Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer
Abstract
1. Introduction
2. Expression of Orphan CYPs in Breast Epithelium and Cancer
3. Orphan CYPs as Therapeutic Targets or Biomarkers—Mechanistic Studies
3.1. CYP4Z1
3.2. CYP2S1
3.3. CYP2W1
3.4. CYP2U1
3.5. CYP4X1
4. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
AhR | aryl hydrocarbon receptor |
ARNT | AhR nuclear translocator |
CYPs | cytochromes P450 |
EET | epoxyeicosatrienoic acid |
ER | estrogen receptor |
HET0016 | N-hydroxy-N’-(-butyl-2-methylphenyl)-formamidine |
HETE | hydroxyeicosatetraenoic acid |
HER | human epidermal growth factor receptor 2 |
LTB4 | leukotriene B4 |
PR | progesterone receptor |
PUFAs | polyunsaturated fatty acids |
TAM | tamoxifen |
TNBC | triple-negative breast cancer |
References
- Mokhosoev, I.M.; Astakhov, D.V.; Terentiev, A.A.; Moldogazieva, N.T. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024, 13, 1958. [Google Scholar] [CrossRef]
- Nelson, D.R. A world of cytochrome P450s. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 20120430. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Mangelsdorf, D.J.; Evans, R.M. The RXR heterodimers and orphan receptors. Cell 1995, 83, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Cheng, Q. Orphan in the human cytochrome P450 superfamily: Approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev. 2011, 63, 684–699. [Google Scholar] [CrossRef]
- Murray, G.I.; Patimalla, S.; Stewart, K.N.; Miller, I.D.; Heys, S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology 2010, 57, 202–211. [Google Scholar] [CrossRef]
- Kowalski, J.P.; Rettie, A.E. There and Back Again: A Perspective on 20 Years of CYP4Z1. Drug Metab. Dispos. 2024, 52, 498–507. [Google Scholar] [CrossRef]
- Molina-Ortiz, D.; Torres-Zárate, C.; Santes-Palacios, R. Human Orphan Cytochromes P450: An Update. Curr. Drug Metab. 2022, 23, 942–963. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Licznerska, B.; Baer-Dubowska, W. What might the presence of ‘orphan’ CYP450 isoforms in breast epithelial cells mean for the future of targeted therapeutics? Expert. Opin. Drug Metab. Toxicol. 2021, 17, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.S.; Tiong, K.H.; Muruhadas, A.; Randhawa, N.; Choo, H.L.; Bradshaw, T.D.; Stevens, M.F.G.; Leong, C.-O. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther. 2011, 10, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Szaefer, H.; Licznerska, B.; Cykowiak, M.; Baer-Dubowska, W. Expression of CYP2S1 and CYP2W1 in breast cancer epithelial cells and modulation of their expression by synthetic methoxy stilbenes. Pharmacol. Rep. 2019, 71, 1001–1005. [Google Scholar] [CrossRef]
- Rieger, M.A.; Ebner, R.; Bell, D.R.; Kiessling, A.; Rohayem, J.; Schmitz, M.; Temme, A.; Rieber, E.P.; Weigle, B. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res. 2004, 64, 2357–2364. [Google Scholar] [CrossRef]
- Savas, U.; Hsu, M.-H.; Griffin, K.-J.; Bell, D.R.; Johnson, E.F. Conditional regulation of the human CYP4X1 and CYP4Z1 genes. Arch. Biochem. Biophys. 2005, 436, 377–385. [Google Scholar] [CrossRef]
