Phytocannabinoids and Nanotechnology in Lung Cancer: A Review of Therapeutic Strategies with a Focus on Halloysite Nanotubes
Abstract
1. Introduction
2. Oxidative Stress in Lung Cancer
3. Nanocarriers in Anti-Cancer Therapies
Nanocarrier-Based Delivery Systems for Lung Cancer Treatment
4. Biomedical Applications of Halloysite Nanotubes in Targeted Drug Delivery
4.1. Characteristics of Halloysite Nanotubes (HNTs)
4.2. Applications of HNTs as Anticancer Drug Carriers
4.3. Biocompatibility and Toxicity of Halloysite Nanotubes
5. Phytocannabinoids
5.1. Therapeutic Applications of Phytocannabinoids in Lung Cancer
5.2. Advances in Nanocarrier Systems for Cannabinoid Delivery
6. Discussion and Perspectives: Positioning HNT-Based Phytocannabinoid Systems in Lung Cancer Therapy
6.1. The Comparative Advantages of Halloysite Nanotubes (HNTs) over Established Nanocarriers
6.2. Limitations of Other Nanotechnologies and How HNTs Address These Limitations
6.3. Safety and Immunogenicity
6.4. Clinical Translation Potential
6.5. Concluding Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wang, T.; Huang, K.; Chen, C.; Chang, Y.; Chen, H.; Hsueh, C.; Liu, Y.; Yang, S.; Yang, P.; Chen, C. PM2.5 promotes lung cancer progression through activation of the AhR-TMPRSS2-IL18 pathway. EMBO Mol. Med. 2023, 15, e17014. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825, Erratum in Am. J. Respir. Crit. Care Med. 2022, 205, 1254. https://doi.org/10.1164/rccm.v205erratum2. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC (KEYNOTE-024): A multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol. 2017, 18, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Juárez, M.; Serrano-Gómez, C.; Bote-de-Cabo, H.; Paz-Ares, L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023, 129, 1803–1820. [Google Scholar] [CrossRef]
- Bouchard, N.; Daaboul, N. Lung Cancer: Targeted Therapy in 2025. Curr. Oncol. 2025, 32, 146. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Kim, S.; Lee, J.S.; Lee, J.E.; Kim, S.M.; Yang, I.S.; Kim, H.R.; Lee, J.H.; Kim, S.; Cho, B.C.; et al. Next-generation sequencing reveals novel resistance mechanisms and molecular heterogeneity in EGFR-mutant non-small cell lung cancer with acquired resistance to EGFR-TKIs. Lung Cancer 2017, 113, 106–114. [Google Scholar] [CrossRef]
- Nakanishi, T.; Menju, T.; Nishikawa, S.; Takahashi, K.; Miyata, R.; Shikuma, K.; Sowa, T.; Imamura, N.; Hamaji, M.; Motoyama, H.; et al. The synergistic role of ATP-dependent drug efflux pump and focal adhesion signaling pathways in vinorelbine resistance in lung cancer. Cancer Med. 2018, 7, 408–419. [Google Scholar] [CrossRef]
- Lin, X.; Liao, Y.; Chen, X.; Long, D.; Yu, T.; Shen, F. Regulation of Oncoprotein 18/Stathmin Signaling by ERK Concerns the Resistance to Taxol in Nonsmall Cell Lung Cancer Cells. Cancer Biother. Radiopharm. 2016, 31, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, G.; Yu, L.; Zhang, C.; Marcucci, F.; Jiang, Y. Fluorofenidone enhances cisplatin efficacy in non-small cell lung cancer: A novel approach to inhibiting cancer progression. Transl. Lung Cancer Res. 2024, 13, 3175–3188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, X.D.; Zhang, M.; Teng, Q.X.; Lei, Z.N.; Cai, C.Y.; Wang, J.Q.; Wu, Z.X.; Yang, Y.; Chen, X.; Guo, H.; et al. Mobocertinib antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells: In vitro and in vivo studies. Cancer Lett. 2024, 607, 217309. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Yang, Y.; Wang, Y.; Zhu, W.; Deng, X.; Chen, T.; Gao, C.; Zhang, Y.; Yang, W.; et al. Crizotinib resistance reversal in ALK-positive lung cancer through zeolitic imidazolate framework-based mitochondrial damage. Acta Biomater. 2024, 185, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, X.; Nie, S.; Liu, J.; Wang, S. Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed. Pharmacother. 2022, 157, 113993. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Deng, Z.; Lei, C.; Ding, X.; Li, J.; Wang, C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024, 13, 441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Selvaraj, N.R.; Nandan, D.; Nair, B.G.; Nair, V.A.; Venugopal, P.; Aradhya, R. Oxidative Stress and Redox Imbalance: Common Mechanisms in Cancer Stem Cells and Neurodegenerative Diseases. Cells 2025, 14, 511. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Song, S. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals 2023, 16, 802. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy—A mini-review. Int. J. Med Sci. 2020, 17, 2964–2973. [Google Scholar] [CrossRef]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Psiuk, D.; Nowak, E.; Rocka, A.; Cholewa, K.; Filip, A. Nanotechnologia-w-obliczu-nowotworów. J. Life Med. Sci. 2020, 2, 28. [Google Scholar]
- Soukar, J.; Peppas, N.A.; Gaharwar, A.K. Organelle-Targeting Nanoparticles. In Advanced Science; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2025; Volume 12. [Google Scholar] [CrossRef]
- Jin, X.; Heidari, G.; Hua, Z.; Lei, Y.; Huang, J.; Wu, Z.; Paiva-Santos, A.C.; Guo, Z.; Male, H.K.; Neisiany, R.E.; et al. Nanoengineered polymers and other organic materials in lung cancer treatment: Bridging the gap between research and clinical applications. Eur. Polym. J. 2024, 208, 112891. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Guo, S.; Zhang, W.; Fang, B.; Wang, S. Moving beyond traditional therapies: The role of nanomedicines in lung cancer. Front. Pharmacol. 2024, 15, 1363346. [Google Scholar] [CrossRef]
- Sarma, K.; Akther, M.H.; Ahmad, I.; Afzal, O.; Altamimi, A.S.A.; Alossaimi, M.A.; Jaremko, M.; Emwas, A.H.; Gautam, P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024, 29, 1076. [Google Scholar] [CrossRef] [PubMed]
- Ganpisetti, R.; Giridharan, S.; Vaskuri, G.S.S.J.; Narang, N.; Basim, P.; Dokmeci, M.R.; Ermis, M.; Rojekar, S.; Gholap, A.D.; Kommineni, N.; et al. Biological Nanocarriers in Cancer Therapy: Cutting Edge Innovations in Precision Drug Delivery. Biomolecules 2025, 15, 802. [Google Scholar] [CrossRef]
- Arandhara, A.; Bhuyan, P.; Das, B.K. Exploring lung cancer microenvironment: Pathways and nanoparticle-based therapies. Discov. Oncol. 2025, 16, 159. [Google Scholar] [CrossRef]
- Jawwad Saif, M.; Muhammad Asif, H.; Naveed, M. Properties and modification methods of halloysite nanotubes: A state-of-the-art review. J. Chil. Chem. Soc. 2018, 63, 4109–4125. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Zakaria, Y.; Gladich, I.; Kochkodan, V.; Lawler, J. XPS, structural and antimicrobial studies of novel functionalized halloysite nanotubes. Sci. Rep. 2022, 12, 21633. [Google Scholar] [CrossRef]
