar, M.; Maasalu, K.; Mäestu, J. Role of physical activity in bone health in peripubertal boys. Pediatr. Int. 2014, 56, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Kriemler, S.; Zahner, L.; Puder, J.J.; Braun-Fahrländer, C.; Schindler, C.; Farpour-Lamber, N.J.; Kränzlin, M.; Rizzoli, R. Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: A cross-sectional study. Osteoporos. Int. 2008, 19, 1749–1758. [Google Scholar] [CrossRef]
- Marin-Puyalto, J.; Mäestu, J.; Gómez-Cabellob, A.; Lätt, E.; Remmel, L.; Purge, P.; Vicente-Rodríguez, G.; Jürimäe, J. Frequency and duration of vigorous physical activity bouts are associated with adolescent boys’ bone mineral status: A cross-sectional study. Bone 2019, 120, 141–147. [Google Scholar] [CrossRef]
- Tobias, J.H.; Steer, C.D.; Mattocks, C.G.; Riddoch, C.; Ness, A.R. Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: Findings from a large population-based cohort. J. Bone Miner. Res. 2007, 22, 101–109. [Google Scholar] [CrossRef]
- Vicente-Rodríguez, G.; Ortega, F.B.; Rey-López, J.P.; España-Romero, V.; Blay, V.A; Blay, G.; Martín-Matillas, M.; Moreno, L.A. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Bone 2009, 45, 925–930. [Google Scholar] [CrossRef]
- Heidemann, M.; Mølgaard, C.; Husby, S.; Schou, A.J.; Klakk, H.; Møller, N.C.; Holst, R.; Niels Wedderkopp, N. The intensity of physical activity influences bone mineral accrual in childhood: The childhood health, activity and motor performance school (the CHAMPS) study, Denmark. BMC Pediatr. 2013, 13, 32. [Google Scholar] [CrossRef]
- Ivuškāns, A.; Mäestu, J.; Jürimäe, T.; Lätt, E.; Purge, P.; Saar, M.; Maasalu, K.; Jürimäe, J. Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: A 1-year prospective study. J. Bone Miner. Metab. 2015, 33, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodríguez, G.; Ara, I.; Perez-Gomez, J.; Serrano-Sanchez, A.; Dorado, C.; Calbet, J.A.L. High femoral bone mineral density accretion in prepubertal soccer player. Med. Sci. Sports Exerc. 2004, 36, 1789–1795. [Google Scholar] [CrossRef]
- Marin-Puyalto, J.; Mäestu, J.; Gomez-Cabello, A.; Lätt, E.; Remmel, L.; Purge, P.; Casajús, J.A.; Vicente-Rodríguez, G.; Jürimäe, J. Vigorous physical activity patterns affect bone growth during early puberty in boys. Osteoporos. Int. 2018, 29, 2693–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaitkeviciute, D.; Lätt, E.; Mäestu, J.; Jürimäe, T.; Saar, M.; Purge, P.; Maasalu, K.; Jürimäe, J. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: A longitudinal study. PLoS ONE 2014, 9, e107759. [Google Scholar] [CrossRef]
- Tolonen, S.; Sievänenc, H.; Mikkiläa, V.; Telamae, R.; Oikonend, M.; Laaksonena, M.; Viikarif, J.; Kähöneng, M.; Raitakarid, O.T. Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up—The cardiovascular risk in young Finns study. Bone 2015, 75, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, S.A.; Kontulainen, S.; Cooper, D.M.L.; Lanovaz, J.L.; Beck, T.J.; Baxter-Jones, A.D.G. Adolescent physical activity and bone strength at the proximal femur in adulthood. Med. Sci. Sports Exerc. 2014, 46, 736–744. [Google Scholar] [CrossRef]
- Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Eichenberger Gilmore, J.M.; Torner, J.C.; Levy, S.M. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br. J. Sports Med. 2014, 48, 1032–1036. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Kontulainen, S.A.; Faulkner, R.A.; Bailey, D.A. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone 2008, 43, 1101–1107. [Google Scholar] [CrossRef]
- Duckham, R.L.; Baxter-Jones, A.D.G.; Johnston, J.D.; Vatanparast, H.; Cooper, D.; Kontulainen, S. Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J. Bone Miner. Res. 2014, 29, 479–486. [Google Scholar] [CrossRef]
- Gabel, L.; Macdonald, H.M.; Nettlefold, L.; McKay, H.A. Physical activity, sedentary time, and bone strength from childhood to early adulthood: A mixed longitudinal HR-pQCT study. J. Bone Miner. Res. 2017, 32, 1525–1536. [Google Scholar] [CrossRef]
- Lätt, E.; Mäestu, J.; Ortega, F.B.; Rääsk, T.; Jürimäe, T.; Jürimäe, J. Vigorous physical activity rather than sedentary behaviour predicts overweight and obesity in pubertal boys: A 2-year follow-up study. Scand. J. Public Health 2015, 43, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Utsal, L.; Tillmann, V.; Zilmer, M.; Mäestu, J.; Purge, P.; Jürimäe, J.; Saar, M.; Lätt, E.; Maasalu, K.; Jürimäe, T. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-γ levels in 10- to 11-year-old boys with increased BMI. Horm. Res. Paediatr. 2012, 78, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Duke, P.M.; Litt, I.F.; Gross, R.T. Adolescents’ self-assessment of sexual maturation. Pediatrics 1980, 66, 918–920. [Google Scholar]
- Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of Hand and Wrist, 2nd ed.; Stanford University Press: Stanford, CA, USA, 1959. [Google Scholar]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Katzman, D.K.; Bachrach, L.K.; Carter, D.R.; Marcus, R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J. Clin. Endocrinol. Metab. 1991, 73, 1332–1339. [Google Scholar] [CrossRef]
- Gracia-Marco, L.; Moreno, L.A.; Ortega, F.B.; León, F.; Sioen, I.; Kafatos, A.; Martinez-Gomez, D.; Widhalm, K.; Castillo, M.J.; Vicente-Rodríguez, G. Levels of physical activity that predict optimal bone mass in adolescents: The HELENA study. Am. J. Prev. Med. 2011, 40, 599–607. [Google Scholar] [CrossRef]
- Gunter, K.; Baxter-Jones, A.D.G.; Mirwald, R.L.; Almstedt, H.; Fuchs, R.K.; Durski, S. Impact exercise increases BMC during growth: An 8-year longitudinal study. J. Bone Miner. Res. 2008, 23, 986–993. [Google Scholar] [CrossRef]
- DHHS. Physical Activity Guidelines for Americans, 2nd ed. Available online: www.health.gov/PAGuidelines/ (accessed on 11 March 2019).
- Mora, S.; Goodman, W.G.; Loro, M.L.; Roe, T.F.; Sayre, J.; Gilsanz, V. Age-related changes in cortical and cancellous vertebral bone density in girls: Assessment with quantitative CT. Am. J. Roentgenol. 1994, 162, 405–409. [Google Scholar] [CrossRef]
