Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design and Training Intervention
2.3. Anthropometry and Dual Energy X-ray Absorptiometry
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rizzoli, R.; Bischoff-Ferrari, H.; Dawson-Hughes, B.; Weaver, C. Nutrition and bone health in women after the menopause. Women’s Health 2014, 10, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.; Jönsson, B.; Kanis, J. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. Arch. Osteoporos. 2013, 8, 1–115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhao, M.; Zhang, L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: A meta-analysis. Sports Med. 2014, 44, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Vondracek, S.F.; Hansen, L.B.; McDermott, M.T. Osteoporosis risk in premenopausal women. Pharmacotherapy 2009, 29, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S.; Kohrt, W.M. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: A meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 2012, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Helge, E.W.; Petersen, L.F.; Lindenskov, A.; Weihe, P.; Mortensen, J.; Jørgensen, N.R.; Krustrup, P. Effects of soccer vs swim training on bone formation in sedentary middle-aged women. Eur. J. Appl. Physiol. 2015, 115, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; García-Unanue, J.; López-Fernández, J.; Sánchez-Sánchez, J.; Gallardo, L. Association of different types of playing surfaces with bone mass in growing girls. J. Sports Sci. 2017, 35, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Wolff, I.; Van Croonenborg, J.J.; Kemper, H.C.G.; Kostense, P.J.; Twisk, J.W.R. The effect of exercise training programs on bone mass: A meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos. Int. 1999, 9, 1–12. [Google Scholar] [CrossRef]
- Kelley, G.A.; Kelley, K.S.; Kohrt, W.M. Exercise and bone mineral density in premenopausal women: A meta-analysis of randomized controlled trials. Int. J. Endocrinol. 2013, 2013, 741639. [Google Scholar] [CrossRef]
- Kontulainen, S.; Heinonen, A.; Kannus, P.; Pasanen, M.; Sievanen, H.; Vuori, I. Former exercisers of an 18-month intervention display residual aBMD benefits compared with control women 3.5 years post-intervention: A follow-up of a randomized controlled high-impact trial. Osteoporos. Int. 2004, 15, 248–251. [Google Scholar] [CrossRef]
- Barene, S.; Krustrup, P.; Jackman, S.R.; Brekke, O.L.; Holtermann, A. Do soccer and Zumba exercise improve fitness and indicators of health among female hospital employees? A 12-week RCT. Scand. J. Med. Sci. Sports 2014, 24, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Vendramin, B.; Bergamin, M.; Gobbo, S.; Cugusi, L.; Duregon, F.; Bullo, V.; Zaccaria, M.; Neunhaeuserer, D.; Ermolao, A. Health Benefits of Zumba Fitness Training: A Systematic Review. PM&R 2016, 8, 1181–1200. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Matute-Llorente, A.; Gonzalez-Aguero, A.; Casajus, J.A.; Vicente-Rodriguez, G. Plyometric exercise and bone health in children and adolescents: A systematic review. World J. Pediatr. 2017, 13, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Robling, A.G. Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 2003, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Vainionpaa, A.; Korpelainen, R.; Vihriala, E.; Rinta-Paavola, A.; Leppaluoto, J.; Jamsa, T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos. Int. 2006, 17, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Barene, S.; Krustrup, P.; Brekke, O.L.; Holtermann, A. Soccer and Zumba as health-promoting activities among female hospital employees: A 40-weeks cluster randomised intervention study. J. Sports Sci. 2014, 32, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Cugusi, L.; Wilson, B.; Serpe, R.; Medda, A.; Deidda, M.; Gabba, S.; Satta, G.; Chiappori, P.; Mercuro, G.; Working Group of Gender Cardiovascular Disease of the Italian Society of Cardiology. Cardiovascular effects, body composition, quality of life and pain after a Zumba fitness program in Italian overweight women. J. Sports Med. Phys. Fit. 2016, 56, 328–335. [Google Scholar]
- Krishnan, S.; Tokar, T.N.; Boylan, M.M.; Griffin, K.; Feng, D.; McMurry, L.; Esperat, C.; Cooper, J.A. Zumba® dance improves health in overweight/obese or type 2 diabetic women. Am. J. Health Behav. 2015, 39, 109–120. [Google Scholar] [CrossRef]
- Campos-Mesa, M.C.; Del Castillo, O.; Montiel-Ortega, P. Effects of the aquatic fitness program on the physical condition in postmenopausal women. J. Sport Health Res. 2015, 7, 165–180. [Google Scholar]
- Karlsson, M.K.; Nordqvist, A.; Karlsson, C. Physical activity increases bone mass during growth. Food Nutr. Res. 2008, 52, 1–10. [Google Scholar] [CrossRef]
- Gómez-Bruton, A.; Gónzalez-Agüero, A.; Gómez-Cabello, A.; Casajús, J.A.; Vicente-Rodríguez, G. Is bone tissue really affected by swimming? A systematic review. PLoS ONE 2013, 8, e70119. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; Gómez-Cabello, A.; Sánchez-Sánchez, J.; García-Unanue, J.; Gallardo, L. Influence of different sports on bone mass in growing girls. J. Sports Sci. Med. 2015, 33, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Nikander, R.; Sievänen, H.; Heinonen, A.; Kannus, P. Femoral neck structure in adult female athletes subjected to different loading modalities. J. Bone Miner. Res. 2005, 20, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; García-Campayo, J.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. The Effect of Swimming During Childhood and Adolescence on Bone Mineral Density: A Systematic Review and Meta-Analysis. Sports Med. 2015, 46, 365–379. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- International Society for Clinical Densitometry. Official Posistions Adult and Pediatric; ISCD: Middletown, CT, USA, 2015. [Google Scholar]
- Leslie, W.D.; Manitoba Bone Density, P. The importance of spectrum bias on bone density monitoring in clinical practice. Bone 2006, 39, 361–368. [Google Scholar] [CrossRef]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Fatouros, I.G.; Knapp, K.M.; Williams, C.A.; Gracia-Marco, L. Longitudinal adaptations of bone mass, geometry and metabolism in adolescent male athletes. The PRO-BONE study. J. Bone Miner. Res. 2017, 32, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Marcus, R. Overview of exercise and bone mass. Rheum. Dis. Clin. N. Am. 1994, 20, 787–802. [Google Scholar]
- Chilibeck, P.D.; Sale, D.G.; Webber, C.E. Exercise and bone mineral density. Sports Med 1995, 19, 103–122. [Google Scholar] [CrossRef]
- Forwood, M.R.; Burr, D.B. Physical activity and bone mass: Exercises in futility? Bone Miner. 1993, 21, 89–112. [Google Scholar] [CrossRef]
- Forwood, M.R.; Larsen, J.A. Exercise recommendations for osteoporosis. A position statement of the Australian and New Zealand Bone and Mineral Society. Aust. Fam. Physician 2000, 29, 761–764. [Google Scholar] [PubMed]
- Kato, T.; Terashima, T.; Yamashita, T.; Hatanaka, Y.; Honda, A.; Umemura, Y. Effect of low-repetition jump training on bone mineral density in young women. J. Appl. Physiol. 2006, 100, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, K.C.; Kakulas, B.A. Neuropathology of human spinal cord injury sustained in sports-related activities. J. Neurotrauma 1997, 14, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. The mechanostat: A proposed pathogenetic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. J. Bone Miner. Res. 1987, 2, 73–85. [Google Scholar]
- Daly, R.M.; Saxon, L.; Turner, C.H.; Robling, A.G.; Bass, S.L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004, 34, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodriguez, G.; Ara, I.; Perez-Gomez, J.; Dorado, C.; Calbet, J.A. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br. J. Sports Med. 2005, 39, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, K.; Ahola, R.; Guo, H.; Korpelainen, R.; Uchimaru, J.; Vainionpää, A.; Sato, K.; Sakai, A.; Salo, S.; Kishimoto, K. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: The Sendai Bone Health Concept Study. J. Bone Miner. Metab. 2010, 28, 568–577. [Google Scholar] [CrossRef]
- Vainionpaa, A.; Korpelainen, R.; Leppaluoto, J.; Jamsa, T. Effects of high-impact exercise on bone mineral density: A randomized controlled trial in premenopausal women. Osteoporos. Int. 2005, 16, 191–197. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Snow, C.M. Site-specific response of bone to exercise in premenopausal women. Bone 2006, 39, 1203–1209. [Google Scholar] [CrossRef]
- Bailey, C.A.; Brooke-Wavell, K. Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone 2010, 46, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Yamaguchi, A.; Kawai, S. Effects of skeletal loading on bone mass and compensation mechanism in bone: A new insight into the “mechanostat” theory. J. Bone Miner. Metab. 2002, 20, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.D.; Oliveira, M.L.; Lirani-Galvao, A.P.; Marin-Mio, R.V.; Santos, R.N.; Lazaretti-Castro, M. Physical exercise and osteoporosis: Effects of different types of exercises on bone and physical function of postmenopausal women. Arq. Bras. Endocrinol. Metabol. 