Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries
Abstract
1. Introduction
Background
2. Results
2.1. Co-Crystal Structure of ALK with PHA-E429
2.2. Dataset and Compound Distribution
2.3. AI Model Performance and Selection
2.4. Molecular Docking Assay
2.5. Drug-like Properties Evaluation of the Selected Hits
2.6. Dynamic Stability of the Protein–Ligand Complexes
2.7. Residue Flexibility and Binding Site Stability
2.8. Compactness of the Protein Structure
2.9. Protein Dominant Collective Motions
2.10. Hydrogen Bond Interaction Analysis
2.11. Dynamic Residue Network and Shortest Path Analysis
2.12. Binding Free Energy Calculations
3. Discussion
3.1. Study Strengths
3.2. Future Directions
4. Methodology
4.1. Study Objective
4.2. Protein Crystal Coordinates Selection
4.3. Compounds Selection and Preparation
4.4. Data Retrieval
4.5. Molecular Descriptor Calculation
4.6. Model Training and Evaluation
4.7. Virtual Screening of Natural Products
4.8. Molecular Docking Simulation
4.9. Prediction of Pharmacokinetic and Physicochemical Properties
4.10. Molecular Dynamic Simulations
4.11. Protein Stability and Flexibility Analysis
4.12. Principal Component Analysis (PCA)
4.13. Hydrogen Bond Analysis
4.14. Dynamic Cross-Correlation Network Analysis
4.15. Binding Free Energy Calculations (MM/GBSA)
4.16. Data Analysis
5. Conclusions
6. Limitations
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALK | Anaplastic lymphoma kinase |
NSCLC | Non-small cell lung cancer |
TKI | Tyrosine kinase inhibitor |
PCA | Principal component analysis |
MD | Molecular dynamics |
RMSD | Root-mean-square deviation |
RMSF | Root-mean-square fluctuation |
MM/GBSA | Molecular mechanics/generalized Born surface area |
AUC | Area under the curve |
ROC | Receiver operating characteristic |
ADMET | Absorption, distribution, metabolism, excretion, and toxicity |
References
- Sharma, R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 2022, 27, 665–675. [Google Scholar] [CrossRef]
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019, 12, 134. [Google Scholar] [CrossRef]
- Cognigni, V.; Pecci, F.; Lupi, A.; Pinterpe, G.; De Filippis, C.; Felicetti, C.; Cantini, L.; Berardi, R. The landscape of ALK-rearranged non-small cell lung cancer: A comprehensive review of clinicopathologic, genomic characteristics, and therapeutic perspectives. Cancers 2022, 14, 4765. [Google Scholar] [CrossRef]
- Kumar, D.; Hassan, M.I. Regulation of receptor tyrosine kinase gene expression. In Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders; Elsevier: Amsterdam, The Netherlands, 2023; pp. 245–276. [Google Scholar]
- Mano, H. Non-solid oncogenes in solid tumors: EML4–ALK fusion genes in lung cancer. Cancer Sci. 2008, 99, 2349–2355. [Google Scholar] [CrossRef]
- Qayum, A.; Shah, S.M.; Singh, S.K. Divergent signaling pathways may lead to convergence in cancer therapy-A review. Cell. Physiol. Biochem. 2022, 56, 180–208. [Google Scholar]
- Wang, L.; Sheng, Z.; Zhang, J.; Song, J.; Teng, L.; Liu, L.; Li, Q.; Wang, B.; Li, B. Comparison of lorlatinib, alectinib and brigatinib in ALK inhibitor–naive/untreated ALK-positive advanced non-small-cell lung cancer: A systematic review and network meta-analysis. J. Chemother. 2022, 34, 87–96. [Google Scholar] [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Sequist, L.V.; Lin, J.J. Third-generation EGFR and ALK inhibitors: Mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 2022, 19, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol. Res. 2013, 68, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev. 2020, 121, 3297–3351. [Google Scholar] [CrossRef]
