Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach
Abstract
1. Introduction
2. Results
2.1. Per os Administration of Nigella Sativa Fractions on Rats’ Weight
2.2. Black Cumin Effect on the Variation in Liver and Kidney Weight Ratios
2.3. Per os Administration of Different Nigella Sativa Fractions on Water Consumption and Urine Volume in CCl4-Intoxicated Rats
2.4. Nigella Sativa Effect on Liver Markers
2.5. NS Fraction Effects on Direct and Total Bilirubin
2.6. Effects of NS Fractions on Lipid Profile
2.7. Impact of Nigella Sativa Fractions on Urinary Parameters
2.8. Effect of NS Fractions on Plasma Renal Markers
2.9. Effect of NS Fractions on Electrolytes
2.10. Effects of NS Fractions on Hepatic Glycogen
2.11. Effects of NS Fractions on Malondialdehyde (MDA)
2.12. Molecular Docking Study
2.12.1. Interaction with CYP P450 3E1
2.12.2. Interaction with TNF-α
2.12.3. Interaction with COX-2
2.12.4. ADMET Setting Prediction
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extraction Procedure
4.4. Qualitative and Semi-Quantitative Analysis of n-Hexane Extract
4.5. Qualitative and Quantitative Analysis Using High-Performance Liquid Chromatography (HPLC-UV)
4.6. Animals
4.7. Ethical Statement
4.8. Experimental Design
4.9. Blood Collection
4.10. Evaluation of Liver and Kidney Homogenates
4.11. Biochemical Analyses
4.12. Molecular Docking Analysis
4.13. Ligand Preparation
4.14. Evaluation of ADMET Settings
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govind, P. Medicinal plants against liver diseases. Int. Res. J. Pharm. 2011, 2, 115–121. [Google Scholar]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef]
- Renuka, M.; Vijayakumar, N.; Ramakrishnan, A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed. Pharmacother. 2016, 82, 345–354. [Google Scholar] [CrossRef]
- Domenicali, M.; Caraceni, P.; Giannone, F.; Baldassarre, M.; Lucchetti, G.; Quarta, C.; Patti, C.; Catani, L.; Nanni, C.; Lemoli, R.M.; et al. A novel model of CCl4-induced cirrhosis with ascites in the mouse. J. Hepatol. 2009, 51, 991–999. [Google Scholar] [CrossRef]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Finco, D.R. Kidney Function. In Clinical Biochemistry of Domestic Animals, 3rd ed.; Academic Press, Inc.: Cambridge, MA, USA, 1980; ISBN 0123963508. [Google Scholar] [CrossRef]
- Chapman, C.L.; Johnson, B.D.; Parker, M.D.; Hostler, D.; Pryor, R.R.; Schlader, Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature 2021, 8, 108–159. [Google Scholar] [CrossRef]
- Conly, J.M.; Gold, W.; Shafran, S.D. Once-daily aminoglycoside dosing: A new look at an old drug. Can. J. Infect. Dis. 1994, 5, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Khan, Z.; Abumedian, M.; Ibekwe, M.; Musa, K.; Mlawa, G. Acute Renal Impairment in Patients Due to Paracetamol Overdose in the Absence of Hepatic Impairment. Cureus 2021, 13, e20727. [Google Scholar] [CrossRef]
- Dalli, M.; Bekkouch, O.; Azizi, S.E.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. Phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules 2022, 12, 20. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Roudani, A.; Boulbaroud, S.; Ibrahimi, M.; Ahmad, M.; Sultana, S.; Hadda, T.B.; Chafchaouni-Moussaoui, I.; et al. Chemical investigation of Nigella sativa L. seed oil produced in Morocco. J. Saudi Soc. Agric. Sci. 2015, 14, 172–177. [Google Scholar] [CrossRef]
- Hassanien, M.F.R.; Assiri, A.M.A.; Alzohairy, A.M.; Oraby, H.F. Health-promoting value and food applications of black cumin essential oil: An overview. J. Food Sci. Technol. 2015, 52, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Ghedira, K. La nigelle cultivée: Nigella sativa L. (Ranunculaceae). Phytotherapie 2006, 4, 220–226. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; El-Najjar, N.; Schneider-Stock, R. The medicinal potential of black seed (Nigella sativa) and its components. In Lead Molecules from Natural Products; Khan, M.T.H., Ather, A., Eds.; Advances in Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 133–153. [Google Scholar]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef] [PubMed]