- Biddeci, G.; Spinelli, G.; Colomba, P.; di Blasi, F. Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field. Int. J. Mol. Sci. 2022, 23, 11518. [Google Scholar] [CrossRef]
- Sagare, R.D.; Dasankoppa, F.S.; Sholapur, H.N.; Burga, K. Halloysite nanotubes: Design, characterization and applications. A review. Farmacia 2021, 69, 208–214. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, Y.; Mo, S.; Zhang, C.; Zhuang, N.; Zheng, H. Cinnamon Essential Oil-Loaded Halloysite Nanotubes Applied in Degradable Film: Characterization and Non-Contact Antimicrobial Activity. Polymers 2025, 17, 1144. [Google Scholar] [CrossRef]
- Adams, I.; Adi-Dako, O.; Appiah-Opong, R.; Ofori-Attah, E.; Aning, A.; Ofori, K.E.; Nyankson, E.; Amponsah, S.K. In Vitro Anticancer Activities of Curcumin-Loaded Copper Oxide–Halloysite Nanotubes Composite. J. Nanotechnol. 2025, 2025, 17. [Google Scholar] [CrossRef]
- Zhang, X.; Heidari Majd, M. Synthesis of halloysite nanotubes decorated with green silver nanoparticles to investigate cytotoxicity, lipid peroxidation and induction of apoptosis in acute leukemia cells. Sci. Rep. 2023, 13, 17182. [Google Scholar] [CrossRef] [PubMed]
- Biddeci, G.; Spinelli, G.; Colomba, P.; Di Blasi, F. Halloysite Nanotubes and Sepiolite for Health Applications. Int. J. Mol. Sci. 2023, 24, 4801. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Albright, S.; Cacace, M.; Tivon, Y.; Deiters, A. Cell Surface Labeling and Detection of Protein Tyrosine Kinase 7 via Covalent Aptamers. J. Am. Chem. Soc. 2023, 145, 16458–16463. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite nanotubes coated by chitosan for the controlled release of khellin. Polymers 2020, 12, 1766. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Magaña, Y.; Flores-Santos, L.; Montes de Oca, G.; González-Montiel, A.; García-Ramos, J.C.; Mora, C.; Saavedra-Ávila, N.A.; Gudiño-Zayas, M.; González-Ramírez, L.C.; Laclette, J.P.; et al. Toxicological Evaluations in Macrophages and Mice Acutely and Chronically Exposed to Halloysite Clay Nanotubes Functionalized with Polystyrene. ACS Omega 2021, 6, 29882–29892. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, G.; Bruno, F.; Brancato, D.; Sturiale, V.; Grazia D’Amico, A.; Miloto, S.; Pasbakhsh, P.; D’Agata, V.; Saccone, S.; Federico, C. Biocompatibility analysis of halloysite clay nanotubes. Mater. Lett. 2023, 336, 133852. [Google Scholar] [CrossRef]
- Fakhrullina, G.I.; Akhatova, F.S.; Lvov, Y.M.; Fakhrullin, R.F. Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environ. Sci. Nano 2014, 2, 54–59. [Google Scholar] [CrossRef]
- Parkash, M.; Shoaib, M.H.; Sikandar, M.; Yousuf, R.I.; Saleem, M.T.; Ahmed, F.R.; Siddiqui, F. Formulation development, characterization, and mechanistic PBPK modeling of metoclopramide loaded halloysite nanotube (HNT) based drug-in-adhesive type transdermal drug delivery system. Sci. Rep. 2024, 14, 28512. [Google Scholar] [CrossRef]
- Long, Z.; Wu, Y.P.; Gao, G.Y.; Zhang, J.; Ou, X.; He, R.R.; Liu, M. In vitro and in vivo toxicity evaluation of halloysite nanotubes. J. Mater. Chem. B 2018, 6, 7204–7216. [Google Scholar] [CrossRef]