- Sharma, G.G.; Mota, I.; Mologni, L.; Patrucco, E.; Gambacorti-Passerini, C.; Chiarle, R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers 2018, 10, 62. [Google Scholar] [CrossRef]
- Rosenzweig, S.A. Acquired resistance to drugs targeting tyrosine kinases. Adv. Cancer Res. 2018, 138, 71–98. [Google Scholar]
- Gemelli, M.; Albini, A.; Catalano, G.; Incarbone, M.; Cannone, M.; Balladore, E.; Ricotta, R.; Pelosi, G. Navigating resistance to ALK inhibitors in the lorlatinib era: A comprehensive perspective on NSCLC. Expert Rev. Anticancer Ther. 2024, 24, 347–361. [Google Scholar] [CrossRef]
- Iragavarapu, C.; Mustafa, M.; Akinleye, A.; Furqan, M.; Mittal, V.; Cang, S.; Liu, D. Novel ALK inhibitors in clinical use and development. J. Hematol. Oncol. 2015, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, C.; Qi, X.; Zhou, L.; Liu, D.; Lv, H.; Li, T.; Sun, D.; Zhang, X. Distinctive targetable genotypes of younger patients with lung adenocarcinoma: A cBioPortal for cancer genomics data base analysis. Cancer Biol. Ther. 2020, 21, 26–33. [Google Scholar] [CrossRef]
- Li, G.; Lou, H.X. Strategies to diversify natural products for drug discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Gao, Y.; Li, Y.; Li, Y. Strategies for targeting undruggable targets. Expert Opin. Drug Discov. 2022, 17, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Pinjari, N.S. A Review of Sustainable Paradigms in Contemporary Drug Discovery and Development. J. Pharma Insights Res. 2025, 3, 001–018. [Google Scholar] [CrossRef]
- Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem. 2018, 143, 1277–1300. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.C.; Kumar, R.; Davis, R.A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep. 2016, 33, 372–381. [Google Scholar] [CrossRef]
- Garcia-Castro, M.; Zimmermann, S.; Sankar, M.G.; Kumar, K. Scaffold diversity synthesis and its application in probe and drug discovery. Angew. Chem. Int. Ed. 2016, 55, 7586–7605. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20—A free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef] [PubMed]
- Bossi, R.T.; Saccardo, M.B.; Ardini, E.; Menichincheri, M.; Rusconi, L.; Magnaghi, P.; Orsini, P.; Avanzi, N.; Borgia, A.L.; Nesi, M. Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry 2010, 49, 6813–6825. [Google Scholar] [CrossRef]
- Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer 2018, 17, 30. [Google Scholar] [CrossRef]
- Golding, B.; Luu, A.; Jones, R.; Viloria-Petit, A.M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol. Cancer 2018, 17, 1–15. [Google Scholar] [CrossRef]
- Schenone, S.; Brullo, C.; Musumeci, F.; Radi, M.; Botta, M. ATP-competitive inhibitors of mTOR: An update. Curr. Med. Chem. 2011, 18, 2995–3014. [Google Scholar] [CrossRef]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- Martins, D.M.; Fernandes, P.O.; Vieira, L.A.; Maltarollo, V.G.; Moraes, A.H. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. ChemBioChem 2024, 25, e202400296. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.N. Protein kinase inhibitors: Contributions from structure to clinical compounds. Q. Rev. Biophys. 2009, 42, 1–40. [Google Scholar] [CrossRef]
- Narayanan, D. Structural Determinants of Ligand Binding to ATP Dependent Enzymes: Studies of Protein Kinase and Heat Shock Protein 70. Ph.D. Thesis, UiT The Arctic University of Norway, Tromso, Norway, 2017. [Google Scholar]