- Alami Merrouni, I.; Kharchoufa, L.; Bencheikh, N.; Elachouri, M. Ethnobotanical profile of medicinal plants used by people of North-eastern Morocco:Cross-cultural and historical approach (part I). Ethnobot. Res. Appl. 2021, 21, 1–45. [Google Scholar] [CrossRef]
- Fakchich, J.; Elachouri, M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J. Ethnopharmacol. 2021, 267 Pt 1, 113200. [Google Scholar] [CrossRef]
- Ajjoun, M.; Kharchoufa, L.; Alami Merrouni, I.; Elachouri, M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. J. Ethnopharmacol. 2022, 297, 115532. [Google Scholar] [CrossRef]
- Benkhnigue, O.; Khamar, H.; Bussmann, R.W.; Chaachouay, N.; Zidane, L. Ethnobotanical and ethnopharmacological study of medicinal plants used in treating some liver diseases in the Al-Haouz Rehamna region (Morocco). Ethnobot. Res. Appl. 2023, 25, 1–32. [Google Scholar] [CrossRef]
- Bencheikh, N.; Elbouzidi, A.; Kharchoufa, L.; Ouassou, H.; Merrouni, I.A.; Mechchate, H.; Es-Safi, I.; Hano, C.; Addi, M.; Bouhrim, M.; et al. Inventory of medicinal plants used traditionally to manage kidney diseases in north-eastern Morocco: Ethnobotanical fieldwork and pharmacological evidence. Plants 2021, 10, 1966. [Google Scholar] [CrossRef]
- Kulyar, M.F.-E.-A.; Li, R.; Mehmood, K.; Waqas, M.; Li, K.; Li, J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. Phytomedicine 2021, 85, 153277. [Google Scholar] [CrossRef]
- Dalli, M.; Azizi, S.; Azghar, A.; Saddari, A.; Benaissa, E.; Ben Lahlou, Y.; Elouennass, M.; Maleb, A. Exploring the Potential Antiviral Properties of Nigella sativa L. Against SARS-CoV-2: Mechanisms and Prospects. In Ethnopharmacology and Drug Discovery for COVID-19: Anti-SARS-CoV-2 Agents from Herbal Medicines and Natural Products; Springer: Singapore, 2023; pp. 575–590. [Google Scholar] [CrossRef]
- Dalli, M.; Azizi, S.; Benouda, H.; Azghar, A.; Tahri, M.; Boufalja, B.; Maleb, A.; Gseyra, N. Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 6643765. [Google Scholar] [CrossRef]
- Barashkova, A.S.; Sadykova, V.S.; Salo, V.A.; Zavriev, S.K.; Rogozhin, E.A. Nigellothionins from black cumin (Nigella sativa L.) seeds demonstrate strong antifungal and cytotoxic activity. Antibiotics 2021, 10, 166. [Google Scholar] [CrossRef]
- Hamdan, A.; Ruszymah Haji, I.; Mohd Helmy, M. Effects of Nigella sativa on type-2 diabetes mellitus: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 1630. [Google Scholar] [CrossRef]
- Dehkordi, F.R.; Kamkhah, A.F. Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundam. Clin. Pharmacol. 2008, 22, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Daba, M.H.; Abdel-Rahman, M.S. Hepatoprotective activity of thymoquinone in isolated rat hepatocytes. Toxicol. Lett. 1998, 95, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Lian, L.H.; Wu, Y.L.; Wan, Y.; Nan, J.X. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int. Immunopharmacol. 2013, 15, 275–281. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol. 2001, 76, 45–48. [Google Scholar] [CrossRef]
- Tiwari, A.; Surendra, G.; Meka, S.; Varghese, B.; Vishwakarma, G.; Adela, R. The effect of Nigella sativa on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Hum. Nutr. Metab. 2022, 28, 200146. [Google Scholar] [CrossRef]
- Barakat, E.M.F.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol. 2013, 19, 2529–2536. [Google Scholar] [CrossRef]
