Indazole Derivatives Against Murine Cutaneous Leishmaniasis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemical Compounds
4.2. Parasites
4.3. Animals
4.4. Vehicle Selection
4.5. Determination of the Maximum Tolerated Dose
4.6. In Vivo Assay
- % PIR: Percentage infection reduction
- PLC: Parasite load of the control group
- PLT: Parasite load of the treated group
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desjeux, P. Leishmaniasis: Public Health Aspects and Control. Clin. Dermatol. 1996, 14, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Cosma, C.; Maia, C.; Khan, N.; Infantino, M.; Del Riccio, M. Leishmaniasis in Humans and Animals: A One Health Approach for Surveillance, Prevention and Control in a Changing World. Trop. Med. Infect. Dis. 2024, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals. 2024. Available online: https://iris.who.int/handle/10665/376869 (accessed on 3 August 2024).
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Res 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Shehnaz, G.; Zahra, M.; Ilyas, D.; Hamida, A. Leishmaniasis: A Neglected Tropical Disease. GIIDR 2019, 4, 17–23. [Google Scholar] [CrossRef]
- Corman, H.N.; McNamara, C.W.; Bakowski, M.A. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023, 11, 2845. [Google Scholar] [CrossRef] [PubMed]
- Shmueli, M.; Ben-Shimol, S. Review of Leishmaniasis Treatment: Can We See the Forest through the Trees? Pharmacy 2024, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Bamorovat, M.; Sharifi, I.; Khosravi, A.; Aflatoonian, M.R.; Agha Kuchak Afshari, S.; Salarkia, E. Global Dilemma and Needs Assessment Toward Achieving Sustainable Development Goals in Controlling Leishmaniasis. J. Epidemiol. Glob. Health 2024, 14, 22–34. [Google Scholar] [CrossRef] [PubMed]
- González-Montero, M.C.; Andrés-Rodríguez, J.; García-Fernández, N.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024, 29, 2214. [Google Scholar] [CrossRef] [PubMed]
- Mathison, B.A.; Bradley, B.T. Review of the Clinical Presentation, Pathology, Diagnosis, and Treatment of Leishmaniasis. Lab. Med. 2023, 54, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg. 2016, 94, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Chakravarty, J. Antimony toxicity. Int. J. Environ. Res. Public Health 2010, 7, 4267–4277. [Google Scholar] [CrossRef] [PubMed]
- Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 2005, 4, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Villa Pulgarín, J.A. Nuevas Estrategias para el Tratamiento de la Leishmaniasis: Mecanismo de Acción de Lípidos Antitumorales, Interacción Hospedero-Parásito, y su Posible Utilidad Terapéutica. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2014. Available online: https://gredos.usal.es/handle/10366/125973 (accessed on 5 July 2025).
- Ibáñez-Escribano, A.; Reviriego, F.; Vela, N.; Fonseca-Berzal, C.; Nogal-Ruiz, J.J.; Arán, V.J.; Escario, J.A.; Gómez-Barrio, A. Promising hit compounds against resistant trichomoniasis: Synthesis and antiparasitic activity of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles. Bioorg. Med. Chem. Lett. 2021, 37, 127843. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; Reviriego, F.; Cumella, J.; Morales, P.; Jagerovic, N.; Nogal-Ruiz, J.J.; Escario, J.A.; da Silva, P.B.; de Nazaré, C.M.; et al. Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eu. J. Med. Chem. 2016, 115, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; Vela, N.; Cumella, J.; Nogal-Ruiz, J.J.; Escario, J.A.; da Silva, P.B.; Batista, M.M.; de Nazaré, C.M.; Sifontes-Rodríguez, S.; et al. Antichagasic, Leishmanicidal, and Trichomonacidal Activity of 2-Benzyl-5-nitroindazole-Derived Amines. ChemMedChem 2018, 13, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; de Castro, S.; Escario, J.A.; Gómez-Barrio, A.; Arán, V.J. 5-Nitroindazole-based compounds: Further studies for activity optimization as anti-Trypanosoma cruzi agents. Acta Trop. 2022, 234, 106607. [Google Scholar] [CrossRef] [PubMed]
- Mollineda-Diogo, N.; Chaviano-Montes de Oca, C.S.; Sifontes-Rodríguez, S.; Espinosa-Buitrago, T.; Monzote-Fidalgo, L.; Meneses-Marcel, A.; Morales-Helguera, A.; Perez-Castillo, Y.; Arán-Redó, V. Antileishmanial activity of 5-nitroindazole derivatives. Ther. Adv. Infect. Dis. 2023, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mollineda-Diogo, N.; Sifontes-Rodríguez, S.; Aguirre-García, M.M.; Escalona-Montaño, A.R.; Espinosa-Buitrago, T.; Mondragón-Flores, R.; Mondragón-Castelán, M.E.; Meneses-Marcel, A.; Pérez-Olvera, O.; Sánchez-Almaraz, D.A.; et al. 3-Alkoxy-1-Benzyl-5-Nitroindazole Derivatives Are Potent Antileishmanial Compounds. Int. J. Mol. Sci. 2024, 25, 10582. [Google Scholar] [CrossRef] [PubMed]
- Gerpe, A.; Aguirre, G.; Boiani, L.; Cerecetto, H.; González, M.; Olea-Azar, C. Indazole N-oxide derivatives as antiprotozoal agents: Synthesis, biological evaluation and mechanism of action studies. Bioorg Med. Chem. 2006, 14, 3467–3480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.G.; Liang, C.G.; Zhang, W.H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules 2018, 23, 2783. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem. 2008, 1, 4073–4095. [Google Scholar] [CrossRef]
- Martín-Montes, Á.; Aguilera-Venegas, B.; Morales-Martín, R.; Martín-Escolano, R.; Zamora-Ledesma, S.; Marín, C.; Arán, V.J.; Sánchez-Moreno, M. In vitro assessment of 3-alkoxy-5-nitroindazole-derived ethylamines and related compounds as potential antileishmanial drugs. Bioorg. Chem. 2019, 92, 103274. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Ketkar, R.; Tao, P. ADMETboost: A web server for accurate ADMET prediction. J. Mol. Model. 2022, 28, 408. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; von Korff, M.; Renée Reich, J.; Rufener, C. OSIRIS, an Entirely in-House Developed Drug Discovery Informatics System. J. Chem. Inf. Model. 2009, 49, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Sun, J.; Qi, H.; Soong, L. Analysis of T helper cell responses during infection with Leishmania amazonensis. Am. J. Trop. Med. Hyg. 2002, 66, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Mears, E.R.; Modabber, F.; Don, R.; Johnson, G.E. A Review: The Current In Vivo Models for the Discovery and Utility of New Anti-leishmanial Drugs Targeting Cutaneous Leishmaniasis. PLoS Negl. Trop. Dis. 2015, 9, e0003889. [Google Scholar] [CrossRef] [PubMed]
- van der Ende, J.; Schallig, H.D.F.H. Leishmania Animal Models Used in Drug Discovery: A Systematic Review. Animals 2023, 13, 1650. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G.; Koutinas, A.F.; Solano-Gallego, L.; Bourdeau, P.; Ferrer, L. Canine leishmaniosis—New concepts and insights on an expanding zoonosis: Part one. Trends Parasitol. 2008, 24, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Aoki, J.I.; Hong, A.; Zampieri, R.A.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. In vivo infection with Leishmania amazonensis to evaluate parasite virulence in mice. J. Vis. Exp. 2020, 156, e60617. [Google Scholar] [CrossRef] [PubMed]
- Miguel, D.C.; Yokoyama-Yasunaka, J.K.U.; Uliana, S.R.B. Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl. Trop. Dis. 2008, 2, e249. [Google Scholar] [CrossRef] [PubMed]
- Chan-Bacab, M.J.; Balanza, E.; Deharo, E.; Muñoz, V.; García, R.D.; Peña-Rodríguez, L.M. Variation of leishmanicidal activity in four populations of Urechites andrieuxii. J. Ethnopharmacol. 2003, 83, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Valadares, D.G.; Duarte, M.C.; Ramírez, L.; Chávez-Fumagalli, M.A.; Lage, P.S.; Martins, V.T.; Costa, L.E.; Ribeiro, T.G.; Régis, W.C.B.; Soto, M.; et al. Therapeutic efficacy induced by the oral administration of Agaricus blazei Murill against Leishmania amazonensis. Parasitol. Res. 2012, 111, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Ricotta, T.Q.N.; dos Santos, L.M.; Oliveira, L.G.; Souza-Testasicca, M.C.; Nascimento, F.C.; Vago, J.P.; Carvalho, A.F.S.; Queiroz-Junior, C.M.; Sousa, L.P.; Fernandes, A.P. Annexin A1 improves immune responses and control of tissue parasitism during Leishmania amazonensis infection in BALB/c mice. Biomed. Pharmacother. 2024, 172, 116254. [Google Scholar] [CrossRef] [PubMed]