- Fulvio, F.; Pieracci, Y.; Ascrizzi, R.; Bassolino, L.; Flamini, G.; Paris, R. Insights into terpenes profiling and transcriptional analyses during flowering of different Cannabis sativa L. chemotypes. Phytochemistry 2024, 229, 114294. [Google Scholar] [CrossRef]
- Ghosh, D.; Kundu, A.; Chaudhary, N.; Gupta, D.; Dwivedi, M.; Verma, R.S.; Shanker, K.; Kumar, B.; Kumar, N. Unveiling Cannabinoids and Terpenes Diversity in Cannabis sativa L. From Northern India for Future Breeding Strategies. Chem. Biodivers. 2025, 22, e202402278. [Google Scholar] [CrossRef]
- Lavi, Y.; Kogan, N.M.; Topping, L.M.; Liu, C.; McCann, F.E.; Williams, R.O.; Breuer, A.; Yekhtin, Z.; Ezra, A.F.; Gallily, R.; et al. Novel Synthesis of C-Methylated Phytocannabinoids Bearing Anti-inflammatory Properties. J. Med. Chem. 2023, 66, 5536–5549. [Google Scholar] [CrossRef]
- Yang, L.; Decas, T.; Zhang, Y.; Alassane-Kpembi, I. Cannabidiol Mitigates Deoxynivalenol-Induced Intestinal Toxicity by Regulating Inflammation, Oxidative Stress, and Barrier Integrity. Toxins 2025, 17, 241. [Google Scholar] [CrossRef]
- Romozzi, M.; Scipioni, L.; Di Tella, S.; Silveri, M.C.; Cupini, L.M.; Vollono, C.; Maccarrone, M.; Calabresi, P. Genetic characterization of the endocannabinoid system and psychiatric features in patients with migraine and medication overuse headache. Cephalalgia 2025, 45, 3331024251314460. [Google Scholar] [CrossRef]
- Klawitter, J.; Clauw, A.D.; Seifert, J.A.; Klawitter, J.; Tompson, B.; Sempio, C.; Ingram, S.L.; Christians, U.; Moreland, L.W. Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis-A Novel Target for the Treatment of Pain and Inflammation? Int. J. Mol. Sci. 2025, 26, 5707. [Google Scholar] [CrossRef]
- Chelimsky, G.; Conant, L.; Simpson, P.; Zhang, L.; Marchand, S.; Hillard, C.; Chelimsky, T. Novel findings regarding the role of the endocannabinoid system in pediatric functional gastrointestinal disorders. PAIN Rep. 2025, 10, e1273. [Google Scholar] [CrossRef]
- An, D.; Peigneur, S.; Hendrickx, L.A.; Tytgat, J. Targeting cannabinoid receptors: Current status and prospects of natural products. Int. J. Mol. Sci. 2020, 21, 5064. [Google Scholar] [CrossRef]
- Mackie, K. Cannabinoid receptors: Where they are and what they do. J. Neuroendocr. 2008, 20, 10–14. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, Y.N.; Na, H.H.; Kim, D.Y.; Lee, H.J.; Kwon, T.H.; Park, J.S.; Kim, K.C. Cannabigerol Treatment Shows Antiproliferative Activity and Causes Apoptosis of Human Colorectal Cancer Cells. J. Pharmacopunct. 2024, 27, 332–339. [Google Scholar] [CrossRef]
- Almeida, C.F.; Correia-da-Silva, G.; Ribeiro, A.P.; Teixeira, N.; Amaral, C. Impact of minor cannabinoids on key pharmacological targets of estrogen receptor-positive breast cancer. Biochim. et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2025, 1870, 159658. [Google Scholar] [CrossRef]
- Bęben, D.; Siwiela, O.; Szyjka, A.; Graczyk, M.; Rzepka, D.; Barg, E.; Moreira, H. Phytocannabinoids CBD, CBG, and their Derivatives CBD-HQ and CBG-A Induced In Vitro Cytotoxicity in 2D and 3D Colon Cancer Cell Models. Curr. Issues Mol. Biol. 2024, 46, 3626–3639. [Google Scholar] [CrossRef]
- Lacerda, M.; Carona, A.; Castanheira, S.; Falcão, A.; Bicker, J.; Fortuna, A. Pharmacokinetics of Non-Psychotropic Phytocannabinoids. Pharmaceutics 2025, 17, 236. [Google Scholar] [CrossRef]