- Danladi, J.; Abdulsalam, A.; Timbuak, S.; Ahmed, A.; Mairiga, A.A.; Dahiru, A.U. Hepatoprotective Effect of Black Seed (Nigella sativa) oil on Carbon Tetrachloride (CCl4) Induced Liver Toxicity in Adult Wistar Rats. IOSR J. Dent. Med. Sci. 2013, 4, 56–62. [Google Scholar] [CrossRef]
- Anwer, K.; Mehfooz, Q.U.A.; Tufail, S. The hepato-protective effect of Nigella sativa (black seeds) on alcohol induced hepatotoxicity in rodents. Pak. J. Med. Heal. Sci. 2018, 12, 1447–1451. [Google Scholar]
- Dalli, M.; Daoudi, N.E.; Azizi, S.e.; Benouda, H.; Bnouham, M.; Gseyra, N. Chemical Composition Analysis Using HPLC-UV / GC-MS and Inhibitory Activity of Different Nigella sativa Fractions on Pancreatic α -Amylase and Intestinal Glucose Absorption. Biomed Res. Int. 2021, 2021, 9979419. [Google Scholar] [CrossRef]
- Porubsky, P.R.; Meneely, K.M.; Scott, E.E. Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J. Biol. Chem. 2008, 283, 33698–33707. [Google Scholar] [CrossRef]
- Yende, S.R.; Shah, S.K.; Arora, S.K.; Moharir, K.S.; Lohiya, G.K. In silico prediction of phytoconstituents from Ehretia laevis targeting TNF-α in arthritis. Digit. Chin. Med. 2021, 4, 180–190. [Google Scholar] [CrossRef]
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-molecule inhibition of TNF-alpha. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Peng, H.; Wang, N.; Zhao, M. Inhibition of TNF-α and IL-1 by compounds from selected plants for rheumatoid arthritis therapy: In vivo and in silico studies. Trop. J. Pharm. Res. 2018, 17, 277–285. [Google Scholar] [CrossRef]
- Galani, B.R.T.; Owona, B.A.; Chuisseu, D.P.D.; Machewere, E.; Ngantchouko, C.B.N.; Moundipa, P.F. Hepatoprotective Activity of Leptadenia hastata (Asclepiadaceae) on Acetaminophen-Induced Toxicity in Mice: In Vivo Study and Characterization of Bioactive Compounds through Molecular Docking Approaches. Biomed Res. Int. 2020, 2020, 3807234. [Google Scholar] [CrossRef]
- Thomas, D.; Karle, C.A.; Kiehn, J. Modulation of HERG potassium channel function by drug action. Ann. Med. 2004, 36 (Suppl. 1), 41–46. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Jeong, H.G. Inhibition of cytochrome P450 2E1 expression by oleanolic acid: Hepatoprotective effects against carbon tetrachloride-induced hepatic injury. Toxicol. Lett. 1999, 105, 215–222. [Google Scholar] [CrossRef]
- Malhi, H.; Gores, G.J. Cellular and Molecular Mechanisms of Liver Injury. Gastroenterology 2008, 134, 1641–1654. [Google Scholar] [CrossRef]
- Anand, K.K.; Singh, B.; Chand, D.; Chandan, B.K. An evaluation of Lawsonia alba extract as hepatoprotective agent. Planta Med. 1992, 58, 22–25. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Adam, G.O.; Rahman, M.M.; Lee, S.J.; Kim, G.B.; Kang, H.S.; Kim, J.S.; Kim, S.J. Hepatoprotective effects of Nigella sativa seed extract against acetaminophen-induced oxidative stress. Asian Pac. J. Trop. Med. 2016, 9, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Muthukrishnan, S. Effect of Nigella sativa seed extract on carbon tetrachloride-induced hepatotoxicity in rats. J. Acute Med. 2012, 2, 107–113. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.S. Protective Effect of Nigella sativa Seeds Against Carbon Tetrachloride-induced Liver Damage. Am. J. Chin. Med. 2003, 31, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Al-Seeni, M.N.; El Rabey, H.A.; Zamzami, M.A.; Alnefayee, A.M. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complement. Altern. Med. 2016, 16, 438. [Google Scholar] [CrossRef]
- Pal, D.R.; Nahar, S.; Roy, K.; Talukder, S.A.; Hossain, M.M.; Paul, P.C.; Eva, E.O. Hepatoprotective Effect of Nigella sativa Linn (Kalajira) On Paracetamol-induced Liver Damage. Bangladesh Med. J. 2014, 40, 52–54. [Google Scholar] [CrossRef]
