Association between Physical and Motor Fitness with Cognition in Children
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Anthropometry
2.3. Physical and Motor Fitness Tests
2.3.1. Physical Fitness
2.3.2. Motor Fitness
2.4. Cognitive Tests
2.4.1. Information Processing Speed
2.4.2. Inhibitory Control
2.5. Possible Confounders
2.6. Statistical Analyses
3. Results
3.1. General Characteristics of the Participants
3.2. Pearson Correlation among the Study Variables
3.3. Multiple Linear Regression Analysis between Cognitive Tasks with PF and MF Components
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van der Fels, I.M.; Te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.C.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2016, 27, 579–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Ortega, F.B.; Meusel, D.; Harro, M.; Oja, P.; Sjöström, M. Cardiorespiratory fitness is associated with features of metabolic risk factors in children. Should cardiorespiratory fitness be assessed in a European health monitoring system? The European Heart study. J. Publ. Health 2006, 14, 94–102. [Google Scholar] [CrossRef]
- Moore, R.D.; Drollette, E.S.; Scudder, M.R.; Bharij, A.; Hillman, C.H. The influence of cardiorespiratory fitness on strategic, behavioral, and electrophysiological indices of arithmetic cognition in preadolescent children. Front. Hum. Neurosci. 2014, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Davis, C.L.; Miller, P.H.; Naglieri, J.A. Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 2008, 20, 111–131. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Acsm’s Guidelines for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2002. [Google Scholar]
- Adkins, D.; Boychuk, J.; Remple, M.; Kleim, J. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 2006, 101, 1776–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, J.E.; Isaacs, K.; Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA 1990, 87, 5568–5572. [Google Scholar] [CrossRef]
- Lennemann, L.M.; Sidrow, K.M.; Johnson, E.M.; Harrison, C.R.; Vojta, C.N.; Walker, T.B. The influence of agility training on physiological and cognitive performance. J. Strength. Cond. Res. 2013, 27, 3300–3309. [Google Scholar] [CrossRef] [PubMed]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 2010, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.R.; Ribeiro, M.L.; Melo, T. Motor coordination correlates with academic achievement and cognitive function in children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Esmaeilzadeh, S. Association between reaction time, speed and agility in schoolboys. Sport Sci. Health 2015, 11, 251–256. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Hartman, E.; Farzizadeh, R.; Azevedo, L.B.; Kalantari, H.A.; Dziembowska, I.; Kostencka, A.; Narimani, M.; Abravesh, A. Association between physical fitness and cognitive performance in 19–24 year old males. Biol. Sport 2018, 35, 355–362. [Google Scholar]
- Logan, G.D. On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. In Inhibitory Processes in Attention Memory and Language; Dagenbach, D., Carr, T.H., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 189–239. [Google Scholar]
- Mostofsky, S.H.; Simmonds, D.J. Response inhibition and response selection: Two sides of the same coin. J. Cognit. Neurosci. 2008, 20, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A.; Madden, D.J. Information processing speed and aging. Information processing speed in clinical populations. Psych. Press 2013, 221. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Turken, A.U.; Whitfield-Gabrieli, S.; Bammer, R.; Baldo, J.V.; Dronkers, N.F.; Gabrieli, J.D.E. Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. Neuroimage 2008, 42, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Deary, I.J.; Liewald, D.; Nissan, J. A free, easy-to-use, computerbased simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav. Res. Methods 2011, 43, 258–268. [Google Scholar] [CrossRef]