- Zheng, L.; Guo, Q.; Xiang, C.; Liu, S.; Jiang, Y.; Gao, L.; Ni, H.; Wang, T.; Zhao, Q.; Liu, H.; et al. Transcriptional factor six2 promotes the competitive endogenous RNA network between CYP4Z1 and pseudogene CYP4Z2P responsible for maintaining the stemness of breast cancer cells. J. Hematol. Oncol. 2019, 12, 23, Erratum in: J. Hematol. Oncol. 2019, 12, 109. https://doi.org/10.1186/s13045-019-0809-3. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, L.; Chou, J.; Li, C.; Zhang, Y.; Meng, X.; Xi, T. CYP4Z1 3′UTR represses migration of human breast cancer cells. Biochem. Biophys. Res. Commun. 2016, 478, 900–907. [Google Scholar] [CrossRef]
- Nunna, V.; Jalal, N.; Bureik, M. Anti-CYP4Z1 autoantibodies detected in breast cancer patients. Cell. Mol. Immunol. 2017, 14, 572–574. [Google Scholar] [CrossRef]
- Wu, W.; Warner, M.; Wang, L.; He, W.W.; Zhao, R.; Guan, X.; Botero, C.; Huang, B.; Ion, C.; Coombes, C.; et al. Drivers and suppressors of triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2104162118. [Google Scholar] [CrossRef]
- Yu, W.; Chai, H.; Li, Y.; Zhao, H.; Xie, X.; Zheng, H.; Wang, C.; Wang, X.; Yang, G.; Cai, X.; et al. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer. Toxicol. Appl. Pharmacol. 2012, 264, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, J.P.; McDonald, M.G.; Pelletier, R.D.; Hanenberg, H.; Wiek, C.; Rettie, A.E. Design and Characterization of the First Selective and Potent Mechanism-Based Inhibitor of Cytochrome P450 4Z1. J. Med. Chem. 2020, 63, 4824–4836. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.D.; Green, M.R.; Wilson, C.; Weckle, A.L.; Duanmu, Z.; Kocarek, T.A.; Runge-Morris, M. Cytochrome P450 expression and metabolic activation of cooked food mutagen 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) in MCF10A breast epithelial cells. Chem. Biol. Interact. 2006, 160, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Khayeka-Wandabwa, C.; Ma, X.; Cao, X.; Nunna, V.; Pathak, J.L.; Bernhardt, R.; Cai, P.; Bureik, M. Plasma membrane localization of CYP4Z1 and CYP19A1 and the detection of anti-CYP19A1 autoantibodies in humans. Int. Immunopharmacol. 2019, 73, 64–71. [Google Scholar] [CrossRef]
- Zheng, L.; Li, X.; Meng, X.; Chou, J.; Hu, J.; Zhang, F.; Zhang, Z.; Xing, Y.; Liu, Y.; Xi, T. Competing endogenous RNA networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen resistance in breast cancer. Mol. Cell. Endocrinol. 2016, 427, 133–142. [Google Scholar] [CrossRef]
- Li, C.; Zheng, L.; Xin, Y.; Tan, Z.; Zhang, Y.; Meng, X.; Wang, Z.; Xi, T. The competing endogenous RNA network of CYP4Z1 and pseudogene CYP4Z2P exerts an anti-apoptotic function in breast cancer. FEBS Lett. 2017, 591, 991–1000. [Google Scholar] [CrossRef]
- Khayeka-Wandabwa, C.; Zhao, J.; Pathak, J.L.; Wu, H.; Bureik, M. Upregulation of estrogen receptor alpha (ERα) expression in transgenic mice expressing human CYP4Z1. Breast Cancer Res. Treat. 2022, 191, 319–326. [Google Scholar] [CrossRef]
- Du, W.; Machalz, D.; Yan, Q.; Sorensen, E.J.; Wolber, G.; Bureik, M. Importance of asparagine-381 and arginine-487 for substrate recognition in CYP4Z1. Biochem. Pharmacol. 2020, 174, 113850. [Google Scholar] [CrossRef]
- Liu, J.; Machalz, D.; Wolber, G.; Sorensen, E.J.; Bureik, M. New Proluciferin Substrates for Human CYP4 Family Enzymes. Appl. Biochem. Biotechnol. 2021, 193, 218–237. [Google Scholar] [CrossRef]