2014, 58, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Von Stengel, S.; Kemmler, W.; Kalender, W.A.; Engelke, K.; Lauber, D. Differential effects of strength versus power training on bone mineral density in postmenopausal women: A 2-year longitudinal study. Br. J. Sports Med. 2007, 41, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Barker, A.R.; Williams, C.A.; Arngrimsson, S.A.; Knapp, K.M.; Metcalf, B.S.; Fatouros, I.G.; Moreno, L.A.; Gracia-Marco, L. The impact of sport participation on bone mass and geometry in adolescent males. Med. Sci. Sports Exerc. 2016, 49, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe-Grau, A.; Fuentes, T.; Guerra, B.; Calbet, J.A. Exercise and bone mass in adults. Sports Med. 2009, 39, 439–468. [Google Scholar] [CrossRef] [PubMed]
HIG a | LIG b | CG c | |
---|---|---|---|
N | 15 | 12 | 28 |
Age (year) | 41.3 ± 5.1 | 42.2 ± 7.6 | 45.8 ± 5.1 |
Stature (cm) | 164.4 ± 4.0 | 162.2 ± 6.8 | 159.9 ± 6.1 |
Body mass (cm) | 60.5 ± 7.6 | 67.7 ± 14.1 | 66.1 ± 13.4 |
BMI (kg/m2) | 22.3 c ± 2.2 | 25.6 ± 4.2 | 25.9 ± 5.2 |
Fat mass (kg) | 20.72 ± 5.14 | 26.38 ± 8.46 | 23.99 ± 8.71 |
Fat mass (%) | 37.54 ± 5.01 | 42.19 ± 5.60 | 37.78 ± 7.27 |
Lean mass (kg) | 37.16 ± 3.26 | 38.35 ± 5.72 | 39.30 ± 5.68 |
BMC (g) | |||
Lumbar spine | 58.77 ± 7.47 | 57.25 ± 11.36 | 52.89 ± 9.90 |
Hip total | 29.63 ± 4.15 | 33.42 ± 5.89 | 38.23 a ± 6.94 |
TBLH | 2094.37 ± 207.33 | 2239.02 ± 335.65 | 2030.98 ± 371.75 |
aBMD (g/cm2) | |||
Lumbar spine | 0.989 ± 0.109 | 1.008 ± 0.140 | 0.921 ± 0.118 |
Hip total | 0.869 ± 0.113 | 0.950 ± 0.080 | 0.942 ± 0.126 |
TBLH | 1.137 ± 0.092 | 1.194 c ± 0.095 | 1.075 ± 0.112 |
HIG | LIG | CG | ||||
---|---|---|---|---|---|---|
Baseline | Post-Intervention | Baseline | Post-Intervention | Baseline | Post-Intervention | |
BMC (g) | ||||||
Lumbar spine | 58.77 ± 7.47 | 58.30 ± 7.57 | 57.25 ± 11.36 | 57.54 ± 10.74 | 52.89 ± 9.90 * | 49.87 ± 9.09 * |
Trochanter | 6.45 ± 1.02 | 6.46 ± 0.94 | 7.09 ± 1.22 | 7.11 ± 1.31 | 6.76 ± 1.39 | 6.77 ± 1.38 |
Intertrochanter | 18.88 ± 2.64 | 19.41 ± 3.36 | 21.70 ± 4.58 | 21.65 ± 5.01 | 27.96 ± 5.47 | 27.93 ± 5.22 |
Femoral neck | 4.30 ± 0.84 | 4.35 ± 0.92 | 4.66 ± 0.76 | 4.69±0.79 | 3.48 ± 0.61 | 3.39 ± 0.68 |
Hip total | 29.63 ± 4.15 | 30.10 ± 5.04 | 33.42 ± 5.89 | 33.48 ± 6.40 | 38.23 ± 6.94 | 38.03 ± 7.03 |
Legs | 369.77 ± 47.81 | 376.53 ± 47.24 * | 396.03 ± 61.05 | 399.63 ± 61.05 | 345.69 ± 66.87 | 340.53 ± 62.96 |
Arms | 132.04 ± 14.04 | 132.79 ± 15.82 | 148.78 ± 36.71 | 149.76 ± 36.80 | 142.67 ± 27.80 | 142.44 ± 26.41 |
TBLH | 2094.37 ± 207.33 | 2100.89 ± 201.31 | 2239.02 ± 335.65 | 2245.15 ± 332.34 | 2030.98 ± 371.75 * | 1982.92 ± 331.73 * |
aBMD (g/cm2) | ||||||
Lumbar spine | 0.989 ± 0.109 | 0.984 ± 0.112 | 1.008 ± 0.140 | 1.018 ± 0.137 | 0.921 ± 0.118 * | 0.884 ± 0.119 |
Trochanter | 0.649 ± 0.100 | 0.652 ± 0.099 | 0.690 ± 0.054 | 0.693 ± 0.052 | 0.652 ± 0.092 | 0.656 ± 0.094 |
Intertrochanter | 1.023 ± 0.136 | 1.040 ± 0.142 * | 1.122 ± 0.108 | 1.127 ± 0.107 | 1.094 ± 0.141 | 1.092 ± 0.148 |
Femoral neck | 0.761 ± 0.082 | 0.771 ± 0.090 | 0.842 ± 0.093 | 0.841 ± 0.094 | 0.745 ± 0.118 * | 0.730 ± 0.112 |
Hip total | 0.869 ± 0.113 | 0.886 ± 0.132 | 0.950 ± 0.080 | 0.954 ± 0.085 | 0.942 ± 0.126 | 0.940 ± 0.125 |
Legs | 1.171 ± 0.112 | 1.177 ± 0.095 | 1.226 ± 0.099 | 1.231 ± 0.094 | 1.089 ± 0.117 | 1.051 ± 0.126 |