- Lee, X.C.; Werner, E.; Falasca, M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers 2021, 13, 1211. [Google Scholar] [CrossRef]
- Salum, K.C.R.; Miranda, G.B.A.; Dias, A.L.; Carneiro, J.R.I.; Bozza, P.T.; da Fonseca, A.C.P.; Silva, T. The endocannabinoid system in cancer biology: A mini-review of mechanisms and therapeutic potential. Oncol. Rev. 2025, 19, 1573797. [Google Scholar] [CrossRef]
- Preet, A.; Qamri, Z.; Nasser, M.W.; Prasad, A.; Shilo, K.; Zou, X.; Groopman, J.E.; Ganju, R.K. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev. Res. 2011, 4, 65–75. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, T.; Kwon, H.; Park, Y.N.; Kwon, T.H.; Hong, M.; Choi, K.C.; Ham, J.; Kim, Y.J. Cannabidiol potentiates p53-driven autophagic cell death in non-small cell lung cancer following DNA damage: A novel synergistic approach beyond canonical pathways. Exp. Mol. Med. 2025, 57, 979–989. [Google Scholar] [CrossRef]
- Tabatabaei, K.; Moazzezi, S.; Emamgholizadeh, M.; Vaez, H.; Baradaran, B.; Shokouhi, B. Improved Therapeutic Efficacy of Doxorubicin Chemotherapy with Cannabidiol in 4T1 Mice Breast Cancer Model. Cancer Med. 2024, 13, e70395. [Google Scholar] [CrossRef]
- Krauze, I.; Greb-Markiewicz, B.; Kłopot, A.; Maciejewska, K.; Bryk, M.; Krzystek-Korpacka, M. Neutrophil extracellular traps and cannabinoids: Potential in cancer metastasis. Front. Oncol. 2025, 15, 1595913. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, Y.; Pan, Z.; Li, M.; Liu, X.; Chen, X.; Qu, G.; Zhou, L.; Xu, M.; Zheng, Q.; et al. Cannabidiol induces cell cycle arrest and cell apoptosis in human gastric cancer SGC-7901 cells. Biomolecules 2019, 9, 302. [Google Scholar] [CrossRef]
- Francisco Molina-Holgado, C.; Garcia-Arencibia, M.; Molina-Holgado, E.; Molina-Holgado, F. Effect of endocannabinoid signalling on cell fate: Life, death, differentiation and proliferation of brain cells. Br. J. Pharmacol. 2019, 176, 1361. [Google Scholar]
- Kisková, T.; Mungenast, F.; Suváková, M.; Jäger, W.; Thalhammer, T. Future aspects for cannabinoids in breast cancer therapy. Int. J. Mol. Sci. 2019, 20, 1673. [Google Scholar] [CrossRef] [PubMed]
- Caffarel, M.M.; Sarrió, D.; Palacios, J.; Guzmán, M.; Sánchez, C. Δ9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 2006, 66, 6615–6621. [Google Scholar] [CrossRef]
- Nahler, G. Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users. Onco 2024, 4, 287–321. [Google Scholar] [CrossRef]
- Roberts, M.; Brown, M.R.D.; Moreno-Sanz, G. NHS-Reimbursed Cannabis Flowers for Cancer Palliative Care and the Management of Chemotherapy-Induced Nausea and Vomiting: An Autobiographical Case Report. Cureus 2024, 16, e61791. [Google Scholar] [CrossRef] [PubMed]
- Braun, I.M.; Bohlke, K.; Abrams, D.I.; Anderson, H.; Balneaves, L.G.; Bar-Sela, G.; Bowles, D.W.; Chai, P.R.; Damani, A.; Gupta, A.; et al. Cannabis and Cannabinoids in Adults with Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1575–1593. [Google Scholar] [CrossRef]