- Machalz, D.; Li, H.; Du, W.; Sharma, S.; Liu, S.; Bureik, M.; Wolber, G. Discovery of a novel potent cytochrome P450 CYP4Z1 inhibitor. Eur. J. Med. Chem. 2021, 215, 113255. [Google Scholar] [CrossRef]
- Al-Saraireh, Y.M.; Alshammari, F.O.F.O.; Youssef, A.M.M.; Al-Tarawneh, F.; Al-Sarayreh, S.; Almuhaisen, G.H.; Satari, A.O.; Al-Shuneigat, J.; Alrawashdeh, H.M. Cytochrome 4Z1 Expression is Associated with Unfavorable Survival in Triple-Negative Breast Cancers. Breast Cancer 2021, 13, 565–574. [Google Scholar] [CrossRef]
- Hlaváč, V.; Brynychová, V.; Václavíková, R.; Ehrlichová, M.; Vrána, D.; Pecha, V.; Trnková, M.; Kodet, R.; Mrhalová, J.; Kubáčková, K.; et al. The role of cytochromes P450 and aldo-keto reductases in prognosis of breast carcinoma patients. Medicine 2014, 93, e255. [Google Scholar] [CrossRef]
- Bandala, C.; Floriano-Sánchez, E.; Cárdenas-Rodríguez, N.; López-Cruz, J.; Lara-Padilla, E. RNA expression of cytochrome P450 in Mexican women with breast cancer. Asian Pac. J. Cancer Prev. 2012, 13, 2647–2653. [Google Scholar] [CrossRef]
- Iscan, M.; Klaavuniemi, T.; Coban, T.; Kapucuoglu, O.; Raunio, H. The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Res. Treat. 2001, 70, 47–54. [Google Scholar] [CrossRef]
- Chen, F.; Li, Y.; Qin, N.; Wang, F.; Du, J.; Wang, C.; Du, F.; Jiang, T.; Jiang, Y.; Dai, J.; et al. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J. Biomed. Res. 2020, 34, 129–138. [Google Scholar] [CrossRef]
- Aiyappa-Maudsley, R.; Storr, S.J.; Rakha, E.A.; Green, A.R.; Ellis, I.O.; Martin, S.G. CYP2S1 and CYP2W1 expression is associated with patient survival in breast cancer. J. Pathol Clin. Res. 2022, 8, 550–566. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Chen, C.; Wu, X.; Yan, D.; Chen, F.; Yu, X.; Yuan, J. Cytochrome P450 2U1 Is a Novel Independent Prognostic Biomarker in Breast Cancer Patients. Front. Oncol. 2020, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Justenhoven, C.; Winter, S.; Hamann, U.; Haas, S.; Fischer, H.P.; Pesch, B.; Brüning, T.; Ko, Y.D.; Brauch, H.; GENICA Network. The frameshift polymorphism CYP3A43_74_delA is associated with poor differentiation of breast tumors. Cancer 2010, 116, 5358–5364. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.; Dostalek, M.; Guengerich, F.P. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J. 2008, 275, 3706–3717. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ko, S.; In, Y.-H.; Moon, H.-G.; Ahn, S.K.; Kim, M.K.; Lee, M.; Hwang, J.H.; Ju, Y.S.; et al. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Genes. Chromosomes Cancer 2015, 54, 681–691. [Google Scholar] [CrossRef]
- Hlaváč, V.; Václavíková, R.; Brynychová, V.; Ostašov, P.; Koževnikovová, R.; Kopečková, K.; Vrána, D.; Gatěk, J.; Souček, P. Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response. Int. J. Mol. Sci. 2021, 22, 2826. [Google Scholar] [CrossRef]
- Radvanyi, L.; Singh-Sandhu, D.; Gallichan, S.; Lovitt, C.; Pedyczak, A.; Mallo, G.; Gish, K.; Kwok, K.; Hanna, W.; Zubovits, J.; et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 11005–11010. [Google Scholar] [CrossRef] [PubMed]
- Cizkova, M.; Cizeron-Clairac, G.; Vacher, S.; Susini, A.; Andrieu, C.; Lidereau, R.; Bièche, I. Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: Major implication of the Wnt signaling pathway. PLoS ONE 2010, 5, e15647. [Google Scholar] [CrossRef] [PubMed]