- Sifontes-Rodríguez, S.; Escalona-Montaño, A.R.; Flores, R.M.; Mollineda-Diogo, N.; Fidalgo, L.M.; Mondragón-Castelán, M.E.; Alardin-Gutiérrez, F.; López-Enzana, L.A.; Sánchez-Almaraz, D.A.; Pérez-Olvera, O.; et al. Compared Antileishmanial Activity of Clomiphene and Tamoxifen. Biomedicines 2024, 12, 2290. [Google Scholar] [CrossRef] [PubMed]
- Cantalupo Lima, C.B.; Arrais-Silva, W.W.; Rodrigues Cunha, R.L.O.; Giorgio, S. A novel organotellurium compound (RT-01) as a new antileishmanial agent. Korean J. Parasitol. 2009, 47, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, F.; Bourguignon, S.C.; Pereira, B.A.S.; De Castro Côrtes, L.M.; De Oliveira, L.F.; Henriques-Pons, A.; Finkelstein, L.C.; Ferreira, V.F.; Carneiro, P.F.; de Pinho, R.T.; et al. Epoxy-α-lapachone has in vitro and in vivo anti-leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite. Antimicrob. Agents Chemother. 2015, 59, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Keeble, E. Guide to veterinary care of small rodents. Practice 2021, 43, 424–437. [Google Scholar] [CrossRef]
- Nwaka, S.; Ramirez, B.; Brun, R.; Maes, L.; Douglas, F.; Ridley, R. Advancing drug innovation for neglected diseases—Criteria for lead progression. PLoS Negl. Trop. Dis. 2009, 3, e440. [Google Scholar] [CrossRef] [PubMed]
- Antinarelli, L.M.R.; Souza, I.O.; Glanzmann, N.; Almeida, A.D.; Porcino, G.N.; Vasconcelos, E.G.; da Silva, A.D.; Coimbra, E.S. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp. Parasitol. 2016, 171, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Teixeira de Macedo Silva, S.; Visbal, G.; Godinho, J.L.P.; Urbina, J.; De Souza, W.; Cola Fernandes Rodrígues, J. In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis. J. Antimicrob. Chemother. 2018, 73, 2360–2373. [Google Scholar] [CrossRef] [PubMed]
- Basile, G.; Cristofaro, G.; Locatello, L.G.; Vellere, I.; Piccica, M.; Bresci, S.; Maggiore, G.; Gallo, O.; Novelli, A.; Di Muccio, T.; et al. Refractory mucocutaneous leishmaniasis resolved with combination treatment based on intravenous pentamidine, oral azole, aerosolized liposomal amphotericin B, and intralesional meglumine antimoniate. Int. J. Infect. Dis. 2020, 97, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Ayres, D.C.; Fedele, T.A.; Marcucci, M.C.; Giorgio, S. Potential utility of hyperbaric oxygen therapy and propolis in enhancing the leishmanicidal activity of glucantime. Rev. Inst. Med. Trop. Sao Paulo 2011, 53, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Sifontes-Rodríguez, S.; Chaviano-Montes de Oca, C.S.; Monzote-Fidalgo, L.; Meneses-Gómez, S.; Mollineda-Diogo, N.; Escario García-Trevijano, J.A. Amphotericin B is usually underdosed in the treatment of experimental cutaneous leishmaniasis. Ars. Pharm. 2022, 63, 1–16. [Google Scholar] [CrossRef]
- Reimão, J.Q.; Trinconi, C.T.; Yokoyama-Yasunaka, J.K.; Miguel, D.C.; Kalil, S.P.; Uliana, S.R.B. Parasite burden in Leishmania (Leishmania) amazonensis-infected mice: Validation of luciferase as a quantitative tool. J. Microbiol. Methods 2013, 93, 95–101. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, A.; Hyndman, L.; McGinty, S.; Riezk, A.; Murdan, S.; Croft, S.L. Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS ONE 2019, 14, e0219985. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Huang, S.H.; Wu, C.H.; Chen, S.J.; Sytwu, H.K.; Lin, G.J. Immunomodulatory effects and potential clinical applications of dimethyl sulfoxide. Immunobiology 2020, 225, 151906. [Google Scholar] [CrossRef] [PubMed]