- Couraud, S.; Molinier, O.; Sabatini, M.; Thomassin, S.; Haouachi, R.; Levrat, V.; Ghalloussi-Tebai, H.; Belle, A.; Mosser, L.; Larive, S.; et al. Outcomes of cannabis smoking in patients with lung cancer: Findings from KBP-CPHG-2020. Respir. Med. Res. 2025, 88, 101174. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P. Long-Lasting Cigarette Smoking Alterations in Immune Function Occur in Cannabis Smokers, Possibly Rendering Them Vulnerable to Smoking-Related Tumors in Later Life. Am. J. Clin. Oncol. Cancer Clin. Trials 2025. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I.; Vizoso, H.P.; Shade, S.B.; Jay, C.; Kelly, M.E.; Benowitz, N.L. Vaporization as a smokeless cannabis delivery system: A pilot study. Clin. Pharmacol. Ther. 2007, 82, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Ogintz, M.; Almog, S. The pharmacokinetics, efficacy, safety, and ease of use of a novel portable metered-dose cannabis inhaler in patients with chronic neuropathic pain: A phase 1a study. J. Pain Palliat. Care Pharmacother. 2014, 28, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Kong, Y.; Peng, J.; Sun, J.; Fan, B. Enhanced oral bioavailability of cannabidiol by flexible zein nanoparticles: In vitro and pharmacokinetic studies. Front. Nutr. 2024, 11, 1431620. [Google Scholar] [CrossRef]
- Elizabeth, S.; Jensen, S.S.; Kolli, A.R.; Nikolajsen, G.N.; Bruun, H.Z.; Hoeng, J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals 2024, 17, 244. [Google Scholar] [CrossRef]
- Blebea, N.M.; Pricopie, A.I.; Vlad, R.A.; Hancu, G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int. J. Mol. Sci. 2024, 25, 4204. [Google Scholar] [CrossRef]
- Amenta, A.; Nordio, G.; Piazzola, F.; Di Paolo, M.L.; Milani, F.; Giacomini, M.; Citarella, A.; Ciriello, U.; Paladino, G.; Pellegrino, S.; et al. Self-Assembled Cannabigerol-Based Nanoparticles: Design, Synthesis, and Antiproliferative Activity. Pharmaceutics 2025, 17, 636. [Google Scholar] [CrossRef]
- Taudul, J.; Celej, J.; Żelechowska-Matysiak, K.; Kępińska, D.; Majkowska-Pilip, A.; Strawski, M.; Krysiński, P.; Nieciecka, D. Tailored Iron Oxide Nanoparticles as Potential Cannabinoid Carriers for Anti-Cancer Treatment. Biomolecules 2025, 15, 230. [Google Scholar] [CrossRef] [PubMed]
- Sabit, H.; Pawlik, T.M.; Radwan, F.; Abdel-Hakeem, M.; Abdel-Ghany, S.; Wadan, A.H.S.; Elzawahri, M.; El-Hashash, A.; Arneth, B. Precision nanomedicine: Navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery. In Molecular Cancer; BioMed Central Ltd.: London, UK, 2025; Volume 24. [Google Scholar] [CrossRef]
- Boyacıoğlu, Ö.; Varan, C.; Bilensoy, E.; Aykut, Z.G.; Reçber, T.; Nemutlu, E.; Kılıç, N.; Korkusuz, P. A novel injectable nanotherapeutic platform increasing the bioavailability and anti-tumor efficacy of Arachidonylcyclopropylamide on an ectopic non-small cell lung cancer xenograft model: A randomized controlled trial. Int. J. Pharm. 2024, 670, 125153. [Google Scholar] [CrossRef]
- Lazzarotto Rebelatto, E.R.; Rauber, G.S.; Caon, T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int. J. Pharm. 2023, 635, 122727. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Imran, M.; Sheikh, A.; Tiwari, N.; Jaimini, A.; Kesharwani, P.; Jain, G.K.; Ahmad, F.J. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. Environ. Res. 2023, 233, 116454. [Google Scholar] [CrossRef]
- Durán-Lobato, M.; Álvarez-Fuentes, J.; Fernández-Arévalo, M.; Martín-Banderas, L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci. Rep. 2022, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.S.; Baliga, V.; Londhe, V.Y. Liposomal Formulations: A Recent Update. Pharmaceutics 2024, 17, 36. [Google Scholar] [CrossRef] [PubMed]