- Wang, Q.J.; Suominen, H.; Nicholson, P.H.F.; Zou, L.C.; Alen, M.; Koistinen, A.; Cheng, S. Influence of physical activity and maturation status on bone mass and geometry in early pubertal girls1. Scand. J. Med. Sci. Sports 2005, 15, 100–106. [Google Scholar] [CrossRef]
- Weatherholt, A.M.; Fuchs, R.K.; Warden, S.J. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Bone 2013, 52, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.; Ohlsson, C.; Sundh, D.; Mellström, D.; Lorentzon, M. Association of physical activity with trabecular microstructure and cortical bone at distal tibia and radius in young adult men. J. Clin. Endocrinol. Metab. 2010, 95, 2917–2926. [Google Scholar] [CrossRef]
- Sundberg, M.; Gärdsell, P.; Johnell, O.; Karlsson, M.K.; Ornstein, E.; Sandstedt, B.; Sernbo, I. Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: A combined cross-sectional and 3-year longitudinal study. Calcif. Tissue Int. 2002, 71, 406–415. [Google Scholar] [CrossRef]
Variable | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Clinical Characteristics | ||||
Age (years) | 12.1 (11.4–12.7) | 13.1 (12.4–13.8) * | 14.0 (13.4–14.7) *,† | 18.0 (17.3–18.6)*,†,‡ |
Tanner | 2.7 (2.04–3.37) | 3.41 (2.64–4.18) * | 4.13 (3.30–4.95) *,† | |
[No. at stages (I/II/III/IV/V)] | 1/33/45/9/0 | 0/8/43/30/7 | 0/2/18/33/35 | |
Height (m) | 1.55 (1.46–1.63) | 1.63 (1.54–1.72) * | 1.69 (1.61–1.78) *,† | 1.81 (1.75–1.88) *,†,‡ |
Body mass (kg) | 47.15 (34.45–59.85) | 54.00 (39.63–68.36) * | 59.61 (45.90–73.32) *,† | 73.86 (61.77–85.96) *,†,‡ |
BMI (kg/m2) | 19.54 (15.58–23.49) | 20.13 (16.05–24.21) * | 20.60 (16.68–24.34) *,† | 22.41 (19.14–25.69) *,†,‡ |
Bone age (years) | 11.9 (10.73–13.0) | 13.0 (11.8–14.2) * | 13.9 (12.9–15.0) *,† | |
Physical activity | ||||
Sedentary time (min/day) | 522.1 (485.9; 575.3) | 539.1 (500.6; 585.7) * | 562.1 (508.4; 627.5) *,† | 623.5 (563.1; 680.1) †,‡ |
Light PA (min/day) | 220.5 (194.3; 244.25) | 197.0 (166.0; 221.7) * | 170.5 (138.8; 196.56) *,† | 151.3 (133.7; 184.1) *,†,‡ |
Moderate PA (min/day) | 45.8 (25.7; 59.4) | 42.8 (32.4; 51.2) * | 34.1 (27.1; 45.8) *,† | 27.0 (17.8; 33.4) ‡ |
Vigorous PA (min/day) | 15.1 (9.1;24.2) | 16.5 (11.3; 23.8) * | 13.7 (9.6; 27.8) *,† | 25.3 (14.8; 35.1) *,†,‡ |
MVPA (min/day) | 64.1 (46.25; 84.4) | 59.9 (47.0; 75.4) * | 52.0 (38.1; 67.7) *,† | 50.0 (35.3; 69.7) *,†,‡ |
Total PA (counts/min) | 434 (359; 573) | 428 (346; 526) * | 350 (283; 497) *,† | 380 (303; 498) *,†,‡ |
Variable | T4 |
---|---|
TB BMD (g/cm2) | 1.23 (1.14–1.32) |
LS BMD (g/cm2) | 1.06 (0.95–1.16 |
FN BMD (g/cm2) | 1.01 (0.88–1.14) |
TB LH BMC (g) | 2323.04 (1965.03–2681.04) |
LS BMC (g) | 58.44 (49.10–67.78) |
FN BMC (g) | 5.09 (4.14–6.04) |
TB BMAD (g/cm3) | 0.095 (0.090–0.100) |
LS BMAD (g/cm3) | 0.143 (0.130–0.156) |
BMC/height | 1590.14 (1401.24–1779.05) |
TB BMD | LS BMD | FN BMD | TB LH BMC | LS BMC | FN BMC | TB BMAD | LS BMAD | BMC/Height | |