- Husain, A.; Makadia, V.; Valicherla, G.R.; Riyazuddin, M.; Gayen, J.R. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev. Res. 2022, 83, 825–841. [Google Scholar] [CrossRef]
- Peakman, M.C.; Troutman, M.; Gonzales, R.; Schmidt, A. Experimental Screening Strategies to Reduce Attrition Risk. In Attrition in the Pharmaceutical Industry: Reasons, Implications, and Pathways Forward; Wiley: Oxford, UK, 2015; pp. 180–214. [Google Scholar]
- Engh, R.A.; Bossemeyer, D. Structural aspects of protein kinase control—Role of conformational flexibility. Pharmacol. Ther. 2002, 93, 99–111. [Google Scholar] [CrossRef]
- Li, M.; Rehman, A.U.; Liu, Y.; Chen, K.; Lu, S. Dual roles of ATP-binding site in protein kinases: Orthosteric inhibition and allosteric regulation. Adv. Protein Chem. Struct. Biol. 2021, 124, 87–119. [Google Scholar]
- Xiao, Y.; Liddle, J.C.; Pardi, A.; Ahn, N.G. Dynamics of protein kinases: Insights from nuclear magnetic resonance. Acc. Chem. Res. 2015, 48, 1106–1114. [Google Scholar] [CrossRef]
- Meng, Y.; Pond, M.P.; Roux, B. Tyrosine kinase activation and conformational flexibility: Lessons from Src-family tyrosine kinases. Acc. Chem. Res. 2017, 50, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Bhutoria, S.; Ghoshal, N. Deciphering ligand dependent degree of binding site closure and its implication in inhibitor design: A modeling study on human adenosine kinase. J. Mol. Graph. Model. 2010, 28, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.; Jordan, E.J.; Park, J.H.; Suresh, K.; Smith, C.M.; Lemmon, A.A.; Mossé, Y.P.; Lemmon, M.A.; Radhakrishnan, R. Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proc. Natl. Acad. Sci. USA 2021, 118, e2019132118. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem. Biol. Drug Des. 2022, 100, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tong, J.; Wang, T.; Wang, T.; Xu, L.; Wang, Z.; Hou, T.; Pan, P. Dissecting the role of ALK double mutations in drug resistance to lorlatinib with in-depth theoretical modeling and analysis. Comput. Biol. Med. 2024, 169, 107815. [Google Scholar] [CrossRef]
- Badrinarayan, P.; Sastry, G.N. Rational approaches towards lead optimization of kinase inhibitors: The issue of specificity. Curr. Pharm. Des. 2013, 19, 4714–4738. [Google Scholar] [CrossRef] [PubMed]
- Levinson, N. Structural Studies of Tyrosine Kinase Regulation and Substrate Specificity; University of California: Berkeley, CA, USA, 2008. [Google Scholar]
- Lee, C.C.; Jia, Y.; Li, N.; Sun, X.; Ng, K.; Ambing, E.; Gao, M.-Y.; Hua, S.; Chen, C.; Kim, S. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem. J. 2010, 430, 425–437. [Google Scholar] [CrossRef]
- Dixit, A.; Verkhivker, G.M. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: Thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput. Biol. 2009, 5, e1000487. [Google Scholar] [CrossRef]
- Elshatlawy, M.; Sampson, J.; Clarke, K.; Bayliss, R. EML4-ALK biology and drug resistance in non-small cell lung cancer: A new phase of discoveries. Mol. Oncol. 2023, 17, 950–963. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 2011, 101, 2525–2534. [Google Scholar] [CrossRef]
- Unni, S.; Huang, Y.; Hanson, R.M.; Tobias, M.; Krishnan, S.; Li, W.W.; Nielsen, J.E.; Baker, N.A. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 2011, 32, 1488–1491. [Google Scholar] [CrossRef]