- Cerecetto, H.; Gerpe, A.; Gonzalez, M.; Aran, V.; de Ocariz, C. Pharmacological Properties of Indazole Derivatives: Recent Developments. Mini Rev. Med. Chem. 2005, 5, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Arán, V.J.; Ochoa, C.; Boiani, L.; Buccino, P.; Cerecetto, H.; Gerpe, A.; González, M.; Montero, D.; Nogal, J.J.; Gómez-Barrio, A.; et al. Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorg Med. Chem. 2005, 13, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Carvalho, F.; Tavares, C.; Santiago, H.; Castro, G.; Tafuri, W.; Ferreira, L.A.M.; Gazzinelli, R.T. Combined Interleukin-12 and Topical Chemotherapy for Established Leishmaniasis Drastically Reduces Tissue Parasitism and Relapses in Susceptible Mice. J. Infect. Dis. 2001, 183, 1646–1652. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Jaramillo, M.; Gómez-Castaño, K.Y.; Villa-Pulgarín, J.A. Tratamientos tópicos para la leishmaniasis cutánea: Una revisión narrativa, con búsqueda sistemática de la bibliografía. Kasmera 2021, 49, 49234408. [Google Scholar] [CrossRef]
- Serrano-Martín, X.; Payares, G.; De Lucca, M.; Martinez, J.C.; Mendoza-León, A.; Benaim, G. Amiodarone and miltefosine act synergistically against Leishmania mexicana and can induce parasitological cure in a murine model of cutaneous leishmaniasis. Antimicrob. Agents Chemother. 2009, 53, 5108–5113. [Google Scholar] [CrossRef] [PubMed]
- Patrício, F.J.; Costa, G.C.; Pereira, P.V.S.; Aragão-Filho, W.C.; Sousa, S.M.; Frazão, J.B.; Pereira, W.S.; Maciel, M.C.G.; Silva, L.A.; Amaral, F.M.M.; et al. Efficacy of the intralesional treatment with Chenopodium ambrosioides in the murine infection by Leishmania amazonensis. J. Ethnopharmacol. 2008, 115, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Morán-Perales, J.L.; Olvera-Herrera, J.E.; Sánchez-García, O.; Handal-Silva, A. Evaluación tisular “in vivo” del dimetilsulfóxido (DMSO) en el tejido ovárico y tegumentario de la rata adulta. Rev. Cienc. Salud 2017, 4, 46–58. Available online: https://www.ecorfan.org/bolivia/researchjournals/Ciencias_de_la_Salud/vol4num10/Revista_Ciencias_de_la_Salud_V4_N10_5.pdf (accessed on 4 November 2024).
- Jacob, S.W.; de la Torre, J.C. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacol. Rep. 2009, 61, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.B.; Jennings, M.; Buckwell, A.; Ewbank, R.; Godfrey, C.; Holgate, B.; Inglis, I.; James, R.; Page, C.; Sharman, I.; et al. Refining procedures for the administration of substances. Lab. Anim. 2001, 35, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, C.; Ruiz-González, Y.; Mollineda-Diogo, N.; Lorenzo-Ginori, J.V. Evaluación de la precisión de la segmentación y la medición del área en imágenes de lesiones cutáneas. EAC 2022, 43, 76–90. Available online: https://www.researchgate.net/publication/364322434 (accessed on 5 November 2024).
- Titus, R.G.; Marchand, M.; Boon, T.; Louis, J.A. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol. 1985, 7, 545–555. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollineda-Diogo, N.; Pérez-Castillo, Y.; Sifontes-Rodríguez, S.; Marrero-Chang, O.; Meneses-Marcel, A.; Escalona-Montaño, A.R.; Aguirre-García, M.M.; Espinosa-Buitrago, T.; Morales-Moreno, Y.; Arán-Redó, V. Indazole Derivatives Against Murine Cutaneous Leishmaniasis. Pharmaceuticals 2025, 18, 1107. https://doi.org/10.3390/ph18081107
Mollineda-Diogo N, Pérez-Castillo Y, Sifontes-Rodríguez S, Marrero-Chang O, Meneses-Marcel A, Escalona-Montaño AR, Aguirre-García MM, Espinosa-Buitrago T, Morales-Moreno Y, Arán-Redó V. Indazole Derivatives Against Murine Cutaneous Leishmaniasis. Pharmaceuticals. 2025; 18(8):1107. https://doi.org/10.3390/ph18081107
Chicago/Turabian StyleMollineda-Diogo, Niurka, Yunierkis Pérez-Castillo, Sergio Sifontes-Rodríguez, Osmani Marrero-Chang, Alfredo Meneses-Marcel, Alma Reyna Escalona-Montaño, María Magdalena Aguirre-García, Teresa Espinosa-Buitrago, Yeny Morales-Moreno, and Vicente Arán-Redó. 2025. "Indazole Derivatives Against Murine Cutaneous Leishmaniasis" Pharmaceuticals 18, no. 8: 1107. https://doi.org/10.3390/ph18081107
APA StyleMollineda-Diogo, N., Pérez-Castillo, Y., Sifontes-Rodríguez, S., Marrero-Chang, O., Meneses-Marcel, A., Escalona-Montaño, A. R., Aguirre-García, M. M., Espinosa-Buitrago, T., Morales-Moreno, Y., & Arán-Redó, V. (2025). Indazole Derivatives Against Murine Cutaneous Leishmaniasis. Pharmaceuticals, 18(8), 1107. https://doi.org/10.3390/ph18081107