Nanocarrier Type | Size Range (nm) | Key Components | Targeting Strategy | Advantages | Limitations | Representative Application | FDA Approval Status | Patient Outcome |
---|---|---|---|---|---|---|---|---|
Polymeric Nanoparticles | 50–200 | PLA, PLGA, Chitosan | Active (EGFR, integrins), Passive (EPR) | Controlled release, biocompatibility | Limited stability in circulation | PLGA-siRNA for NSCLC [26] | Not FDA approved | N/A |
Liposomes | 80–150 | Phospholipids, cholesterol | EGFR, transferrin, Passive (EPR) | Low toxicity, enhanced bioavailability | Risk of leakage or degradation | Liposomal DOX, Oxaliplatin [27] | Liposomal DOX FDA approved for other cancers; NSCLC indication under clinical trials | Clinical: improved drug tolerability; variable efficacy data |
Solid Lipid Nanoparticles (SLNs) | 50–180 | Lipids with high melting points | Similar to liposomes | Higher stability, better PK profile | Limited drug loading capacity | SLN-Paclitaxel [26] | Not FDA approved for NSCLC; some formulations approved for other indications | Preclinical: enhanced paclitaxel delivery, reduced systemic toxicity |
Metallic Nanoparticles | 10–100 | AuNPs, AgNPs | Surface ligand-conjugated | Photothermal properties, imaging compatibility | Potential toxicity, accumulation risk | Photothermal therapy [28] | Not FDA approved; in clinical research | Early clinical trials: improved local tumour control; limited survival data |
Hybrid Organic–Inorganic | 50–150 | Polymer + metal core/shells | Dual (EGFR + integrins) | Multimodal targeting, synergistic therapy | Complex synthesis | Chemo-photothermal hybrid systems [29] | Not FDA approved | N/A |
Biomimetic Nanocarriers | 100–200 | Cancer/immune cell membrane-coated particles | Homotypic targeting, immune evasion | Personalised therapy, immune modulation | Standardisation and immunogenicity | Cancer cell-membrane-coated NPs [22] | Not FDA approved | N/A |
TME-Responsive Nanocarriers | 50–120 | pH-, ROS-, or hypoxia-sensitive polymers | Stimuli-triggered | High specificity, controlled drug release in the tumour niche | Dependent on precise TME conditions | ROS-responsive micelles, pH-sensitive NPs [30] | Not FDA approved | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bęben, D.; Moreira, H.; Barg, E. Phytocannabinoids and Nanotechnology in Lung Cancer: A Review of Therapeutic Strategies with a Focus on Halloysite Nanotubes. Pharmaceuticals 2025, 18, 1244. https://doi.org/10.3390/ph18091244
Bęben D, Moreira H, Barg E. Phytocannabinoids and Nanotechnology in Lung Cancer: A Review of Therapeutic Strategies with a Focus on Halloysite Nanotubes. Pharmaceuticals. 2025; 18(9):1244. https://doi.org/10.3390/ph18091244
Chicago/Turabian StyleBęben, Dorota, Helena Moreira, and Ewa Barg. 2025. "Phytocannabinoids and Nanotechnology in Lung Cancer: A Review of Therapeutic Strategies with a Focus on Halloysite Nanotubes" Pharmaceuticals 18, no. 9: 1244. https://doi.org/10.3390/ph18091244
APA StyleBęben, D., Moreira, H., & Barg, E. (2025). Phytocannabinoids and Nanotechnology in Lung Cancer: A Review of Therapeutic Strategies with a Focus on Halloysite Nanotubes. Pharmaceuticals, 18(9), 1244. https://doi.org/10.3390/ph18091244