- Wind, A.E.; Takken, T.; Helders, P.J.; Engelbert, R.H. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur. J. Pediatr. 2010, 169, 281–287. [Google Scholar] [CrossRef]
- Welk, G.J.; Meredith, M.D. Fitnessgram Activity gram Reference Guide, 3rd ed.; The Cooper Institute: Dallas, TX, USA, 2008. [Google Scholar]
- Safrit, M.J. The validity and reliability of fitness tests for children: A review. Pediatr. Exerc. Sci. 1990, 2, 9–28. [Google Scholar] [CrossRef]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; Vicente-Rodriguez, G.; Bergman, P.; Hagströmer, M.; Ottevaere, C.; Nagy, E.; Konsta, O.; Rey-López, J.P.; et al. Reliability of health-related physical fitness tests in European adolescents. The Helena Study. Int. J. Obes. 2008, 32, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.R. The Effects of an Irrelevant Directional cue on Human Information Processing. In Stimulus-Response Compatibility: An Integrated Perspective; Proctor, R.W., Reeve, T.G., Eds.; North-Holland: Amsterdam, The Netherlands, 1990; pp. 31–86. [Google Scholar]
- Francis, G.; Neath, I.; Van Horn, D. CogLab on a CD, Version 2.0 (CD-ROM); Thomson Wadsworth: Belmont, CA, USA, 2007. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Kowalski, K.C.; Crocker, P.R.E.; Faulkner, R.A. Validation of the physical activity questionnaire for older children. Pediatr. Exerc. Sci. 1997, 9, 174–186. [Google Scholar] [CrossRef]
- Faghihimani, Z.; Nourian, M.; Nikkar, M.H. Validation of the Child and Adolescent International physical activity questionnaires in Iranian children and adolescents. ARYA Atheroscler. J. 2009, 5, 1–4. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niederer, I.; Kriemler, S.; Gut, J.; Hartmann, T.; Schindler, C.; Barral, J.; Puder, J.J. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study. BMC Pediatr. 2011, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.E.; Pitchford, N.J.; Limback, E. The interrelation between cognitive and motor development in typically developing children aged 4–11 years is underpinned by visual processing and fine manual control. Br. J. Psychol. 2011, 102, 569–584. [Google Scholar] [CrossRef]
- Roebers, C.M.; Kauer, M. Motor and cognitive control in a normative sample of 7-year-olds. Dev. Sci. 2009, 12, 175–181. [Google Scholar] [CrossRef]
- Planinsec, J. Developmental changes of relations between motor performance and FI. Stud. Psychol. 2002, 44, 85–94. [Google Scholar]
- Katić, R.; Bala, G. Relationships between cognitive and motor abilities in female children aged 10–14 Years. Coll. Antropol. 2012, 36, 69–77. [Google Scholar]
- Hartman, E.; Smith, J.; Houwen, S.; Visscher, C. Skill-related physical fitness versus aerobic fitness as a predictor of executive functioning in children with intellectual disabilities or borderline intellectual functioning. Res. Dev. Disabil. 2017, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Adolph, K.E. Learning to learn in the development of action. In Action as an Organizer of Learning and Development. Action as an Organizer of Perception and Cognition during Learning and Development: Minnesota Symposium on Child Development; Lockman, J., Reiser, J., Nelson, C.A., Eds.; Erlbaum Press: Hillsdale, NJ, USA, 2005; Volume 33, pp. 91–122. [Google Scholar]
- Adolph, K.E. Specificity of learning: Why infants fall over a veritable cliff. Psychol. Sci. 2000, 11, 290–295. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | Before Transformation | After Transformation | ||
---|---|---|---|---|
Kolmogorov–Smirnov Test (p) | Kolmogorov–Smirnov Test (p) | |||
PA (score) | 2.5 (1.9) | 0.18 | ||
PF components | Pull-up (reps) | 8.9 (6.3) | 0.08 | |
Sit-ups (reps) | 25.2 (11.7) | 0.20 | ||
DME (T score) | 50.0 (0.7) | 0.20 | ||
Sit and Reach (cm) | 23.1 (7.6) | 0.20 | ||
Grip strength (kg) | 18.2 (5.1) | 0.20 | ||
MF components | 4 × 10 m Agility (s) | 12.8 (0.9) | 0.04 | 0.12 |
30 m Run Speed (s) | 6.5 (0.6) | 0.05 | 0.19 | |
Information processing speed | SRT (ms) | 331.0 (53.6) | 0.04 | 0.20 |
