NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting
Abstract
:1. Introduction
1.1. Extracellular Vesicles (EVs)
1.2. Glycosylation and Its Importance
Gene | Glycosylation Type | Role in AD Pathology | Implication in EV Biology | References |
---|---|---|---|---|
TREM2 | N-glycosylation | Altered N-glycosylation may influence ligand-binding affinity and contribute to AD pathogenesis. | Modulates microglial EV uptake and TREM2 shedding via EVs, influencing immune signaling | [36] |
APOE | O-glycosylation | Changes in O-glycosylation may be associated with elevated Aβ42 levels and increased AD risk. | Affects APOE sorting into EVs and interaction with Aβ in EV-mediated transport | [37] |
PSEN1 | None | Does not undergo direct glycosylation but may regulate glycosylation of interacting proteins. | Impacts EV cargo composition indirectly via regulation of APP glycosylation | [38,39,40] |
Nicastrin | N-glycosylation | Exists in both immature and mature glycosylated forms; the functional implications remain unclear. | Glycosylation state regulates its inclusion into EVs and ϒ-secretase activity in EVs | [41,42] |
Tau | O-GlcNAcylation, N-glycosylation | O-GlcNAcylation is potentially neuroprotective but reduced in AD; N-glycosylation is observed specifically in AD conditions. | Affects tau stability and EV loading, potentially promoting trans-neuronal tau spread | [43,44,45,46,47] |
BACE1 | N-glycosylation | N-glycosylation, particularly with bisecting GlcNAc, enhances Aβ production and is upregulated in AD. | Modulates BACE1 secretion via EVs and contributes to extracellular Aβ generation | [48,49] |
APP | N-glycosylation, O-glycosylation | Altered N-glycosylation impairs APP trafficking and processing; O-glycosylation may reduce Aβ secretion. | Regulates APP sorting into EVs, influencing Aβ production and propagation | [50,51,52] |
1.3. Neuraminidase 1 (NEU1)
2. Extracellular Vesicles (EVs) in Alzheimer’s Disease Pathogenesis
3. EV Uptake and Targeting in the Brain
3.1. Mechanisms of EV Uptake
3.2. Contribution to Disease Propagation
4. Glycosylation of Extracellular Vesicles
5. Techniques for Analyzing EV Glycosylation
5.1. Lectin Microarrays
5.2. Mass Spectrometry (MS)
5.3. Enzymatic Digestion
5.4. High-Performance Liquid Chromatography (HPLC)
5.5. Fluorescent Labeling
6. NEU1 and EV Glycosylation in Alzheimer’s Disease
6.1. Implications for Disease Propagation
6.1.1. Changes in EV Glycosylation
6.1.2. Impact on EV Uptake by Neurons
6.1.3. Influence on Microglial and Astrocytic Uptake
6.1.4. Consequences for Disease Propagation
7. Specific Examples of Glycans Affected by NEU1 and Their Relevance to AD
7.1. NEU1-Mediated Changes in EV Glycosylation
7.2. Impact on Cargo Sorting and Packaging
7.3. Influence on the Spread of Aβ and Tau
7.4. Role of Inflammatory Mediators
7.5. Implications for Therapeutic Strategies
8. NEU1, EV Glycosylation and Neuroinflammation in AD
8.1. NEU1’s Role in Microglial Activation and Cytokine Release via EV Glycosylation
8.2. NEU1 and Glycosylation of EVs
8.3. Influence on Microglial Activation States
8.4. Cytokine Release and Inflammatory Response
8.5. Implications for Alzheimer’s Disease
8.6. NEU1 and Astrocyte-Derived EV Glycosylation
8.7. Influence on Microglial Activation
8.8. Cytokine Release and Neuroinflammation
8.9. Implications for Aβ and Tau Pathology
9. Therapeutic Implications of Targeting NEU1 in AD
Therapeutic Strategy | Description | Mechanism of Action | References |
---|---|---|---|
Chemical Inhibitors | DANA (2,3-dehydro-2-deoxy-N-acetylneuraminic acid) | Broad-spectrum inhibition of NEU1 and related isoenzymes. Enhances LFA-1 adhesion, potentially improving synaptic plasticity issues in AD models | [141,159,160] |
Transmembrane Peptides | Interfering peptides designed to block NEU1 dimerization | Disruption of NEU1 activation, potentially reducing sialic acid-mediated signaling that contributes to neural impairment | [147] |
Elastin-Derived Peptides | Peptides activating NEU1 | Induce NEU1 activity leading to alterations in ganglioside profiles, which can influence inflammation and neuronal communication | [161,162] |
Combination Therapies | Multi-target approaches combining NEU1 inhibitors with other pathways | Synchronously targeting NEU1 alongside BACE-1 or inflammatory pathways to provide a synergistic effect in mitigating AD pathology | [163,164] |
Biomarkers and Diagnostics | Monitoring of sialylation changes as potential early indicators | Tracking NEU1 activity to assess the progression of neurodegeneration, aiding in early intervention strategies | [109,134] |
10. NEU1 Inhibitors
11. Glycan Engineering Approaches
12. Combination Therapies Targeting NEU1 and Other AD Pathways
13. Future Directions and Challenges
- Does NEU1 knockdown in vivo reduce EV-mediated Aβ or tau propagation in AD models?
- What specific glycoproteins on EVs are regulated by NEU1, and how do their desialylated forms affect cellular uptake by neurons, astrocytes or microglia?
- Can EV-associated glycosylation profiles serve as early biomarkers to predict AD onset or therapeutic response?
- How does NEU1 activity vary across brain regions and disease stages, and what are the regional implications for EV function and pathology?
14. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, Y.; Liu, G.; Chen, D.; Yang, J.; Wang, J.; Sun, Y.; Zhang, Q.; Liu, Y.J.B. NQO1 regulates expression and alternative splicing of apoptotic genes associated with Alzheimer’s disease in PC12 cells. Brain Behav. 2023, 13, e2917. [Google Scholar] [CrossRef] [PubMed]
- Shabahang, R.; Emadi, S.J.; Bagheri Sheykhangafshe, F.; Hossien Khanzadeh, A.A.; Mousavi, S.M. The Effectiveness of CBTAC Protocol on Burdens of Alzheimer’s Disease on Caregivers and their Sense of Coherence. Int. Clin. Neurosci. J. 2020, 7, 79–87. [Google Scholar] [CrossRef]
- Li, B.; Yang, C.; Zhu, Z.; Chen, H.; Qi, B. Hypoxic glioma-derived extracellular vesicles harboring MicroRNA-10b-5p enhance M2 polarization of macrophages to promote the development of glioma. CNS Neurosci. Ther. 2022, 28, 1733–1747. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhang, H.; Lan, Y.; Kong, J.; Wong, M.S.; Li, H.-W. Direct and selective nanosensor for amyloid-β oligomers in serum for Alzheimer’s disease diagnosis. RSC Adv. 2025, 15, 16175–16182. [Google Scholar] [CrossRef]
- Ramadan, M.J.A.M. Temporal patterns of the burden of Alzheimer’s disease and their association with Sociodemographic Index in countries with varying rates of aging 1990–2019. Aging Med. 2023, 6, 281–289. [Google Scholar] [CrossRef]
- Kokorelias, K.M.; Naglie, G.; Gignac, M.A.; Rittenberg, N.; Cameron, J.I.J.D. A qualitative exploration of how gender and relationship shape family caregivers’ experiences across the Alzheimer’s disease trajectory. Dementia 2021, 20, 2851–2866. [Google Scholar] [CrossRef]
- Fulop, T.; Witkowski, J.M.; Bourgade, K.; Khalil, A.; Zerif, E.; Larbi, A.; Hirokawa, K.; Pawelec, G.; Bocti, C.; Lacombe, G. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front. Aging Neurosci. 2018, 10, 224. [Google Scholar] [CrossRef]
- Hemonnot, A.-L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in Alzheimer disease: Well-known targets and new opportunities. Front. Aging Neurosci. 2019, 11, 233. [Google Scholar] [CrossRef]
- Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J. Formos. Med. Assoc. 2016, 115, 3–10. [Google Scholar] [CrossRef]
- Faghihi, M.A.; Zhang, M.; Huang, J.; Modarresi, F.; Van der Brug, M.P.; Nalls, M.A.; Cookson, M.R.; St-Laurent, G.; Wahlestedt, C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010, 11, R56. [Google Scholar] [CrossRef]
- Tao, P.-F.; Huang, H.-C. Regulation of AβPP glycosylation modification and roles of glycosylation on AβPP cleavage in Alzheimer’s disease. ACS Chem. Neurosci. 2019, 10, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, G.; Halle, A.; Matyash, V.; Rinnenthal, J.L.; Eom, G.D.; Bernhardt, U.; Miller, K.R.; Prokop, S.; Kettenmann, H.; Heppner, F.L. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 2013, 8, e60921. [Google Scholar] [CrossRef] [PubMed]
- Takata, K.; Takada, T.; Ito, A.; Asai, M.; Tawa, M.; Saito, Y.; Ashihara, E.; Tomimoto, H.; Kitamura, Y.; Shimohama, S. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2012, 2012, 685739. [Google Scholar] [CrossRef] [PubMed]
- Potjewyd, F.M.; Annor-Gyamfi, J.K.; Aubé, J.; Chu, S.; Conlon, I.L.; Frankowski, K.J.; Guduru, S.K.; Hardy, B.P.; Hopkins, M.D.; Kinoshita, C. AD Informer Set: Chemical tools to facilitate Alzheimer’s disease drug discovery. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12246. [Google Scholar] [CrossRef]
- Qian, M.; Shen, X.; Wang, H. The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer’s disease. Cell. Mol. Neurobiol. 2016, 36, 471–482. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Simpson, R.J.; Mathivanan, S. Extracellular microvesicles: The need for internationally recognised nomenclature and stringent purification criteria. J. Proteom. Bioinform. 2012, 5, 1. [Google Scholar] [CrossRef]
- Balaphas, A.; Meyer, J.; Sadoul, R.; Morel, P.; Gonelle-Gispert, C.; Bühler, L.H. Extracellular vesicles: Future diagnostic and therapeutic tools for liver disease and regeneration. Liver Int. 2019, 39, 1801–1817. [Google Scholar] [CrossRef]
- Urabe, F.; Kosaka, N.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular vesicles: Toward a clinical application in urological cancer treatment. Int. J. Urol. 2018, 25, 533–543. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.; Jeon, Y.; Kim, C. Extracellular vesicles as an emerging paradigm of cell-to-cell communication in stem cell biology. J. Stem. Cell Res. Ther. 2014, 4, 2. [Google Scholar] [CrossRef]
- Tesovnik, T.; Kovač, J.; Pohar, K.; Hudoklin, S.; Dovč, K.; Bratina, N.; Trebušak Podkrajšek, K.; Debeljak, M.; Veranič, P.; Bosi, E. Extracellular vesicles derived human-miRNAs modulate the immune system in type 1 diabetes. Front. Cell Dev. Biol. 2020, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Corrado, C.; Raimondo, S.; Chiesi, A.; Ciccia, F.; De Leo, G.; Alessandro, R. Exosomes as intercellular signaling organelles involved in health and disease: Basic science and clinical applications. Int. J. Mol. Sci. 2013, 14, 5338–5366. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Shen, Q.; Yang, X.; Qiu, Y.; Zhang, W. The role of extracellular vesicles: An epigenetic view of the cancer microenvironment. BioMed Res. Int. 2015, 2015, 649161. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, D.K.; Kim, Y.K.; Gho, Y.S. Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrom. Rev. 2015, 34, 474–490. [Google Scholar] [CrossRef]
- Giardina, B.J.; Stein, K.; Chiang, H.-L. The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae. J. Extracell. Vesicles 2014, 3, 23497. [Google Scholar] [CrossRef]
- Chien, C.-H.; Chang, C.-C.; Lin, S.-H.; Chen, C.-W.; Chang, Z.-H.; Chu, Y.-W. N-GlycoGo: Predicting protein N-glycosylation sites on imbalanced data sets by using heterogeneous and comprehensive strategy. IEEE Access 2020, 8, 165944–165950. [Google Scholar] [CrossRef]
- Yun, R.; Hong, E.; Kim, J.; Park, B.; Kim, S.J.; Lee, B.; Song, Y.S.; Kim, S.-J.; Park, S.; Kang, J.M. N-linked glycosylation is essential for anti-tumor activities of KIAA1324 in gastric cancer. Cell Death Dis. 2023, 14, 546. [Google Scholar] [CrossRef]
- Witters, P.; Cassiman, D.; Morava, E. Nutritional therapies in congenital disorders of glycosylation (CDG). Nutrients 2017, 9, 1222. [Google Scholar] [CrossRef]
- Sun, X.; Zhan, M.; Sun, X.; Liu, W.; Meng, X. C1GALT1 in health and disease. Oncol. Lett. 2021, 22, 589. [Google Scholar] [CrossRef]
- Chauhan, J.S.; Bhat, A.H.; Raghava, G.P.; Rao, A. GlycoPP: A webserver for prediction of N-and O-glycosites in prokaryotic protein sequences. PLoS ONE 2012, 7, e40155. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, Y.; Purcell, A.W.; Webb, G.I.; Chou, K.-C.; Lithgow, T.; Li, C.; Song, J. Positive-unlabelled learning of glycosylation sites in the human proteome. BMC Bioinform. 2019, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, C.; Revote, J.; Zhang, Y.; Webb, G.I.; Li, J.; Song, J.; Lithgow, T. GlycoMine struct: A new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features. Sci. Rep. 2016, 6, 34595. [Google Scholar]
- Stowell, S.R.; Ju, T.; Cummings, R.D. Protein glycosylation in cancer. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 473–510. [Google Scholar] [CrossRef]
- Sengupta, P.K.; Bouchie, M.P.; Kukuruzinska, M.A. N-glycosylation gene DPAGT1 is a target of the Wnt/β-catenin signaling pathway. J. Biol. Chem. 2010, 285, 31164–31173. [Google Scholar] [CrossRef]
- Park, J.-S.; Ji, I.J.; Kim, D.-H.; An, H.J.; Yoon, S.-Y. The Alzheimer’s disease-associated R47H variant of TREM2 has an altered glycosylation pattern and protein stability. Front. Neurosci. 2017, 10, 618. [Google Scholar] [CrossRef]
- Chua, C.C.; Lim, M.L.; Wong, B.S. Altered apolipoprotein E glycosylation is associated with Aβ (42) accumulation in an animal model of Niemann-Pick Type C disease. J. Neurochem. 2010, 112, 1619–1626. [Google Scholar] [CrossRef]
- Farquhar, M.; Gray, C.; Breen, K. The over-expression of the wild type or mutant forms of the presenilin-1 protein alters glycoprotein processing in a human neuroblastoma cell line. Neurosci. Lett. 2003, 346, 53–56. [Google Scholar] [CrossRef]
- Naruse, S.; Thinakaran, G.; Luo, J.-J.; Kusiak, J.W.; Tomita, T.; Iwatsubo, T.; Qian, X.; Ginty, D.D.; Price, D.L.; Borchelt, D.R. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 1998, 21, 1213–1221. [Google Scholar] [CrossRef]
- Schedin-Weiss, S.; Winblad, B.; Tjernberg, L.O. The role of protein glycosylation in Alzheimer disease. FEBS J. 2014, 281, 46–62. [Google Scholar] [CrossRef]
- Herreman, A.; Van Gassen, G.; Bentahir, M.; Nyabi, O.; Craessaerts, K.; Mueller, U.; Annaert, W.; De Strooper, B. γ-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J. Cell Sci. 2003, 116, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-S.; Tandon, A.; Chen, F.; Yu, G.; Yu, H.; Arawaka, S.; Hasegawa, H.; Duthie, M.; Schmidt, S.D.; Ramabhadran, T.V. Mature Glycosylation and Trafficking of Nicastrin Modulate Its Binding to Presenilins* 210. J. Biol. Chem. 2002, 277, 28135–28142. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Iqbal, K.; Grundke-Iqbal, I.; Hart, G.W.; Gong, C.-X. O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 10804–10809. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zaidi, T.; Iqbal, K.; Grundke-Iqbal, I.; Merkle, R.K.; Gong, C.-X. Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett. 2002, 512, 101–106. [Google Scholar] [CrossRef]
- Losev, Y.; Frenkel-Pinter, M.; Abu-Hussien, M.; Viswanathan, G.K.; Elyashiv-Revivo, D.; Geries, R.; Khalaila, I.; Gazit, E.; Segal, D. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration. Cell. Mol. Life Sci. 2021, 78, 2231–2245. [Google Scholar] [CrossRef]
- Sato, Y.; Naito, Y.; Grundke-Iqbal, I.; Iqbal, K.; Endo, T. Analysis of N-glycans of pathological tau: Possible occurrence of aberrant processing of tau in Alzheimer’s disease. FEBS Lett. 2001, 496, 152–160. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, X.; Yuzwa, S.A.; Vocadlo, D.J. The emerging link between O-GlcNAc and Alzheimer disease. J. Biol. Chem. 2014, 289, 34472–34481. [Google Scholar] [CrossRef]
- Kizuka, Y.; Kitazume, S.; Fujinawa, R.; Saito, T.; Iwata, N.; Saido, T.C.; Nakano, M.; Yamaguchi, Y.; Hashimoto, Y.; Staufenbiel, M. An aberrant sugar modification of BACE 1 blocks its lysosomal targeting in A lzheimer’s disease. EMBO Mol. Med. 2015, 7, 175–189. [Google Scholar] [CrossRef]
- Kizuka, Y.; Nakano, M.; Kitazume, S.; Saito, T.; Saido, T.C.; Taniguchi, N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem. J. 2016, 473, 21–30. [Google Scholar] [CrossRef]
- Kim, C.; Nam, D.W.; Park, S.Y.; Song, H.; Hong, H.S.; Boo, J.H.; Jung, E.S.; Kim, Y.; Baek, J.Y.; Kim, K.S. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol. Aging 2013, 34, 275–285. [Google Scholar] [CrossRef]
- Lozano, L.; Guevara, J.; Lefebvre, T.; Ramos-Martinez, I.; Limón, D.; Díaz, A.; Cerón, E.; Zenteno, E. Effect of amyloid-Β (25–35) in hyperglycemic and hyperinsulinemic rats, effects on phosphorylation and O-GlcNAcylation of tau protein. Neuropeptides 2017, 63, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Yuzwa, S.A.; Shan, X.; Jones, B.A.; Zhao, G.; Woodward, M.L.; Li, X.; Zhu, Y.; McEachern, E.J.; Silverman, M.A.; Watson, N.V. Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol. Neurodegener. 2014, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Demina, E.P.; Pierre, W.C.; Nguyen, A.L.; Londono, I.; Reiz, B.; Zou, C.; Chakraberty, R.; Cairo, C.W.; Pshezhetsky, A.V.; Lodygensky, G.A. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J. Neuroinflammation 2018, 15, 336. [Google Scholar] [CrossRef] [PubMed]
- McCombs, J.E.; Diaz, J.P.; Luebke, K.J.; Kohler, J.J. Glycan specificity of neuraminidases determined in microarray format. Carbohydr. Res. 2016, 428, 31–40. [Google Scholar] [CrossRef]
- Annunziata, I.; Patterson, A.; Helton, D.; Hu, H.; Moshiach, S.; Gomero, E.; Nixon, R.; d’Azzo, A. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat. Commun. 2013, 4, 2734. [Google Scholar] [CrossRef]
- Allendorf, D.H.; Franssen, E.H.; Brown, G.C. Lipopolysaccharide activates microglia via neuraminidase 1 desialylation of Toll-like Receptor 4. J. Neurochem. 2020, 155, 403–416. [Google Scholar] [CrossRef]
- Khan, A.; Sergi, C.M. NEU1—A Unique Therapeutic Target for Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 902259. [Google Scholar] [CrossRef]
- Khan, A.; Das, S.; Sergi, C. Therapeutic Potential of Neu1 in Alzheimer’s Disease Via the Immune System. Am. J. Alzheimer’s Dis. Other Dement. 2021, 36, 153331752199614. [Google Scholar] [CrossRef]
- Pshezhetsky, A.V.; Ashmarina, M. Keeping it trim: Roles of neuraminidases in CNS function. Glycoconj. J. 2018, 35, 375–386. [Google Scholar] [CrossRef]
- Eitan, E.; Hutchison, E.R.; Marosi, K.; Comotto, J.; Mustapic, M.; Nigam, S.M.; Suire, C.; Maharana, C.; Jicha, G.A.; Liu, D. Extracellular vesicle-associated Aβ mediates trans-neuronal bioenergetic and Ca2+-handling deficits in Alzheimer’s disease models. NPJ Aging Mech. Dis. 2016, 2, 16019. [Google Scholar] [CrossRef]
- Sardar Sinha, M.; Ansell-Schultz, A.; Civitelli, L.; Hildesjö, C.; Larsson, M.; Lannfelt, L.; Ingelsson, M.; Hallbeck, M. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018, 136, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Polanco, J.C.; Scicluna, B.J.; Hill, A.F.; Götz, J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J. Biol. Chem. 2016, 291, 12445–12466. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, M.; Tozzi, F.; Verderio, C.; Origlia, N. Emerging roles of Extracellular vesicles in Alzheimer’s Disease: Focus on synaptic dysfunction and vesicle–Neuron Interaction. Cells 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Benussi, L.; Furlan, R.; Ghidoni, R.; Verderio, C. Extracellular vesicles in Alzheimer’s disease: Friends or foes? Focus on aβ-vesicle interaction. Int. J. Mol. Sci. 2015, 16, 4800–4813. [Google Scholar] [CrossRef]
- Crotti, A.; Sait, H.R.; McAvoy, K.M.; Estrada, K.; Ergun, A.; Szak, S.; Marsh, G.; Jandreski, L.; Peterson, M.; Reynolds, T.L. BIN1 favors the spreading of Tau via extracellular vesicles. Sci. Rep. 2019, 9, 9477. [Google Scholar] [CrossRef]
- Libeu, C.P.; Poksay, K.S.; John, V.; Bredesen, D.E. Structural and functional alterations in amyloid-β precursor protein induced by amyloid-β peptides. J. Alzheimer’s Dis. 2011, 25, 547–566. [Google Scholar] [CrossRef]
- Miyoshi, E.; Bilousova, T.; Melnik, M.; Fakhrutdinov, D.; Poon, W.W.; Vinters, H.V.; Miller, C.A.; Corrada, M.; Kawas, C.; Bohannan, R. Exosomal tau with seeding activity is released from Alzheimer’s disease synapses, and seeding potential is associated with amyloid beta. Lab. Investig. 2021, 101, 1605–1617. [Google Scholar] [CrossRef]
- Hong, S.; Ostaszewski, B.L.; Yang, T.; O’Malley, T.T.; Jin, M.; Yanagisawa, K.; Li, S.; Bartels, T.; Selkoe, D.J. Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 2014, 82, 308–319. [Google Scholar] [CrossRef]
- Soudy, R.; Kimura, R.; Fu, W.; Patel, A.; Jhamandas, J. Extracellular vesicles enriched with amylin receptor are cytoprotective against the Aß toxicity in vitro. PLoS ONE 2022, 17, e0267164. [Google Scholar] [CrossRef]
- Asai, H.; Ikezu, S.; Tsunoda, S.; Medalla, M.; Luebke, J.; Haydar, T.; Wolozin, B.; Butovsky, O.; Kügler, S.; Ikezu, T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 2015, 18, 1584–1593. [Google Scholar] [CrossRef]
- Osborne, O.M.; Kowalczyk, J.M.; Louis, K.D.P.; Daftari, M.T.; Colbert, B.M.; Naranjo, O.; Torices, S.; András, I.E.; Dykxhoorn, D.M.; Toborek, M. Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells. Extracell. Vesicles Circ. Nucleic Acids 2022, 3, 375–379. [Google Scholar]
- Muraoka, S.; DeLeo, A.M.; Sethi, M.K.; Yukawa-Takamatsu, K.; Yang, Z.; Ko, J.; Hogan, J.D.; Ruan, Z.; You, Y.; Wang, Y. Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimer’s Dement. 2020, 16, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Soares Martins, T.; Trindade, D.; Vaz, M.; Campelo, I.; Almeida, M.; Trigo, G.; da Cruz e Silva, O.A.; Henriques, A.G. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J. Neurochem. 2021, 156, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Peraza, F.; Nogueras-Ortiz, C.J.; Volpert, O.; Liu, D.; Goetzl, E.J.; Mattson, M.P.; Greig, N.H.; Eitan, E.; Kapogiannis, D. Neuronal and astrocytic extracellular vesicle biomarkers in blood reflect brain pathology in mouse models of Alzheimer’s disease. Cells 2021, 10, 993. [Google Scholar] [CrossRef]
- Tian, C.; Stewart, T.; Hong, Z.; Guo, Z.; Aro, P.; Soltys, D.; Pan, C.; Peskind, E.R.; Zabetian, C.P.; Shaw, L.M. Blood extracellular vesicles carrying synaptic function-and brain-related proteins as potential biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2023, 19, 909–923. [Google Scholar] [CrossRef]
- Winston, C.N.; Goetzl, E.J.; Akers, J.C.; Carter, B.S.; Rockenstein, E.M.; Galasko, D.; Masliah, E.; Rissman, R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2016, 3, 63–72. [Google Scholar] [CrossRef]
- Jia, L.; Qiu, Q.; Zhang, H.; Chu, L.; Du, Y.; Zhang, J.; Zhou, C.; Liang, F.; Shi, S.; Wang, S. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimer’s Dement. 2019, 15, 1071–1080. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Mustapic, M.; Kapogiannis, D.; Eitan, E.; Lobach, I.V.; Goetzl, L.; Schwartz, J.B.; Miller, B.L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016, 30, 3853–3859. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Schwartz, J.B.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann. Neurol. 2018, 83, 544–552. [Google Scholar] [CrossRef]
- Upadhya, R.; Zingg, W.; Shetty, S.; Shetty, A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020, 323, 225–239. [Google Scholar] [CrossRef]
- Söllvander, S.; Nikitidou, E.; Brolin, R.; Söderberg, L.; Sehlin, D.; Lannfelt, L.; Erlandsson, A. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol. Neurodegener. 2016, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Podvin, S.; Jones, A.; Liu, Q.; Aulston, B.; Mosier, C.; Ames, J.; Winston, C.; Lietz, C.B.; Jiang, Z.; O’Donoghue, A.J. Mutant presenilin 1 dysregulates exosomal proteome cargo produced by human-induced pluripotent stem cell neurons. ACS Omega 2021, 6, 13033–13056. [Google Scholar] [CrossRef] [PubMed]
- Fitzner, D.; Schnaars, M.; Van Rossum, D.; Krishnamoorthy, G.; Dibaj, P.; Bakhti, M.; Regen, T.; Hanisch, U.-K.; Simons, M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 2011, 124, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Balusu, S.; Van Wonterghem, E.; De Rycke, R.; Raemdonck, K.; Stremersch, S.; Gevaert, K.; Brkic, M.; Demeestere, D.; Vanhooren, V.; Hendrix, A. Identification of a novel mechanism of blood–brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol. Med. 2016, 8, 1162–1183. [Google Scholar] [CrossRef]
- Pascua-Maestro, R.; González, E.; Lillo, C.; Ganfornina, M.D.; Falcón-Pérez, J.M.; Sanchez, D. Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front. Cell. Neurosci. 2019, 12, 526. [Google Scholar] [CrossRef]
- Sinha, A.; Kushwaha, R.; Molesworth, K.; Mychko, O.; Makarava, N.; Baskakov, I.V. Phagocytic activities of reactive microglia and astrocytes associated with prion diseases are dysregulated in opposite directions. Cells 2021, 10, 1728. [Google Scholar] [CrossRef]
- Dickens, A.M.; Tovar-Y-Romo, L.B.; Yoo, S.-W.; Trout, A.L.; Bae, M.; Kanmogne, M.; Megra, B.; Williams, D.W.; Witwer, K.W.; Gacias, M.; et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal. 2017, 10, eaai7696. [Google Scholar] [CrossRef]
- Crivelli, S.M.; Quadri, Z.; Vekaria, H.J.; Zhu, Z.; Tripathi, P.; Elsherbini, A.; Zhang, L.; Sullivan, P.G.; Bieberich, E. Inhibition of acid sphingomyelinase reduces reactive astrocyte secretion of mitotoxic extracellular vesicles and improves Alzheimer’s disease pathology in the 5xFAD mouse. Acta Neuropathol. Commun. 2023, 11, 135. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Clark, D.J.; Schnaubelt, M.; Hoti, N.; Hu, Y.; Zhou, Y.; Gooya, M.; Zhang, H. Impact of increased FUT8 expression on the extracellular vesicle proteome in prostate cancer cells. J. Proteome Res. 2020, 19, 2195–2205. [Google Scholar] [CrossRef]
- Wu, L.; Gao, C. Comprehensive Overview the Role of Glycosylation of Extracellular Vesicles in Cancers. ACS Omega 2023, 8, 47380–47392. [Google Scholar] [CrossRef] [PubMed]
- Vermassen, T.; D’Herde, K.; Jacobus, D.; Van Praet, C.; Poelaert, F.; Lumen, N.; Callewaert, N.; Decaestecker, K.; Villeirs, G.; Hoebeke, P.; et al. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile. J. Clin. Pathol. 2017, 70, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Clos-Sansalvador, M.; Garcia, S.G.; Morón-Font, M.; Williams, C.; Reichardt, N.-C.; Falcón-Pérez, J.M.; Bayes-Genis, A.; Roura, S.; Franquesa, M.; Monguió-Tortajada, M.; et al. N-Glycans in Immortalized Mesenchymal Stromal Cell-Derived Extracellular Vesicles Are Critical for EV–Cell Interaction and Functional Activation of Endothelial Cells. Int. J. Mol. Sci. 2022, 23, 9539. [Google Scholar] [CrossRef] [PubMed]
- Vinod, R.; Mahran, R.; Routila, E.; Leivo, J.; Pettersson, K.; Gidwani, K. Nanoparticle-aided detection of colorectal cancer-associated glycoconjugates of extracellular vesicles in human serum. Int. J. Mol. Sci. 2021, 22, 10329. [Google Scholar] [CrossRef]
- Nishida-Aoki, N.; Tominaga, N.; Kosaka, N.; Ochiya, T. Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. J. Extracell. Vesicles 2020, 9, 1713527. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Tang, S.; Li, X.; Zhang, G.; Li, M.; Zeng, X.; Hu, C. Changes of serum IgG glycosylation patterns in primary biliary cholangitis patients. Front. Immunol. 2021, 12, 669137. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Liu, J.; Zhang, Y.; Liu, Y.; Shen, S.; Tian, F.; Yan, G.; Gao, Y.; Qin, X. Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front. Immunol. 2022, 13, 973993. [Google Scholar] [CrossRef]
- Borkham-Kamphorst, E.; Van de Leur, E.; Meurer, S.K.; Buhl, E.M.; Weiskirchen, R. N-glycosylation of Lipocalin 2 is not required for secretion or exosome targeting. Front. Pharmacol. 2018, 9, 426. [Google Scholar] [CrossRef]
- Islam, M.K.; Syed, P.; Lehtinen, L.; Leivo, J.; Gidwani, K.; Wittfooth, S.; Pettersson, K.; Lamminmäki, U. A nanoparticle-based approach for the detection of extracellular vesicles. Sci. Rep. 2019, 9, 10038. [Google Scholar] [CrossRef]
- Nagai-Okatani, C.; Zou, X.; Fujita, N.; Sogabe, I.; Arakawa, K.; Nagai, M.; Angata, K.; Zhang, Y.; Aoki-Kinoshita, K.F.; Kuno, A. LM-GlycomeAtlas Ver. 2.0: An integrated visualization for lectin microarray-based mouse tissue glycome mapping data with lectin histochemistry. J. Proteome Res. 2021, 20, 2069–2075. [Google Scholar] [CrossRef]
- Grabarics, M.; Lettow, M.; Kirschbaum, C.; Greis, K.; Manz, C.; Pagel, K. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 2021, 122, 7840–7908. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Mimi, M.A.; Mamun, M.A.; Islam, A.; Waliullah, A.; Nabi, M.M.; Tamannaa, Z.; Kahyo, T.; Setou, M. Mass spectrometry imaging for glycome in the brain. Front. Neuroanat. 2021, 15, 711955. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ostafe, R.; Bruening, M.L. In-Membrane Enrichment and Peptic Digestion to Facilitate Analysis of Monoclonal Antibody Glycosylation. Anal. Chem. 2024, 96, 6347–6355. [Google Scholar] [CrossRef] [PubMed]
- Molnarova, K.; Cokrtova, K.; Tomnikova, A.; Krizek, T.; Kozlik, P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. Monatsh Chem. 2022, 153, 659–686. [Google Scholar] [CrossRef]
- Yilmaz, M.; Fondrie, W.E.; Bittremieux, W.; Melendez, C.F.; Nelson, R.; Ananth, V.; Oh, S.; Noble, W.S. Sequence-to-sequence translation from mass spectra to peptides with a transformer model. Nat. Commun. 2024, 15, 6427. [Google Scholar] [CrossRef]
- Benedetti, E.; Gerstner, N.; Pučić-Baković, M.; Keser, T.; Reiding, K.R.; Ruhaak, L.R.; Štambuk, T.; Selman, M.H.; Rudan, I.; Polašek, O. Systematic evaluation of normalization methods for glycomics data based on performance of network inference. Metabolites 2020, 10, 271. [Google Scholar] [CrossRef]
- Fremuth, L.E.; van de Vlekkert, D.; Hu, H.; Weesner, J.A.; Annunziata, I.; d’Azzo, A.J.b. Targeting Lysosomal Dysfunction to Alleviate Plaque Deposition in an Alzheimer Disease Model. bioRxiv 2025. [Google Scholar] [CrossRef]
- Karmakar, J.; Roy, S.; Mandal, C. Modulation of TLR4 sialylation mediated by a sialidase Neu1 and impairment of its signaling in Leishmania donovani infected macrophages. Front. Immunol. 2019, 10, 2360. [Google Scholar] [CrossRef]
- Kawecki, C.; Bocquet, O.; Schmelzer, C.E.; Heinz, A.; Ihling, C.; Wahart, A.; Romier, B.; Bennasroune, A.; Blaise, S.; Terryn, C. Identification of CD36 as a new interaction partner of membrane NEU1: Potential implication in the pro-atherogenic effects of the elastin receptor complex. Cell. Mol. Life Sci. 2019, 76, 791–807. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Peng, X.; Zheng, Z.; Le, A.; Guo, J.; Ma, L.; Shi, H.; Yao, K.; Zhang, S. Neuraminidase 1 exacerbating aortic dissection by governing a pro-inflammatory program in macrophages. Front. Cardiovasc. Med. 2021, 8, 788645. [Google Scholar] [CrossRef]
- Seyrantepe, V.; Iannello, A.; Liang, F.; Kanshin, E.; Jayanth, P.; Samarani, S.; Szewczuk, M.R.; Ahmad, A.; Pshezhetsky, A.V. Regulation of phagocytosis in macrophages by neuraminidase 1. J. Biol. Chem. 2010, 285, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, F.; Guo, M.; Abdulkhalek, S.; Crawford, N.; Amith, S.R.; Szewczuk, M.R. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cell. Signal. 2014, 26, 1355–1368. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Miyamoto, Y.; Kawasaki, N.; Hashii, N.; Itoh, S.; Murase, M.; Date, K.; Yokoyama, M.; Sato, C.; Kitajima, K. Survival signals of hepatic stellate cells in liver regeneration are regulated by glycosylation changes in rat vitronectin, especially decreased sialylation. J. Biol. Chem. 2010, 285, 17301–17309. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, M.; Gerlach, J.Q.; Wendt, G.R.; Collins III, J.J.; Atkinson, L.E.; Mousley, A.; Geary, T.G.; Long, T. Analysis of schistosoma mansoni extracellular vesicles surface glycans reveals potential immune evasion mechanism and new insights on their origins of biogenesis. Pathogens 2021, 10, 1401. [Google Scholar] [CrossRef]
- You, Y.; Muraoka, S.; Jedrychowski, M.P.; Hu, J.; McQuade, A.K.; Young-Pearse, T.; Aslebagh, R.; Shaffer, S.A.; Gygi, S.P.; Blurton-Jones, M. Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J. Extracell. Vesicles 2022, 11, e12183. [Google Scholar] [CrossRef]
- Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; Bieberich, E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 1792–1800. [Google Scholar] [CrossRef]
- Mei, S.; Li, D.; Wang, A.; Zhu, G.; Zhou, B.; Li, N.; Qin, Y.; Zhang, Y.; Jiang, S. The role of sialidase Neu1 in respiratory diseases. Respir. Res. 2024, 25, 134. [Google Scholar] [CrossRef]
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’loughlin, E.; Xu, Y.; