Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Model
- The intact group, animals that were planned to receive an intragastric administration of a 0.9% sodium chloride solution for 30 days;
- The control group, animals with experimental CGP that were given an intragastric administration of a 0.9% sodium chloride solution for 30 days;
- Animals with experimental CGP that received intragastric administration of the Selenase preparation, 50 μg/kg, through an atraumatic metal probe for 30 days [19];
- Animals with experimental CGP that received daily intragastric administration of the reference drug Mexidol, 250 mg/kg, for 30 days [18].
2.2. Anesthesia
2.3. Preparation of Biological Material
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Biochemical Methods
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Perspectives for Further Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shrestha, D.; Rajbhandari, P. Prevalence and Associated Risk Factors of Tooth Wear. J. Nepal Med. Assoc. 2018, 56, 719–723. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, W.; Wang, H.; Liang, S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv. Protein Chem. Struct. Biol. 2020, 120, 45–84. [Google Scholar] [CrossRef] [PubMed]
- França, L.F.C.; Vasconcelos, A.C.C.G.; da Silva, F.R.P.; Alves, E.H.P.; Carvalho, J.S.; Lenardo, D.D.; de Souza, L.K.M.; Barbosa, A.L.R.; Medeiros, J.R.; de Oliveira, J.S.; et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J. Clin. Periodontol. 2017, 44, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jung, U.J.; Kim, S.R. Role of Oxidative Stress in Blood–Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants 2024, 13, 1462. [Google Scholar] [CrossRef]
- Dmytriieva, O.O.; Bielenichev, I.F.; Samura, I.B.; Salnykov, V.I.; Robota, D.V. The effect of dental gel with IL-1β antagonist on indicators of nitrosative stress and antioxidant system in rats with experimental chronic generalized periodontitis. Mod. Med. Technol. 2024, 16, 214–219. [Google Scholar] [CrossRef]
- Parkhomenko, D.; Belenichev, I.; Bukhtiyarova, N.; Kuchkovskyi, O.; Gorchakova, N.; Diachenko, V.; Fedotov, E. Pharmacocorrection of Disturbances in the NO System in Experimental Chronic Generalized Periodontitis. Maced. J. Med. Sci. 2023, 11, 47–52. [Google Scholar] [CrossRef]
- Toczewska, J.; Konopka, T.; Zalewska, A.; Maciejczyk, M. Nitrosative Stress Biomarkers in the Non-Stimulated and Stimulated Saliva, as well as Gingival Crevicular Fluid of Patients with Periodontitis: Review and Clinical Study. Antioxidants 2020, 9, 259. [Google Scholar] [CrossRef]
- Belenichev, I.; Popazova, O.; Bukhtiyarova, N.; Savchenko, D.; Oksenych, V.; Kamyshnyi, O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants 2024, 13, 504. [Google Scholar] [CrossRef]
- Ciancio, S.G. Antiseptics and antibiotics as chemotherapeutic agents for periodontitis management. Compend. Contin. Educ. Dent. 2000, 21, 59–62. [Google Scholar]
- Mohammad, C.A.; Ali, K.M.; Al-Rawi, R.A.; Gul, S.S. Effects of Curcumin and Tetracycline Gel on Experimental Induced Periodontitis as an Anti-Inflammatory, Osteogenesis Promoter and Enhanced Bone Density through Altered Iron Levels: Histopathological Study. Antibiotics 2022, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.T.; Chu, P.-M.; Tuan, V.P.; Te, J.S.-L.; Lee, I.-T. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants 2020, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef]
- Anwar, S.; Alrumaihi, F.; Sarwar, T.; Babiker, A.Y.; Khan, A.A.; Prabhu, S.V.; Rahmani, A.H. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024, 14, 697. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.F.; Gorchakova, N.O.; Samura, I.B.; Savchenko, N.V.; Bukhtiyarova, N.V.; Popazova, O.O. Pharmacological properties of selenium and its preparations: From antioxidant to neuroprotector. Res. Results Pharmacol. 2021, 7, 29–40. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: Its role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Salnykov, V.; Belenichev, I.; Samura, I.B. The Effect of Selenase on Inflammatory and Cytoprotective Markers in Experimental Chronic Generalized Periodontitis. Biomed. Pharmacol. J. 2024, 17, 1911–1919. [Google Scholar] [CrossRef]
- Parkhomenko, D.; Belenichev, I.F.; Kuchkovskyi, O.M.; Ryzhenko, V. Characteristics of HIF-1α and HSP70 mRNA Expression, Level, and Interleukins in Experimental Chronic Generalized Periodontitis. MicroRNA 2024, 13, 132–139. [Google Scholar] [CrossRef]
- Notsek, M.S.; Gorchakova, N.O.; Belienichev, I.F.; Puzyrenko, A.M.; Chekman, I.S. The effect of selenium preparations on the indicators of the enzymatic link of the thiol-disulfide system in the brain tissues of animals with acute cerebrovascular insufficiency. Bull. Probl. Biol. Med. 2015, 4, 202–205. (In Ukrainian) [Google Scholar]
- McPherson, R.A.; Pincus, M.R. Henry’s Clinical Diagnosis and Management by Laboratory Methods, 24th ed.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780323673204. [Google Scholar]
- Alfei, S.; Schito, G.C.; Schito, A.M.; Zuccari, G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int. J. Mol. Sci. 2024, 25, 7182. [Google Scholar] [CrossRef]
- Silwal, P.; Kim, J.K.; Kim, Y.J.; Jo, E.K. Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection. Front. Immunol. 2020, 11, 1649. [Google Scholar] [CrossRef]
- Martínez-García, M.; Hernández-Lemus, E. Periodontal Inflammation and Systemic Diseases: An Overview. Front. Physiol. 2021, 12, 709438. [Google Scholar] [CrossRef]
- Bhuyan, R.; Bhuyan, S.K.; Mohanty, J.N.; Das, S.; Juliana, N.; Juliana, I.F. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022, 10, 2659. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.K.; Ranjan, P.; Dutta, R.K.; Verma, S.K. Management of inflammation in cardiovascular diseases. Pharmacol. Res. 2021, 173, 105912. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Manap, A.A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Teoh, S.L.; Das, S.; Mahakknaukrauh, P. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases. Front. Physiol. 2017, 8, 693. [Google Scholar] [CrossRef]
- Patil, R.T.; Dhadse, P.V.; Salian, S.S.; Punse, S.D. Role of Oxidative Stress in Periodontal Diseases. Cureus 2024, 16, e60779. [Google Scholar] [CrossRef]
- Shang, J.; Liu, H.; Zheng, Y.; Zhang, Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front. Physiol. 2023, 14, 1210449. [Google Scholar] [CrossRef]
- Lappin, D.F.; Kjeldsen, M.; Sander, L.; Kinane, D.F. Inducible nitric oxide synthase expression in periodontitis. J. Periodontal Res. 2000, 6, 369–373. [Google Scholar] [CrossRef]
- Liu, M.M.; Shi, J. Physiological and pathological effects of nitric oxide and nitric oxide synthase in oral cavity. Chin. J. Stomatol. 2020, 55, 353–356. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; He, F. Mechanism and role of nitric oxide signaling in periodontitis. Exp. Ther. Med. 2019, 18, 3929–3935. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Naruse, K.; Kobayashi, Y.; Miyajima, S.; Mizutani, M.; Kikuchi, T.; Soboku, K.; Nakamura, N.; Sokabe, A.; Tosaki, T.; et al. Involvement of nitrosative stress in experimental periodontitis in diabetic rats. J. Clin. Periodontol. 2012, 39, 342–349. [Google Scholar] [CrossRef]
- Belenichev, I.; Aliyeva, O.; Popazova, O.; Bukhtiyarova, N. Molecular and biochemical mechanisms of diabetic encephalopathy. Acta Biochim. Pol. 2023, 70, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.; Lal, N. Antioxidant enzymes in periodontitis. J. Oral Biol. Craniofac. Res. 2017, 7, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Bains, V.K.; Bains, R. The antioxidant master glutathione and periodontal health. Dent. Res. J. 2015, 12, 389–405. [Google Scholar] [CrossRef]
- Sham, B.B.N.I.; Grant, M.M. Role of Glutathione in Neutrophil Chemotaxis in Periodontitis. Oral 2023, 3, 526–538. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Pan, S.; Feng, Y.; He, H.; Cheng, S.; Wang, L.; Wang, L.; Pathak, J.L. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients 2023, 15, 2115. [Google Scholar] [CrossRef]
- Gosset, P.; Wallaert, B.; Tonnel, A.B.; Fourneau, C. Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur. Respir. J. 1999, 14, 98–105. [Google Scholar] [CrossRef]
- Juiz, P.J.L.; Ferreira, L.T.B.; Pires, E.A.; Villarreal, C.F. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants 2024, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Arteel, G.E.; Sies, H. The biochemistry of selenium and the glutathione system. Environ. Toxicol. Pharmacol. 2001, 10, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.F.; Huang, S.C.; Cheng, S.B.; Hsu, C.C.; Huang, Y.C. Glutathione and Selenium Supplementation Attenuates Liver Injury in Diethylnitrosamine-Induced Hepatocarcinogenic Mice by Enhancing Glutathione-Related Antioxidant Capacities. Int. J. Mol. Sci. 2024, 25, 11339. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.F.; Aliyeva, O.G.; Popazova, O.O.; Bukhtiyarova, N.V. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: The prospect of using HSP70 modulators. Front. Cell Neurosci. 2023, 17, 1131683. [Google Scholar] [CrossRef]
- Shalihat, A.; Hasanah, A.N.; Mutakin, L.R.; Budiman, A.; Gozali, D. The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: A literature review. Biomed. Pharmacother. 2021, 134, 111125. [Google Scholar] [CrossRef]
- Belenichev, I.F.; Gorchakova, N.O.; Bukhtiyarova, N.V.; Samura, I.B.; Savchenko, N.V.; Nefedov, O.O.; Bak, P.G. Modulation of HSP70-dependent mechanisms of endogenous neuroprotection with selenium derivatives under conditions of ischemic-type acute cerebrovascular accident modeling. Pedagog. Psychol. Sport 2020, 6, 99–108. [Google Scholar] [CrossRef]
- Belenichev, I.; Popazova, O.; Bukhtiyarova, N.; Ryzhenko, V.; Pavlov, S.; Suprun, E.; Oksenych, V.; Kamyshnyi, O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants 2025, 14, 108. [Google Scholar] [CrossRef]
Indicators | Intact (n = 10) | CGP, Control (n = 10) | CGP + Selenase (50 µg/kg) (n = 10) | CGP + Mexidol (250 mg/kg) (n = 10) |
---|---|---|---|---|
Periodontal pocket depth, mm | 0 | 8.0 ± 0.43 1 | 4.6 ± 0.69 1* | 6.0 ± 0.93 1* |
Nitrotyrosine, ng/mL | 50.5 ± 3.7 | 217.7 ± 15.21 | 123.7 ± 10.8 *1# | 167.5 ± 9.7 *1 |
iNOS, ng/mL | 32.7 ± 2.55 | 76.4 ± 5.12 1 | 63.7 ± 6.12 *1 | 72.3 ± 5.45 1 |
GPX-4, pg/mL | 48.7 ± 2.33 | 17.7 ± 1.28 1 | 39.2 ± 4.12 *1# | 21.8 ± 2.02 1 |
Cu/Zn SOD, pg/mL | 88.5 ± 7.44 | 55.4 ± 3.40 1 | 77.8 ± 5.25 *1# | 62.8 ± 4.52 1 |
Indicators | Intact (n = 10) | CGP, Control (n = 10) | CGP + Selenase (50 µg/kg) (n = 10) | CGP + Mexidol (250 mg/kg) (n = 10) |
---|---|---|---|---|
NO metabolites (NOx), µmol/L | 6.5 ± 4.7 | 11.2 ± 1.2 1 | 8.2 ± 0.5 *1 | 6.50 ± 4.7 |
GSH, µmol/L | 678.5 ± 45.0 | 321.8 ± 21.2 1 | 611.5 ± 27.2 *# | 419.4 ± 21.4 * |
GSSG, µmol/L | 38.1 ± 2.8 | 88.5 ± 6.3 1 | 41.1 ± 3.7 *# | 77.1 ± 5.2 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salnykov, V.; Belenichev, I.; Makyeyeva, L.; Skoryna, D.; Oksenych, V.; Kamyshnyi, O. Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis. Curr. Issues Mol. Biol. 2025, 47, 186. https://doi.org/10.3390/cimb47030186
Salnykov V, Belenichev I, Makyeyeva L, Skoryna D, Oksenych V, Kamyshnyi O. Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis. Current Issues in Molecular Biology. 2025; 47(3):186. https://doi.org/10.3390/cimb47030186
Chicago/Turabian StyleSalnykov, Valeriy, Igor Belenichev, Lyudmyla Makyeyeva, Dmytro Skoryna, Valentyn Oksenych, and Oleksandr Kamyshnyi. 2025. "Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis" Current Issues in Molecular Biology 47, no. 3: 186. https://doi.org/10.3390/cimb47030186
APA StyleSalnykov, V., Belenichev, I., Makyeyeva, L., Skoryna, D., Oksenych, V., & Kamyshnyi, O. (2025). Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis. Current Issues in Molecular Biology, 47(3), 186. https://doi.org/10.3390/cimb47030186