4-CRT (ms) | 535.0 (92.1) | 0.01 | 0.20 | |
Inhibitory control | ConRT (ms) | 646.7 (128.6) | <0.01 | 0.14 |
InconRT (ms) | 710.4 (131.8) | <0.01 | 0.15 | |
∆ Simon (ms) | 63.7 (51.3) | <0.01 | 0.10 |
SES | %fat | PA | DME | Flexibility | SMS | Agility | Speed | SRT | 4-CRT | ConRT | InconRT | ∆ Simon | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 0.01 | −0.08 | −0.04 | 0.02 | −0.10 | 0.16 * | −0.08 | −0.26 ** | −0.18 * | −0.02 | −0.28 ** | −0.33 ** | −0.13 |
SES | 0.03 | 0.14 | 0.03 | -0.10 | 0.10 | 0.07 | 0.03 | −0.08 | 0.07 | 0.06 | 0.03 | −0.06 | |
%fat | −0.45 ** | −0.60 ** | −0.25 ** | 0.18 * | 0.45 ** | 0.55 ** | −0.01 | 0.05 | 0.04 | −0.02 | −0.04 | ||
PA | 0.55 ** | 0.39 ** | −0.05 | −0.44 ** | −0.50 ** | 0.08 | 0.05 | −0.03 | 0.04 | −0.17 * | |||
DME | 0.42 ** | 0.17 * | −0.61 ** | −0.63 ** | -0.03 | −0.01 | −0.07 | −0.01 | 0.01 | ||||
Flexibility | 0.11 | −0.38 ** | −0.23 ** | 0.02 | −0.11 | −0.03 | −0.01 | 0.05 | |||||
SMS | −0.16 * | −0.49 ** | −0.08 | 0.02 | 0.01 | 0.01 | 0.03 | ||||||
Agility | 0.73 ** | 0.05 | 0.09 | 0.21** | 0.15 * | 0.03 | |||||||
Speed | 0.09 | 0.02 | 0.14 | 0.09 | −0.04 | ||||||||
SRT | 0.39 ** | 0.34 ** | 0.32 ** | 0.01 | |||||||||
4-CRT | 0.59 ** | 0.57 ** | 0.02 | ||||||||||
ConRT | 0.90 ** | −0.10 | |||||||||||
InconRT | 0.21 ** |
Tolerance | VIF | t | R2 | Standardized β | p | 95% CI | ||
---|---|---|---|---|---|---|---|---|
SRT | DME | 0.54 | 1.85 | 0.02 | 0.050 | 0.002 | 0.98 | −0.18 to 0.185 |
Flexibility | 0.83 | 1.20 | 0.27 | 0.050 | 0.02 | 0.78 | −0.06 to 0.08 | |
SMS | 0.68 | 1.47 | −0.88 | 0.053 | 0.03 | 0.76 | −0.03 to 0.04 | |
Agility | 0.70 | 1.42 | 0.26 | 0.050 | 0.024 | 0.79 | −0.33 to 0.43 | |
Speed | 0.55 | 1.82 | 0.56 | 0.051 | 0.06 | 0.58 | −0.24 to 0.42 | |
4-CRT | DME | 0.54 | 1.87 | 0.30 | 0.013 | 0.03 | 0.76 | −0.17 to 0.23 |
Flexibility | 0.83 | 1.20 | −1.19 | 0.021 | −0.10 | 0.23 | −0.12 to 0.03 | |
SMS | 0.68 | 1.48 | 0.09 | 0.012 | 0.01 | 0.93 | −0.03 to 0.04 | |
Agility | 0.72 | 1.40 | 1.17 | 0.021 | 0.11 | 0. 24 | −0.17 to 0.65 | |
Speed | 0.55 | 1.80 | 0.19 | 0.013 | 0.02 | 0.85 | −0.33 to 0.40 | |
ConRT | DME | 0.53 | 1.87 | −0.71 | 0.086 | −0.07 | 0.48 | −0.30 to 0.14 |
Flexibility | 0.83 | 1.21 | −0.02 | 0.083 | −0.001 | 0.95 | −0.08 to 0.08 | |
SMS | 0.68 | 1.50 | −0.17 | 0.081 | −0.02 | 0.86 | −0.04 to 0.04 | |
Agility | 0.71 | 1.40 | 2.50 | 0.117 | 0.22 | 0.01 | 0.11 to 0.99 | |
Speed | 0.55 | 1.81 | 0.71 | 0.086 | 0.07 | 0.48 | −0.25 to 0.53 | |
InconRT | DME | 0.53 | 1.87 | −0.37 | 0.111 | −0.04 | 0.71 | −0.24 to 0.16 |
Flexibility | 0.83 | 1.21 | 0.05 | 0.110 | 0.004 | 0.96 | −0.07 to 0.08 | |
SMS | 0.68 | 1.48 | 0.15 | 0.111 | 0.01 | 0.87 | −0.05 to 0.04 | |
Agility | 0.71 | 1.41 | 2.23 | 0.137 | 0.19 | 0.03 | 0.05 to 0.86 | |
Speed | 0.55 | 1.81 | 0.37 | 0.111 | 0.04 | 0.71 | −0.29 to 0.42 | |
∆ Simon | DME | 0.55 | 1.80 | −0.89 | 0.045 | −0.10 | 0.37 | −1.64to 0.62 |
Flexibility | 0.85 | 1.20 | −0.34 | 0.041 | −0.03 | 0.73 | −0.48 to 0.34 | |
SMS | 0.69 | 1.45 | −0.53 | 0.042 | −0.05 | 0.60 | −0.26 to 0.15 | |
Agility | 0.74 | 1.35 | 1.17 | 0.049 | 0.11 | 0.24 | −0.93 to 3.62 | |
Speed | 0.57 | 1.74 | 1.28 | 0.050 | 0.13 | 0.20 | −0.68 to 3.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, A.; Sadri Damirchi, E.; Narimani, M.; Esmaeilzadeh, S.; Dziembowska, I.; Azevedo, L.B.; Luiz do Prado, W. Association between Physical and Motor Fitness with Cognition in Children. Medicina 2019, 55, 7. https://doi.org/10.3390/medicina55010007
Moradi A, Sadri Damirchi E, Narimani M, Esmaeilzadeh S, Dziembowska I, Azevedo LB, Luiz do Prado W. Association between Physical and Motor Fitness with Cognition in Children. Medicina. 2019; 55(1):7. https://doi.org/10.3390/medicina55010007
Chicago/Turabian StyleMoradi, Akbar, Esmaeil Sadri Damirchi, Mohammad Narimani, Samad Esmaeilzadeh, Inga Dziembowska, Liane B. Azevedo, and Wagner Luiz do Prado. 2019. "Association between Physical and Motor Fitness with Cognition in Children" Medicina 55, no. 1: 7. https://doi.org/10.3390/medicina55010007