---|---|---|---|---|---|---|---|---|---|
(g/cm2) | (g/cm2) | (g/cm2) | (g) | (g) | (g) | (g/cm3) | (g/cm3) | ||
Sedentary time (min/day) | −0.174 | −0.072 | −0.145 | −0.282 * | −0.215 | −0.091 | 0.075 | 0.084 | −0.266 * |
Light PA (min/day) | 0.071 | 0.001 | 0.086 | 0.200 | 0.061 | 0.032 | 0.013 | −0.050 | 0.090 |
Moderate PA (min/day) | 0.199 | 0.099 | 0.149 | 0.263 * | 0.118 | 0.166 | 0.106 | 0.046 | 0.206 |
Vigorous PA (min/day) | 0.145 | −0.021 | 0.303 * | 0.307 * | 0.138 | 0.226 | 0.066 | −0.161 | 0.153 |
MVPA (min/day) | 0.196 | 0.043 | 0.260 * | 0.326 * | 0.147 | 0.225 * | 0.098 | −0.069 | 0.205 |
Total PA (counts/min) | 0.221 | 0.051 | 0.286 * | 0.380 * | 0.203 | 0.216 | 0.054 | −0.109 | 0.261 * |
R2 × 100 | F-Ratio | Estimate | SE | p Value | |
---|---|---|---|---|---|
TB BMD | 35.5 | 21.489 | <0.001 | ||
(Intercept) | 0.963 | 0.046 | <0.001 | ||
Body mass | 0.004 | 0.001 | <0.001 | ||
Total PA | <0.001 | <0.001 | 0.038 | ||
LS BMD | 18.1 | 17.955 | <0.001 | ||
(Intercept) | 0.559 | 0.110 | <0.001 | ||
Bone age | 0.039 | 0.009 | <0.001 | ||
FN BMD | 43.2 | 29.682 | <0.001 | ||
(Intercept) | 0.636 | 0.051 | <0.001 | ||
Body mass | 0.006 | 0.001 | <0.001 | ||
Vigorous PA | 0.003 | 0.001 | 0.003 | ||
TB LH BMC | 43.0 | 29.426 | <0.001 | ||
(Intercept) | 1073.037 | 171.580 | <0.001 | ||
Body mass | 15.981 | 2.260 | <0.001 | ||
Total PA | 0.887 | 0.239 | <0.001 | ||
LS BMC | 10.0 | 8.749 | 0.004 | ||
(Intercept) | 28.322 | 10.308 | 0.007 | ||
Bone age | 2.553 | 0.863 | 0.004 | ||
FN BMC | 47.2 | 22.960 | <0.001 | ||
(Intercept) | 0.423 | 0.893 | 0.637 | ||
Body mass | 0.032 | 0.008 | <0.001 | ||
Bone age | 0.229 | 0.098 | 0.022 | ||
Vigorous PA | 0.013 | 0.007 | 0.045 | ||
TB BMAD | - | - | - | - | - |
LS BMAD | 16.0 | 15.260 | <0.001 | ||
(Intercept) | 0.088 | 0.014 | <0.001 | ||
Bone age | 0.005 | 0.001 | <0.001 | ||
BMC/height | 48.1 | 36.093 | <0.001 | ||
(Intercept) | 934.242 | 88.275 | <0.001 | ||
Body mass | 9.699 | 1.163 | <0.001 | ||
Total PA | 0.306 | 0.123 | 0.015 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamme, R.; Jürimäe, J.; Mäestu, E.; Remmel, L.; Purge, P.; Mengel, E.; Tillmann, V. Physical Activity in Puberty Is Associated with Total Body and Femoral Neck Bone Mineral Characteristics in Males at 18 Years of Age. Medicina 2019, 55, 203. https://doi.org/10.3390/medicina55050203
Tamme R, Jürimäe J, Mäestu E, Remmel L, Purge P, Mengel E, Tillmann V. Physical Activity in Puberty Is Associated with Total Body and Femoral Neck Bone Mineral Characteristics in Males at 18 Years of Age. Medicina. 2019; 55(5):203. https://doi.org/10.3390/medicina55050203
Chicago/Turabian StyleTamme, Reeli, Jaak Jürimäe, Evelin Mäestu, Liina Remmel, Priit Purge, Eva Mengel, and Vallo Tillmann. 2019. "Physical Activity in Puberty Is Associated with Total Body and Femoral Neck Bone Mineral Characteristics in Males at 18 Years of Age" Medicina 55, no. 5: 203. https://doi.org/10.3390/medicina55050203