- Shaik, S.H.; Desai, S.D.; Kusal, K.D.; Haseena, S. Hepatoprotective Effect of Nigella sativa Seed in Sterptozotocine Induced Diabetic Albino Rats: Histological Observations. Int. J. Anat. Res. 2016, 4, 2459–2463. [Google Scholar] [CrossRef]
- Hosseinian, S.; Hadjzadeh, M.A.R.; Roshan, N.M.; Khazaei, M.; Shahraki, S.; Mohebbati, R.; Rad, A.K. Renoprotective effect of Nigella sativa against cisplatin-induced nephrotoxicity and oxidative stress in rat. Saudi J. Kidney Dis. Transpl. 2018, 29, 19–29. [Google Scholar] [CrossRef]
- Alsuhaibani, A.M.A. Effect of Nigella sativa against cisplatin induced nephrotoxicity in rats. Ital. J. Food Saf. 2018, 7, 105–109. [Google Scholar] [CrossRef]
- Hannan, M.A.; Zahan, M.S.; Sarker, P.P.; Moni, A.; Ha, H.; Uddin, M.J. Protective effects of black cumin (Nigella sativa) and its bioactive constituent, thymoquinone against kidney injury: An aspect on pharmacological insights. Int. J. Mol. Sci. 2021, 22, 9078. [Google Scholar] [CrossRef] [PubMed]
- Saleem, U.; Ahmad, B.; Rehman, K.; Mahmood, S.; Alam, M.; Erum, A. Nephro-protective effect of vitamin C and Nigella sativa oil on gentamicin associated nephrotoxicity in rabbits. Pak. J. Pharm. Sci. 2012, 25, 727–730. [Google Scholar] [PubMed]
- Adinew, G.M.; Messeha, S.S.; Taka, E.; Badisa, R.B.; Soliman, K.F.A. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients 2022, 14, 4787. [Google Scholar] [CrossRef] [PubMed]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2009, 11, 373–381. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Hosseinzadeh, H. The protective effect of Nigella sativa against liver injury: A review. Iran. J. Basic Med. Sci. 2014, 17, 958–966. [Google Scholar]
- Hackam, D.G. Translating animal research into clinical benefit. Br. Med. J. 2007, 334, 163–164. [Google Scholar] [CrossRef]
- van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can Animal Models of Disease Reliably Inform Human Studies? PLoS Med. 2017, 7, e1000245. [Google Scholar] [CrossRef]
- Choudhary, A.; Ibdah, J.A. Animal Models in Today’s Translational Medicine World. Mo. Med. 2013, 110, 220–222. [Google Scholar]
- Aïssi, V.M.; Soumanou, M.M.; Tchobo, F.P.; Kiki, D. Etude comparative de la qualité des huiles végétales alimentaires raffinées en usage au Bénin. Bull. D’inf. Société Ouest Afr. Chim. 2009, 6, 25–37. [Google Scholar]
- National Insitutes of Health. Public Health Service Policy on Humane Care and Use of Laboratory Animals; National Institutes of Health (U.S.). Office for Protection from Research Risks: Bethesda, MD, USA, 2015; pp. 1–22. [Google Scholar]
- Al Amin, A.S.M.; Menezes, R.G. Carbon Tetrachloride Toxicity; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk Thistle (Silybun marianum) for the Therapy of Liver Disease. Am. J. Gastroenterol. 1998, 93, 139–143. [Google Scholar] [CrossRef]
- Wellington, K.; Adis, B.J. Silymarin: A review of its clinical properties in the management of hepatic disorders. BioDrugs 2001, 15, 465–489. [Google Scholar] [CrossRef] [PubMed]
- Adelina, J.-A.M. Clinical Studies of Silymarin as a Protective Agent Against Liver Damage Caused by Anti-TB Drugs, Methotrexate, and in Cases of Chronic Hepatitis C and Diabetes Mellitus. Pharmacogn. J. 2022, 14, 358–368. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Mamri, S.; Marghich, M.; Bouziane, O.; Bouhrim, M.; Saalaoui, E.; Choukri, M.; Mekhfi, H.; Legssyer, A.; Ziyyat, A.; et al. Evaluation of toxicity, nephroprotective and hepatoprotective activities of argan oil on ccl4-induced nephrotoxicity and hepatotoxicity in wistar rats. Arab. J. Med. Aromat. Plants 2021, 7, 438–464. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 1990, 186, 421–431. [Google Scholar]