- Rostkowski, M.; Olsson, M.H.; Søndergaard, C.R.; Jensen, J.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 2011, 11, 6. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro, V.W.D. Amber 2024; University of California: San Francisco, CA, USA, 2024. [Google Scholar]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Imambi, S.; Prakash, K.B.; Kanagachidambaresan, G.P. Programming with TensorFlow: Solution for Edge Computing Applications; Springer Cham: Cham, Switzerland, 2021; pp. 87–104. [Google Scholar]
- Bento, A.P.; Hersey, A.; Félix, E.; Landrum, G.; Gaulton, A.; Atkinson, F.; Bellis, L.J.; De Veij, M.; Leach, A.R. An open source chemical structure curation pipeline using RDKit. J. Cheminform. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial; The Scripps Research Institute Molecular Graphics Laboratory: La Jolla, CA, USA, 2012; Volume 10550, p. 1000. [Google Scholar]
- Vassetti, D.; Pagliai, M.; Procacci, P. Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. J. Chem. Theory Comput. 2019, 15, 1983–1995. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Anandakrishnan, R.; Onufriev, A.V. Building water models: A different approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. [Google Scholar] [CrossRef]
- Davidchack, R.L.; Handel, R.; Tretyakov, M. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 2009, 130, 234101. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Bisong, E. Matplotlib and seaborn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Springer: Berlin/Heidelberg, Germany, 2019; pp. 151–165. [Google Scholar]
ZINC-ID | 2D Structure | Docking Score | RMSD (Å) |
---|---|---|---|
ZINC3870414 | −10.31 | 1.8 | |
ZINC31155769 | −9.46 | 1.5 | |
ZINC15657732 | −9.14 | 2.7 | |
ZINC8214398 | −9.05 | 2.0 | |
ZINC28540146 | −8.90 | 2.6 | |
ZINC4654800 | −8.90 | 1.2 | |
2XBA (PHA-E429) | −8.78 | 1.2 |
Complex | MM-GBSA Calculations (All Unit’s kcal/mol)断Differences (Complex–Receptor–Ligand) | ||||||
---|---|---|---|---|---|---|---|
ΔEVDW | ΔEEL | ΔEGB | ΔESASA | ΔGGAS | ΔGSOLV | ΔGTOTAL | |
2XBA | −49.50 ± 0.44 | −117.11 ± 0.11 | 136.11 ± 0.43 | −6.06 ± 0.011 | −166.61 ± 0.47 | 130.04 ± 0.43 | −36.57 ± 0.12 |
ZINC3870414 | −45.36 ± 0.12 | −78.26 ± 0.20 | 85.53 ± 0.10 | −7.93 ± 0.005 | −123.62 ± 0.17 | 77.59 ± 0.10 | −46.02 ± 0.12 |
ZINC31155769 | −38.95 ± 0.16 | −49.32 ± 0.37 | 54.63 ± 0.20 | −6.05 ± 0.21 | −90.28 ± 0.44 | 48.58 ± 0.20 | −39.69 ± 0.36 |
ZINC15657732 | −47.50 ± 0.10 | 40.04 ± 0.43 | 52.72 ± 0.31 | −6.06 ± 0.011 | −87.55 ± 0.42 | 46.65 ± 0.30 | −40.89 ± 0.16 |
ZINC8214398 | −42.26 ± 0.12 | −28.93 ± 0.30 | 40.05 ± 0.24 | −5.03 ± 0.012 | −81.20 ± 0.31 | 35.01 ± 0.24 | −46.18 ± 0.12 |
ZINC28540146 | −37.21 ± 0.11 | −51.00 ± 0.31 | 54.46 ± 0.18 | −6.10 ± 0.010 | −88.22 ± 0.29 | 48.35 ± 0.17 | −39.86 ± 0.17 |
ZINC4654800 | −40.03 ± 0.13 | −58.34 ± 0.74 | 63.65 ± 0.62 | −5.84 ± 0.021 | −98.37 ± 0.78 | 57.81 ± 0.61 | −40.56 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alateeq, R. Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries. Pharmaceuticals 2025, 18, 1178. https://doi.org/10.3390/ph18081178
Alateeq R. Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries. Pharmaceuticals. 2025; 18(8):1178. https://doi.org/10.3390/ph18081178
Chicago/Turabian StyleAlateeq, Rana. 2025. "Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries" Pharmaceuticals 18, no. 8: 1178. https://doi.org/10.3390/ph18081178
APA StyleAlateeq, R. (2025). Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries. Pharmaceuticals, 18(8), 1178. https://doi.org/10.3390/ph18081178