- Al-Saraireh, Y.M.; Alboaisa, N.S.; Alrawashdeh, H.M.; Hamdan, O.; Al-Saraireh, S.; Al-Shuneigat, J.M.; Nofal, M.N. Screening of cytochrome 4Z1 expression in human non-neoplastic, pre-neoplastic and neoplastic tissues. Ecancermedicalscience 2020, 14, 1114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, J.; Gu, R.; Shi, Y.; Hu, H.; Liu, J.; Huang, J.; Zhong, C.; Zhou, W.; Yang, Y.; et al. Comprehensive Analysis of Transcriptomics and Genetic Alterations Identifies Potential Mechanisms Underlying Anthracycline Therapy Resistance in Breast Cancer. Biomolecules 2022, 12, 1834. [Google Scholar] [CrossRef]
- Yang, X.; Hutter, M.; Goh, W.W.B.; Bureik, M. CYP4Z1—A Human Cytochrome P450 Enzyme that Might Hold the Key to Curing Breast Cancer. Curr. Pharm. Des. 2017, 23, 2060–2064. [Google Scholar] [CrossRef]
- Kozlov, A.P. Expression of evolutionarily novel genes in tumors. Infect. Agent. Cancer 2016, 11, 34. [Google Scholar] [CrossRef]
- Pan, S.-T.; Xue, D.; Li, Z.-L.; Zhou, Z.-W.; He, Z.-X.; Yang, Y.; Yanh, T.; Qiu, J.-X.; Zhou, S.-F. Computational Indentification of the Paralogs and Orthologs of Human Cytochrome P450 Supefamily and the Implication in Drug Discovery. Int. J. Mol. Sci. 2016, 17, 1020. [Google Scholar]
- Ortiz de Montellano, P.R. Mechanism and role of covalent heme binding in the CYP4 family of P450 enzymes and the mammalian peroxidases. Drug Metab. Rev. 2008, 40, 405–426. [Google Scholar] [CrossRef]
- Zöllner, A.; Dragan, C.A.; Pistorius, D.; Müller, R.; Bode, H.B.; Peters, F.T.; Maurer, H.H.; Bureik, M. Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. Biol. Chem. 2009, 390, 313–317. [Google Scholar] [CrossRef]
- Yan, Q.; Machalz, D.; Zöllner, A.; Sorensen, E.J.; Wolber, G.; Bureik, M. Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochem. Pharmacol. 2017, 146, 174–187. [Google Scholar] [CrossRef]
- McDonald, M.G.; Ray, S.; Amorosi, C.J.; Sitko, K.A.; Kowalski, J.P.; Paco, L.; Nath, A.; Gallis, B.; Totah, R.A.; Dunham, M.J.; et al. Expression and Functional Characterization of Breast Cancer-Associated Cytochrome P450 4Z1 in Saccharomyces cerevisiae. Drug Metab. Dispos. 2017, 45, 1364–1371. [Google Scholar] [CrossRef]
- Yuan, Y.; Yao, H.; Zhou, M.; Ma, X.; Zhou, Y.; Xu, J.; Niu, M.; Yin, J.; Zheng, L.; Xu, S. Identification of a Novel Potent CYP4Z1 Inhibitor Attenuating the Stemness of Breast Cancer Cells through Lead Optimization. J. Med. Chem. 2022, 65, 15749–15769. [Google Scholar] [CrossRef]
- Guo, H.; Zeng, B.; Wang, L.; Ge, C.; Zuo, X.; Li, Y.; Ding, W.; Deng, L.; Zhang, J.; Qian, X.; et al. Knockdown CYP2S1 inhibits lung cancer cells proliferation and migration. Cancer Biomark. 2021, 32, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Fekry, M.I.; Xiao, Y.; Berg, J.Z.; Guengerich, F.P. A Role for the Orphan Human Cytochrome P450 2S1 in Polyunsaturated Fatty Acid ω-1 Hydroxylation Using an Untargeted Metabolomic Approach. Drug Metab. Dispos. 2019, 47, 1325–1332, Erratum in: Drug Metab Dispos. 2020, 48, 159. https://doi.org/10.1124/dmd.119.089086err. [Google Scholar] [CrossRef]
- Beneke, A.; Guentsch, A.; Hillemann, A.; Zieseniss, A.; Swain, L.; Katschinski, D.M. Loss of PHD3 in myeloid cells dampens the inflammatory response and fibrosis after hind-limb ischemia. Cell Death Dis. 2017, 8, e2976. [Google Scholar] [CrossRef] [PubMed]
- Saarikoski, S.T.; Rivera, S.P.; Hankinson, O.; Husgafvel-Pursiainen, K. CYP2S1: A short review. Toxicol. Appl. Pharmacol. 2005, 207, 62–69. [Google Scholar] [CrossRef]
- Bui, P.; Imaizumi, S.; Beedanagari, S.R.; Reddy, S.T.; Hankinson, O. Human CYP2S1 metabolizes cyclooxygenase- and lipoxygenase-derived eicosanoids. Drug Metab. Dispos. 2011, 39, 180–190. [Google Scholar] [CrossRef]
- Bui, P.H.; Hsu, E.L.; Hankinson, O. Fatty acid hydroperoxides support cytochrome P450 2S1-mediated bioactivation of ben zo[a]pyrene-7,8-dihydrodiol. Mol. Pharmacol. 2009, 76, 1044–1052. [Google Scholar] [CrossRef]
- Nishida, C.R.; Lee, M.; de Montellano, P.R.O. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol. 2010, 78, 497–502. [Google Scholar] [CrossRef]
- Mrízová, I.; Moserová, M.; Milichovský, J.; Šulc, M.; Kizek, R.; Kubáčková, K.; Arlt, V.M.; Stiborová, M. Heterologous expression of human cytochrome P450 2S1 in Escherichia coli and investigation of its role in metabolism of benzo[a]pyrene and ellipticine. Monatsh. Chem. 2016, 147, 881–888. [Google Scholar] [CrossRef]
- Wang, K.; Guengerich, F.P. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by human cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1. Chem. Res. Toxicol. 2012, 25, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Edler, D.; Stenstedt, K.; Öhrling, K.; Hallström, M.; Karlgren, M.; Ingelman-Sundberg, M.; Ragnhammar, P. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer-A pilot study. Eur. J. Cancer 2009, 45, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: Regulation by gene methylation. Pharmacogenomics 2007, 8, 1315–1325. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Tang, T.; Luo, Y.; Stevens, M.F.G.; Cheng, X.; Yang, Y.; Shi, D.; Zhang, J.; Bradshaw, T.D. The antitumour activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole in human gastric cancer models is mediated by AhR signalling. J. Cell. Mol. Med. 2020, 24, 1750–1759. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Cytochrome P450-activated prodrugs. Future Med. Chem. 2013, 5, 213–228. [Google Scholar] [CrossRef]
- Xiao, Y.; Guengerich, F.P. Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. J. Lipid Res. 2012, 53, 1610–1617. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, D.; Yang, J.; Hammock, B.D.; Ortiz de Montella no, P.R. Catalytic activities of tumor-specific human cytochrome P450 CYP2W1 toward endogenous substrates. Drug Metab. Dispos. 2016, 44, 771–780. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y.; Hoshino, T.; Neya, S. Molecular modeling of human cytochrome P450 2W1 and its interactions with substrates. J. Mol. Graph. Model. 2009, 28, 170–176. [Google Scholar] [CrossRef]
- Guo, J.; Johansson, I.; Mkrtchian, S.; Ingelman-Sundberg, M. The CYP2W1 enzyme: Regulation, properties and activation of pro drugs. Drug Metab. Rev. 2016, 48, 369–378. [Google Scholar] [CrossRef]
- Hodek, P.; Hrdinova, J.; Macova, I.; Soucek, P.; Mrizova, I.; Bur dova, K.; Kizek, R.; Hudecek, J.; Stiborova, M. Preparation and application of anti-peptide antibodies for detection of orphan cytochromes P450. Neuroendocrinol. Lett. 2015, 36, 38–45. [Google Scholar] [PubMed]
- Dhers, L.; Ducassou, L.; Boucher, J.L.; Mansuy, D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell. Mol. Life Sci. 2017, 74, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Human Cytochrome P450 Enzymes. In Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed.; Ortiz de Montellano, P.R., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; pp. 377–530. [Google Scholar]
- Nouri, K.; Pietrancosta, N.; Le Corre, L.; Dansette, P.M.; Mansuy, D.; Boucher, J.-L. Human Orphan Cytochrome P450 2U1 Catalyzes the ω-Hydroxylation of Leukotriene B4. Int. J. Mol. Sci. 2022, 23, 14615. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res. Notes 2015, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, Z.; Shen, R.; Jiang, Y.; Xu, W.; Gu, M.; Gu, X. Identification of biomarkers predicting the chemotherapeutic outcomes of capecitabine and oxaliplatin in patients with gastric cancer. Oncol. Lett. 2020, 20, 290. [Google Scholar] [CrossRef]
- Idrisova, K.F.; Simon, H.U.; Gomzikova, M.O. Role of Patient-Derived Models of Cancer in Translational Oncology. Cancers 2022, 15, 139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Orphan CYP450 | In Vitro Model (Cell Line) | Treatment | Findings | References |
---|---|---|---|---|
2S1 | MCF10A | n/t | mRNA detected predominantly or exclusively in sub-confluent cultures | [23] |
MCF7 MDA-MB-468 | -n/t -n/t -n/t -Exogenous AhR ligands | -mRNA in both cell lines -higher expression in MDA-MB-468 -low protein level -induced expression | [13] | |
MCF7 MDA-MB-231 | -n/t -n/t -Synthetic methoxystilbenes -Resveratrol and synthetic methoxystilbenes (3MS, 4MS, 5MS) | -mRNA and protein in both cell lines -higher expression in MDA-MB-231 -increased expression in MCF7 -decreased mRNA in MDA-MB-231 cells | [14] | |
2U1 | MCF10A | n/t | mRNA detected in both sub-confluent and confluent cultures | [23] |
2W1 | MCF7 MDA-MB-468 | -n/t -n/t -Exogenous AhR ligands | -mRNA in both cell lines -higher expression in MDA-MB-468 -induced expression | [13] |
MCF7 MDA-MB-231 | -n/t -n/t -Synthetic methoxystilbene 3MS -Resveratrol and synthetic methoxystilbenes (3MS, 4MS, 5MS) | -mRNA and protein in both cell lines -higher expression in MDA-MB-231 -increased protein in MCF7 -decreased mRNA in MDA-MB-231 cells | [14] | |
4V2 | MCF10A | n/t | mRNA detected in both sub-confluent and confluent cultures | [23] |
4X1 | MCF10A | n/t | mRNA detected in both sub-confluent and confluent cultures | [23] |
4Z1 | MCF7 | n/t | mRNA and protein in breast tissue (normal and cancer) with low expression levels (in comparison to other human CYPs) in other tissues (e.g., liver) | [15] |
MCF7 T47D | n/t | -mRNA preferentially expressed in mammary tissue -implication of progesterone and glucocorticoid receptor in CYP4Z1 gene activation | [16] | |
MCF10A | n/t | mRNA was detected in both sub-confluent and confluent cultures | [23] | |
T47D BT-474 | n/t | immunostaining overexpression promotes tumor angiogenesis and growth in breast cancer | [21] | |
MCF7 and MCF7-TamR | n/t n/t n/t | -CYP4Z1 and CYP4Z2P downregulated in MCF7 compared with MCF7-TamR -overexpression of CYP4Z1- or CYP4Z2P-3′ UTR enhances transcriptional activity of ERα -blocking of CYP4Z1- and CYP4Z2P-3′ UTR reversed tamoxifen resistance in MCF7-TamR | [25] | |