- Ong, K.C.; Khoo, H.E. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 2000, 67, 1695–1705. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Vijayakumar, N. Urea cycle pathway targeted therapeutic action of naringin against ammonium chloride induced hyperammonemic rats. Biomed. Pharmacother. 2017, 94, 1028–1037. [Google Scholar] [CrossRef]
- Arumugam, R.; Mani, R.; Venkatesan, A.; Sengamalai, S.; Natesan, V.; Kim, S.J. Molecular docking studies of natural compounds of naringin on enzymes involved in the urea cycle pathway in hyperammonemia. Trop. J. Pharm. Res. 2020, 19, 1037–1043. [Google Scholar] [CrossRef]
- pkCSM. Available online: https://biosig.lab.uq.edu.au/pkcsm/prediction (accessed on 29 March 2024).
Groups | Average Body Weight (g) | Body Weight Gain (g) | Body Weight Variation (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Day 0 | 7th Day | 9th Day | 12th Day | 15th Day | 7th Day | 15th Day | 7th Day | 15th Day | |
Control | 186.3 ± 8.75 | 202.3 ± 8.07 | 204.8 ± 5.52 | 209.2 ± 5.29 | 211.1 ± 6.87 | 16 | 24.8 | 8.58 | 11.8 |
CCl4 | 173 ± 7.62 | 189.1 ± 6.06 | 180 ± 6.12 **** | 183.3 ± 6.17 **** | 185.6 ± 7.85 **** | 16.1 | 12.6 | 9.30 | 6.78 |
Sylimarin | 185.3 ± 12.79 | 200.7 ± 9.01 | 192.8 ± 10.83 Ns | 200 ± 11.22 Ns# | 200.3 ± 13.06 Ns | 15.4 | 15 | 8.31 | 7.48 |
Aqueous extract (Aq) | 186.3 ± 4.04 | 202.97 ± 7.44 | 191.97 ± 8 Ns | 190.7 ± 8 **Ns | 204.47 ± 6.10 Ns## | 16.67 | 18.17 | 8.94 | 8.88 |
Methanolic extract (Me) | 180.12 ± 9.75 | 184.40 ± 9.12 | 196.005 ± 6.99 Ns# | 205.6 ± 8.3 Ns### | 188.66 ± 7.01 ***Ns | 4.28 | 8.54 | 2.37 | 4.52 |
Ethanolic extract (Et) | 172.1 ± 5.59 | 193.96 ± 10.27 | 186.3 ± 11.01 **Ns | 210.7 ± 10.1 Ns#### | 209.35 ± 10.12 Ns### | 21.86 | 15.39 | 12.7 | 7.35 |
n-hexane extract (He) | 183.46 ± 11.14 | 214.08 ± 10.71 | 205.82 ± 9.55 Ns#### | 215.8 ± 13.1 Ns#### | 215.10 ± 15.03 Ns#### | 30.62 | 31.64 | 16.69 | 14.70 |
Groups | Liver Ratio (%) | Kidney Ratio (%) | |
---|---|---|---|
Left kidney | Right kidney | ||
Control | 2.734 ± 0.062 | 0.378 ± 0.026 | 0.359 ± 0.014 |
CCl4 | 4.351 ± 0.109 * | 0.376 ± 0.021 Ns | 0.362 ± 0.009 Ns |
Sylimarin | 3.572 ± 0.162 | 0.347 ± 0.009 | 0.359 ± 0.008 |
Aq | 3.35 ± 0.17 | 0.269 ± 0.004 | 0.264 ± 0.003 |
Me | 3.62 ± 0.14 | 0.308 ± 0.006 | 0.320 ± 0.005 |
Et | 3.93 ± 0.33 | 0.307 ± 0.006 | 0.319 ± 0.025 |
He | 4.13 ± 0.39 | 0.32 ± 0.03 | 0.334 ± 0.027 |
Groups | Water Consumption (mL/24 h) | Urine Volume (mL/24 h) |
---|---|---|
Control | 19.16 ± 1.20 | 6.83 ± 1.50 |
CCl4 | 41.00 ± 4.57 **** | 10.42 ± 1.10 * |
Sylimarin | 29.16 ± 1.80 * # | 10.83 ± 1.41 ** Ns |
Aq | 35.00± 3.53 *** Ns | 7.5 ± 0.35 Ns |
Me | 28.75 ± 1.87 * # | 10.62 ± 0.93 *Ns |
Et | 32.50 ± 1.88 **Ns | 7.25 ± 0.69 Ns # |
He | 21.80 ± 5.43 Ns #### | 12.40 ± 1.37 *** Ns |
Parameter | Groups | |||||||
---|---|---|---|---|---|---|---|---|
Control Group | CCl4 Group | Sylimarin Group | Aq | Me | Et | He | ||
Liver parameters | Alanine Aminotransferase (ALT) | 51.20 ± 7.87 | 1014.33 ± 68.18 **** | 202.20 ± 61.32 ns, #### | 245.00 ± 32.52 ns, #### | 378.5 ± 50.69 ns, ### | 639.80 ± 82.25 ***, ns | 539.20 ± 92.48 **, ## |
Aspartate Aminotransferase (AST) | 179.83 ± 36.79 | 1188.83 ± 75.48 **** | 287.00 ± 58.24 ns, #### | 743.00 ± 23.13 ***, ## | 870.00 ± 5.85 ****, ns | 643.20 ± 73.43 **, ### | 600.80 ± 70.16 **, #### | |
Lactate Dehydrogenase (LDH) | 486.83 ± 105.26 | 653.17 ± 151.96 ns | 754.17 ± 169.63 ns | 1366.00 ± 85.60 ns | 1995.00 ± 0.00 ns | 1466.80 ± 211.42 ns | 1785.2 ± 85.65 ns | |
Alkaline Phosphatase (ALP) | 171.33 ± 21.36 | 512.67 ± 16.96 **** | 159.00 ± 31.84 ns, #### | 596.00 ± 25.45 ****, ns | 381.00 ± 0.41 ***, ns | 337.80 ± 18.43 **, ## | 247.40 ± 22.02 ns, #### | |