Arms | 0.715 ± 0.040 | 0.710 ± 0.037 | 0.757 ± 0.106 | 0.755 ± 0.102 | 0.744 ± 0.105 | 0.729 ± 0.088 |
TBLH | 1.137 ± 0.092 | 1.139 ± 0.083 | 1.194 ± 0.095 | 1.192 ± 0.092 | 1.075 ± 0.112 * | 1.030 ± 0.115 |
HIG a | LIG b | CG c | ||||
---|---|---|---|---|---|---|
Baseline | Post-Intervention | Baseline | Post-Intervention | Baseline | Post-Intervention | |
BMC (g) | % Diff (95%CI) | % Diff (95%CI) | % Diff (95%CI) | |||
Lumbar spine | 60.65 ± 2.02 | −0.04 (−2.47 to 2.38) | 57.68 ± 2.04 | 0.90 (−1.43 to 3.23) | 51.70 ± 1.44 | −1.52 (−3.26 to 0.21) |
Trochanter | 6.79 ± 0.28 | 1.98 (−0.80 to 4.75) | 7.13 ± 0.28 | 1.13 (−1.72 to 3.99) | 6.67 ± 0.07 | −1.36 (−3.37 to 0.64) |
Intertrochanter | 19.69 ± 1.06 | 1.62 (−1.99 to 5.24) | 21.71 ± 1.07 | −0.56 (−3.86 to 2.73) | 27.52 ± 0.76 | −0.30 (−2.94 to 2.34) |
Femoral neck | 4.34 ± 0.20 | 1.45 (−2.15 to 5.05) | 4.66 ± 0.20 | 0.87 (−3.04 to 4.79) | 3.46 ± 0.14 | −2.53 (−5.31 to 0.25) |
Hip total | 30.80 ± 1.34 | 2.03 (−0.96 to 5.01) | 33.46 ± 1.34 | 0.07 (−2.74 to 2.87) | 37.59 ± 0.96 | −0.92 (−3.04 to 1.20) |
Legs | 377.58 ± 12.52 | 1.35 (−0.67 to 3.36) | 397.69 ± 12.66 | 1.54 (−0.62 to 3.70) | 340.80 ± 8.96 | −0.34 (−1.85 to 1.18) |
Arms | 138.13 ± 6.26 | 0.04 (−1.85 to 1.93) | 151.10 ± 6.33 | 0.85 (−1.10 to 2.80) | 138.41 ± 4.48 | −0.06 (−1.29 to 1.42) |
TBLH | 2145.98 ± 70.91 | −0.07 (−1.84 to 1.71) | 2248.12 ± 71.69 | 0.72 (−1.15 to 2.58) | 1999.43 ± 50.75 | −1.62 (−2.93 to −0.32) |
aBMD (g/cm2) | ||||||
Lumbar spine | 0.994 ± 0.033 | −0.51 (−2.73 to 1.70) | 1.007 ± 0.034 | 1.29 (−0.97 to 3.55) | 0.919 ± 0.024 | −1.64 (−3.25 to −0.03) |
Trochanter | 0.683 ± 0.021 | 1.04 (−0.20 to 2.27) | 0.694 ± 0.021 | 0.80 (−0.47 to 2.06) | 0.660 ± 0.003 | 0.02 (−0.88 to 0.92) |
Intertrochanter | 1.058 ± 0.036 | 2.03c(0.89 to 3.17) | 1.127 ± 0.036 | 0.52 (−0.65 to 1.69) | 1.073 ± 0.026 | −0.50 (−1.31 to 0.32) |
Femoral neck | 0.781 ± 0.027 | 1.80c(−0.07 to 3.66) | 0.843 ± 0.027 | −0.54c(−1.47 to 2.55) | 0.734 ± 0.019 | −2.71 (−4.09 to −1.33) |
Hip total | 0.901 ± 0.030 | 1.76c(0.24 to 3.29) | 0.954 ± 0.030 | 0.43 (−1.12 to 1.98) | 0.923 ± 0.021 | −0.44 (−1.52 to 0.65) |
Legs | 1.205 ± 0.028 | −0.20 (−2.19 to 1.79) | 1.231 ± 0.028 | 1.08 (−1.02 to 3.18) | 1.069 ± 0.020 | −0.97 (−2.49 to 0.55) |
Arms | 0.744 ± 0.024 | −1.50 (−3.22 to 0.22) | 0.767 ± 0.024 | −0.43 (−2.20 to 1.33) | 0.724 ± 0.017 | −0.42 (−1.66 to 0.82) |
TBLH | 1.161 ± 0.028 | −0.14 (−1.77 to 1.50) | 1.199 ± 0.028 | −0.49 (−1.25 to 2.24) | 1.060 ± 0.020 | −1.75 (−2.99 to −0.51) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubago-Guisado, E.; Sánchez-Sánchez, J.; Vila-Maldonado, S.; Gallardo, L. Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women. Medicina 2019, 55, 23. https://doi.org/10.3390/medicina55010023
Ubago-Guisado E, Sánchez-Sánchez J, Vila-Maldonado S, Gallardo L. Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women. Medicina. 2019; 55(1):23. https://doi.org/10.3390/medicina55010023
Chicago/Turabian StyleUbago-Guisado, Esther, Javier Sánchez-Sánchez, Sara Vila-Maldonado, and Leonor Gallardo. 2019. "Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women" Medicina 55, no. 1: 23. https://doi.org/10.3390/medicina55010023