MCF7 MDA-MB-231 | n/t | downregulation of CYP4Z1- or CYP4Z2P-3′ UTR promotes cell apoptosis | [26] | |
MCF7 MDA-MB-231 | n/t | comprehensive endogenous RNA network mediated by CYP4Z1 gene and CYP4Z2P pseudogene promoted stemness of breast cancer | [17] | |
MCF7 MDA-MB-231 | n/t | overexpression of CYP4Z1 3′ UTR could suppress capacity of migration and adhesion of these cells by acting as competitive endogenous RNAs for E-cadherin | [18] | |
MCF7 | n/t n/t | -demonstrate presence of CYP4Z1 enzyme on outer surface of plasma membrane of MCF7 -detection of high titers of anti-CYP4Z1 autoantibodies in breast cancer patients but not in healthy controls | [19] | |
MCF10A | n/t | no display of CYP4Z1 on MCF10A cells’ surface | [24] | |
T47D transfected with CYP4Z1 | Novel synthetic ‘7’ inhibitor | inhibition of 14,15-EET (product of arachidonic acid metabolism, influencing proliferation, migration, and angiogenesis) | [22] | |
combination of in vitro and silico models of recombinant CYP4Z1 mutants | n/t | Arg487 and Asn381 residues in CYP4Z1 protein play crucial role in substrate recognition and binding | [28] | |
MCF7 MDA-MB-231 | HET0016 | -synthetic CYP4Z1 inhibitor -CYP4Z1 promoted stemness of MCF7 breast cancer cells | [29] | |
MCF7 | Novel CYP4Z1 inhibitors | discovery of novel CYP4Z1 inhibitors in enzyme bag test and CYP4Z1-overexpressing MCF7 cell clone | [30] | |
MCF7 BT549 SUM159 MDA-MB-231 | n/t 20-HETE | -CYP4Z1 mRNA expression -20-HETE treatment promoted growth of TNBC cell lines (BT549, SUM159, MDA-MB-231) | [20] |
Orphan CYP450 | Patients Pool | Results/Conclusions | References |
---|---|---|---|
2A7 | 20 tumor and control breast tissue samples | no mRNA detected | [34] |
165 triple-negative breast cancer samples | expression associated with poorer survival | [35] | |
2S1 | 170 breast cancer, no special-type samples | -37.5% of CYP2S1 immune-positive cells -absence of CYP2S1 correlated with better survival | [6] |
50 breast cancer patients and 31 controls | -mRNA increased -protein not detected | [32] | |
1426 early-stage invasive breast cancer | -low immunohistochemical protein expression associated with poorer patient survival | [36] | |
2U1 | 170 breast cancer, no special-type samples | -32.2% of CYP2S1 immune-positive cells -correlated with tumor grade | [6] |
219 invasive breast cancer | -high immunohistochemical protein level correlated with poorer survival -more frequent in TNBC | [37] | |
2W1 | 32 breast cancer patients and 20 controls | -mRNA expressed in breast cancer, adjacent, and normal breast cells -230 times higher in breast cancer than in normal breast cells -expression associated with Ki67 | [33] |
50 breast cancer patients and 31 controls | -significantly overexpressed in tumors -higher 2W1 mRNA correlated with better response to neoadjuvant chemotherapy -not confirmed on protein level (too low) | [32] | |
1 426 early-stage invasive breast cancer | -low immunohistochemical protein expression associated with poorer patient survival | [36] | |
3A43 | 170 breast cancer, no special-type samples | 70.7% of samples most frequently displayed no immunoreactivity | [6] |
1143 incident breast cancer cases and 1155 population controls | allele CYP3A43_74_delA correlated with higher-grade breast tumors | [38] | |