Gamma-Glutamyl Transferase (GGT) | 4.66 ± 0.45 | 9.83 ± 3.42 ns | 9.60 ± 2.50 ns | 4.00 ± 0.00 ns | 4.5 ± 0.07 ns | 4.00 ± 0.00 ns | 4.00 ± 0.00 ns | |
Total Bilirubin | 1.27 ± 0.17 | 4.45 ± 0.61 **** | 1.64 ± 0.18 ns, ### | 5.15 ± 0.51 ****, ns | 5.70 ± 0.19 ****, ns | 3.33 ± 0.17 **, ns | 2.75 ± 0.41 ns, # | |
Direct Bilirubin | 0.67 ± 0.26 | 3.83 ± 0.51 **** | 1.00 ± 0.00 ns, #### | 1.50 ± 0.096 ns, #### | 1.00 ± 0.00 ns, #### | 1.00 ± 0.00 ns, #### | 1.00 ± 0.00 ns, #### | |
Urinary Parameters | Urea | 37.97 ± 2.08 | 23.66 ± 2.76 **** | 30.622 ± 2.15 ns | 42.40 ± 0.00 ns, #### | 42.40 ± 0.00 ns, #### | 42.29 ± 0.04 ns, #### | 41.99 ± 0.22 ns, #### |
Creatinine | 522.59 ± 54.82 | 374.33 ± 32.13 ns | 409.12 ± 49.41 ns | 512.775 ± 8.81 ns | 381.46 ± 5.98 ns | 436.24 ± 20.58 ns | 452.022 ± 39.62 ns | |
Uric Acid | 135.58 ± 24.56 | 87.92 ± 6.85 ns | 130.13 ± 12.76 ns | 102.15 ± 6.74 ns | 117.75 ± 1.54 ns | 106.08 ± 10.21 ns | 115.22 ± 19.73 ns | |
Albumin | 17.67 ± 1.63 | 58.33 ± 13.29 ** | 19.40 ± 2.75 ns. ## | 25.00 ± 0.27 ns, ## | 13.50 ± 0.07 ns, ### | 12.00 ± 2.04 ns, ### | 6.00 ± 0.27 ns, #### | |
Lipidic Parameters | Low-Density Lipoprotein (LDL) | 0.224 ± 0.01 | 0.280 ± 0.007 ns | 0.216 ± 0.019 ns | 0.095 ± 0.009 ns | 0.140 ± 0.016 ns | 0.074 ± 0.012 ns | 0.073 ± 0.012 ns |
High-Density Lipoprotein (HDL) | 0.248 ± 0.005 | 0.182 ± 0.002 ** | 0.248 ± 0.007 ns, ## | 0.135 ± 0.002 ****, ns | 0.120 ± 0.005 ****, ## | 0.226 ± 0.013 ns | 0.156 ± 0.009 ****, ns | |
Triglycerides (TG) | 0.44 ± 0.008 | 0.725 ± 0.053 *** | 0.40 ± 0.05 ns, #### | 0.37 ± 0.003 ns, #### | 0.58 ± 0.02 ns | 0.57 ± 0.02 ns | 0.41 ± 0.01 ns, #### |
Electrolytes | Groups | Control | CCl4 | Sylimarin | Aqueous Fraction | Methanolic Fraction | Ethanolic Fraction | n-Hexane Fraction |
---|---|---|---|---|---|---|---|---|
Na+(mM) | Plasma | 178.83 ± 8.64 | 175.83 ± 7.01 Ns | 172.60 ± 5.01 | 135 ± 0.06 | 132 ± 0.82 | 131.25 ± 2.52 | 127.4 ± 3.37 |
Urine | 95.2 ± 16.39 | 143.8 ± 15.28 Ns | 86.6 ± 11.41 | 240 ± 0.00 | 239.8 ± 0.14 | 476 ± 84.43 | 175 ± 34.88 | |
Ca2+(mM) | Plasma | 78.6 ± 2.67 | 89.6 ± 2.64 Ns | 82.16 ± 2.57 | 96.35 ± 0.05 | 84.1 ± 0.12 | 78.4 ± 4.6 | 75.76 ± 3.15 |
Urine | 199.17 ± 12.72 | 126.50 ± 20.75 Ns | 184 ± 20.55 | 82.5 ± 7.55 | 83 ± 2.31 | 101.25 ± 8.68 | 86.8 ± 9.44 | |
K+(mM) | Plasma | 4.08 ± 0.23 | 5 ± 0.68 Ns | 4.3 ± 0.26 | 4.35 ± 0.06 | 4.35 ± 0.03 | 4.94 ± 0.39 | 5.46 ± 0.33 |
Urine | 177 ± 10.82 | 132.42 ± 21.33 Ns | 155.96 ± 14.5 | 240 ± 8.16 | 150.15 ± 2.86 | 182.83 ± 10.8 | 134.9 ± 11.60 | |
Cl-(mM) | Plasma | 77.6 ± 8.84 | 83.3 ± 5.4 Ns | 78 ± 4.08 | 101.5 ± 0.2 | 105.5 ± 0.34 | 94.25 ± 2.38 | 97.5 ± 1.7 |
Urine | 110.83 ± 7.42 | 58.83 ± 15.72 Ns | 96.60 ± 7.38 | 77.50 ± 7.82 | 58 ± 1.22 | 108.75 ± 12.42 | 98.8 ± 10.70 |
Molecules | Binding Energy (Kcal/mol) | Involved Receptor Residues | 2D-Representations of the Best-Docked Poses of the Studied Ligands in the Active Pocket of Human CYP P450 3E1 (3E4E). |
---|---|---|---|
Catechin | −104.05 | H-Ala299, Thr 303, Thr 304, Cys 437, Ala 438, Gly 439, Ala 443, Glu 446, V-Ile 115, Ile 115, Ala 299, Gly 300, Thr 303, Thr 303, Thr 307, Arg 435, Val 436, Cys 437, Cys 437, Ala 438, Gly 439, Glu 440, Leu 442, | |
Sylimarin | −115.14 | H-Arg-126; Thr303; Thr307; Gln358; Leu363; Cys 437; Ala 438; V- Arg 100; Ile115; Ile115; Ala-299; Thr-303; Thr-303; Thr-307; Leu363; Leu-363; Val-364; Leu-368; Pro-429; Phe-430; Phe-430; Arg-435; Arg-435; Val-436; Cys-437; Cys-437; Ala-438; Gly-439; Phe-430, Arg 435, Arg 435, Val 436, Cys 437, Cys 437, Ala 438, Gly 439 | |
Rutin | −87.43 | H-Arg126, Leu 130, Cys 437, Gly 439, Glu 440, Gly441, Leu 442, Gly 439, Glu 440, Gly 441, Leu 442, V-Leu 130, Leu 130, Arg 435, Val 436, Cys 437, Cys 437, Ala 438, Gly 439, Glu 440, Glu 440, Gly441, Leu 442 | |
Gallic acid | −70.61 | H-Ala 229; Thr 303; Thr 304; Cys437, Glu446; V-Ala 299; Gly 300; Thr 303; Thr 303; Phe 430; Cys 437; Ala-438; Gly-439; Glu 440, Leu 442 | |
Salicylic acid | −82.78 | E-Arg 100, Arg 435, H-Arg 100, Trp 122, Arg 126, Arg 435, Ala 438, V- Arg 100, Ile 115, Ile 115, Leu 368, Arg 435, Arg 435, Val 436, Cys 437, Cys 437, Ala 438, Gly 439 | |
Vanillic acid | −80.07 | E-Arg-100; Arg-435; H-Arg-100; Trp-122; Arg-126; Arg-435; Cys-437; Ala-438; V-Arg-100; Ile-115; Ile-115; Ala-299; Leu-368; Arg-435; Arg-435; Val-436; Cys-437; Cys-437; Ala-438; Gly-439 | |
Protoporphyrin Ix Containing Fe | −233.97 | E-Arg 100, His 370, Arg 435, H-Arg 100, Trp 122, Arg 126, His 370, Ser 431, Arg 435, Cys 437, V-Arg 100, Ile 115, Ile 115, Ala 299, Gly 300, Thr 303, Thr 303, Thr 307, Leu 363, Leu 363, Val 364, Leu 368, Pro 429, Phe 430, Arg 435, Arg 435, Val 436, Cys 437, Cys 437, Ala 438, Gly 439, Glu440, Leu 442 |
Molecules | Binding Energy (Kcal/mol) | Involved Receptor Residues | 2D-Representations of the Best-Docked Poses of the Studied Ligands in the Active Pocket of TNF-α (2AZ5) |
---|---|---|---|
Rutin | −122.88 | (H- Ser 60; Leu 120; Gly 121; Ser 60; Leu 120; Tyr 151); (V-Tyr 59; Ser 60; Gln 61; Tyr 119; Tyr 119; Leu 120; Gly 121; Leu 57; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151; Leu 55) | |
Sylimarin | −98.94 | (H-Gly 121; Gly 121; Tyr 151; Leu 55); (V-Tyr 59; Tyr 119; Tyr 119; Leu 120; Gly 121; Leu 57; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151; Leu 55) | |
Catechin | −90.24 | (H- Ser 60; Gln 61; Ser 60; Tyr 151); (V-Tyr 59; Ser 60; Gln 61; Tyr 119; Tyr 119; Leu 120; Gly 121; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151) | |
Gallic acid | −72.29 | (H-Leu 120; Gly 121; Ser 60; Leu 120; Tyr 151); (V- Tyr 119; Tyr 119; Leu 120; Gly 121; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151) | |
Vanillic acid | −62.65 | (H-Gly 121; Ser 60; Leu 120; Tyr 151); (V-Tyr 59; Tyr 119; Tyr 119; Leu 120; Gly 121; Leu 57; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151) | |
Salicylic acid | −61.48 | (H- Gly 121; Ser 60; Leu 120; Tyr 151); (V-Tyr 119; Tyr 119; Leu 120; Gly 121; Leu 57; Tyr 59; Tyr 59; Ser 60; Tyr 119; Leu 120; Gly 121; Tyr 151) | |
SPD304 (native inhibitor of TNF a) | −114.37 | (H-Leu 120; Gly 121); (V-Tyr 119; Leu120; Gly121; Tyr 59; Ser 60; Tyr 119; Tyr 119; Gly 121) |
Molecules | Binding Energy (Kcal/mol) | Involved Receptor Residues | 2D-Representations of the Best-Docked Poses of the Studied Ligands in the Active Pocket of COX-2 (3LN1) |
---|---|---|---|
Celecoxib (native inhibitor of COX-2) | −141.78 | (H-His 75, Gln 178, Leu 338, Ser339, Tyr341, Arg499, Phe 504, V- His75, Val 335, Leu 338, Ser 339, Tyr 341, Phe 367, Tyr 371, Trp 373, Arg 499, Arg 499, Phe 504, Val 509, Val 509, Gly 512, Ala 513, Ser 516) | |
Catechin | −114.72 | (H-Phe 196, Tyr 371, Phe 515, Phe 516, Ser 516, Leu 520, V-Phe 191, Thr 192, Phe 196, Phe 196, Val 335, Phe 367, Tyr 371, Ser 516) | |
Rutin | −105.08 | H-His 75, Gln 178, Val 335, Leu 338, Ser 339, Ser 516, V- His75, Val 335, Leu 338, Ser 339, Tyr 341, Arg 499, Phe 504, Val 509, Val 509, Gly 512, Ala 513 | |
Sylimarin | −94.35 | H-His 75, Pro 498, V-ASN72, ASN 72, His 75, Pro 498, Pro 498, Arg 499, Arg 499, Pro 500, Gly 505, Glu 506, Glu 506 | |
Gallic acid | −69.01 | H-His75, Gln 178, Ser 339, Tyr 341, Arg 499, V- His 75, Val 335, Leu 338, Ser 339, Tyr 341, Arg 499, Arg 499, Phe 504, Val 509, Val 509, Ala 513 | |
Vanillic acid | −74.19 | H-His 75, Phe 504, V- His 75, Val 335, Leu 338, Leu 338, ser 339, Tyr 341, Trp 373, Arg 499, Arg 499, Phe504, Gly 505, Val 509, Val 509, Gly 512, Ala 513 | |
Salicylic acid | −68.17 | H-His 75, Ser 339, Tyr 341, Arg 499, V- His 75, Val 335, Leu 338, Leu 338, Ser 339, Tyr 341, Arg 499, Arg 499, Phe 504, Gly 505, Val 509, Val 509 |
Catechin | Rutin | Gallic Acid | Salicylic Acid | Sylimarin | Vanillic Acid | ||
---|---|---|---|---|---|---|---|
Absorption | Water solubility (log mol/L) | −2.808 | −3.327 | −0.723 | −0.895 | −4.304 | −0.992 |
Caco2 permeability (log Papp in 10−6 cm/s) | −0.38 | −0.791 | −0.467 | 1.173 | −0.363 | 0.199 | |
Intestinal absorption (human) (% Absorbed) | 71.562 | 28.495 | 50.311 | 74.883 | 74.315 | 75.448 | |
Skin Permeability (log Kp) | −3.603 | −2.737 | −3.084 | −2.868 | −2.921 | −2.941 | |
P-glycoprotein substrate (Yes/No) | Yes | Yes | Yes | Yes | YES | Yes | |
P-glycoprotein I inhibitor | No | Yes | No | No | Yes | No | |
P-glycoprotein II inhibitor | No | Yes | No | No | Yes | No | |
Distribution | VDss (human) (log L/kg) | −0.79 | −1.597 | −1.078 | −0.784 | −1.327 | −0.907 |
Fraction unbound (human) (Fu) | 0.326 | 0.419 | 0.565 | 0.496 | 0.142 | 0.496 | |
BBB permeability (log BB) | −0.905 | −2.215 | −0.93 | −0.283 | −1.481 | −0.295 | |
CNS permeability (log PS) | −3.146 | −4.842 | −2.816 | −2.437 | −3.384 | −2.601 | |
Metabolism | CYP2D6 substrate (Yes/No) | No | No | No | No | No | No |
CYP3A4 substrate (Yes/No) | No | Yes | No | No | Yes | No | |
CYP1A2 inhibitior (Yes/No) | No | No | No | No | No | No | |
CYP2C19 inhibitior (Yes/No) | No | No | No | No | No | No | |
CYP2C9 inhibitior (Yes/No) | No | No | No | No | No | No | |
CYP2D6 inhibitior (Yes/No) | No | No | No | No | No | No | |
CYP3A4 inhibitior (Yes/No) | No | No | No | No | No | No | |
CYP2D6 substrate (Yes/No) | No | No | No | No | No | No | |
CYP3A4 substrate (Yes/No) | No | No | No | No | No | No | |
CYP1A2 inhibitior (Yes/No) | No | No | No | No | No | No | |
Excretion | Total Clearance (log ml/min/kg) | 0.215 | 0.187 | 0.55 | 0.625 | −0.092 | 0.626 |
Renal OCT2 substrate (Yes/No) | No | No | No | No | No | No | |
Toxicity | AMES toxicity (Yes/No) | Yes | No | No | No | No | No |
Max. tolerated dose (human) (log mg/kg/day) | 0.956 | 0.375 | 1.404 | 1.541 | 0.307 | 1.404 | |
hERG I inhibitor (Yes/No) | No | No | No | No | No | No | |
hERG II inhibitor (Yes/No) | No | Yes | No | No | Yes | No | |
Oral Rat Acute Toxicity (LD50) (mol/kg) | 2.101 | 1.526 | 1.872 | 2.022 | 2.184 | 2.004 | |
Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) | 2.076 | 2.231 | 1.499 | 2.875 | 2.593 | 2.827 | |
Hepatotoxicity (Yes/No) | No | No | No | No | No | No | |
Skin Sensitisation (Yes/No) | No | No | No | No | No | No | |
T.Pyriformis toxicity (log ug/L) | 0.464 | 0.285 | −0.071 | −0.133 | 0.291 | 0.028 | |
Minnow toxicity (log mM) | 2.249 | 4.442 | 2.918 | 2.23 | 1.335 | 2.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalli, M.; Daoudi, N.E.; Azizi, S.-e.; Roubi, M.; Alami Merrouni, I.; Souna, F.; Choukri, M.; Kim, B.; Gseyra, N. Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach. Pharmaceuticals 2025, 18, 1147. https://doi.org/10.3390/ph18081147
Dalli M, Daoudi NE, Azizi S-e, Roubi M, Alami Merrouni I, Souna F, Choukri M, Kim B, Gseyra N. Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach. Pharmaceuticals. 2025; 18(8):1147. https://doi.org/10.3390/ph18081147
Chicago/Turabian StyleDalli, Mohammed, Nour Elhouda Daoudi, Salah-eddine Azizi, Mohammed Roubi, Ilyass Alami Merrouni, Faiza Souna, Mohammed Choukri, Bonglee Kim, and Nadia Gseyra. 2025. "Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach" Pharmaceuticals 18, no. 8: 1147. https://doi.org/10.3390/ph18081147
APA StyleDalli, M., Daoudi, N. E., Azizi, S.-e., Roubi, M., Alami Merrouni, I., Souna, F., Choukri, M., Kim, B., & Gseyra, N. (2025). Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach. Pharmaceuticals, 18(8), 1147. https://doi.org/10.3390/ph18081147