4F11 | 32 breast cancer patients and 20 controls | -mRNA expressed in breast cancer, adjacent, and normal breast cells -no statistical differences between cancer and normal tissue -expression associated with Ki67 | [33] |
4V2 | 170 breast cancer, no special-type samples | -immunostaining was correlated with survival -correlated with tumor grade | [6] |
4X1 | one individual patient | mRNA detected | [39] |
170 breast cancer no special-type samples | -50.8% of CYP4X1 immune-positive cells -immunostaining correlated with lower tumor grade | [6] | |
120 primary breast cancer and 5 nontumorigenic controls | off-frame fusion with pseudogene CYP4Z2P of unknown function | [40] | |
105 breast cancer patients with neoadjuvant cytotoxic chemotherapy | variant rs17102977 in CYP4X1 associated with response to neoadjuvant cytotoxic chemotherapy | [41] | |
4Z1 | 54 breast tumors | mRNA overexpression (microarray) in 50% of samples | [42] |
170 breast cancer, no special type samples | immunostaining correlated with increasing tumor grade | [6] | |
249 breast cancer patients ER(+) | -immunostaining correlation between mutated oncogene PIK3CA and overexpression of CYP4Z1 and pseudogene CYP4Z2P | [43] | |
paraffin-embedded breast cancer tissue samples and 8 pairs of fresh breast cancer and normal tissues | comprehensive endogenous RNA network mediated by CYP4Z1 gene and CYP4Z2P pseudogene promoted stemness of breast cancer | [17] | |
sera from 19 breast cancer patients and 11 control sera | -demonstrate presence of CYP4Z1 enzyme on plasma membrane of MCF7 -detection of high titers of anti-CYP4Z1 aAbs in breast cancer patients but not in healthy controls | [19] | |
220 breast cancer cases and 8 normal breast tissues | -immunohistochemically, 82% of malignant samples with moderate–intense expression -normal tissues and benign tumors: no-to-weak expression | [44] | |
122 TNBC cases and 4 normal breast tissues | -strong expression of CYP4Z1 (83.3%) in various TNBC subtypes -negative expression in normal samples -poorer overall survival of TNBC patients with high CYP4Z1 expression in comparison to patients with low CYP4Z1 expression | [31] | |
5 TNBC patients | patient-derived xenografts expressed CYP4Z1 mRNA | [20] | |
86 anthracycline-responsive breast cancer patients vs. 7 anthracycline-non-responsive | CYP4Z1 was significantly upregulated in anthracycline-resistant group | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licznerska, B.; Szaefer, H.; Baer-Dubowska, W. Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer. Curr. Issues Mol. Biol. 2025, 47, 682. https://doi.org/10.3390/cimb47090682
Licznerska B, Szaefer H, Baer-Dubowska W. Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer. Current Issues in Molecular Biology. 2025; 47(9):682. https://doi.org/10.3390/cimb47090682
Chicago/Turabian StyleLicznerska, Barbara, Hanna Szaefer, and Wanda Baer-Dubowska. 2025. "Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer" Current Issues in Molecular Biology 47, no. 9: 682. https://doi.org/10.3390/cimb47090682
APA StyleLicznerska, B., Szaefer, H., & Baer-Dubowska, W. (2025). Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer. Current Issues in Molecular Biology, 47(9), 682. https://doi.org/10.3390/cimb47090682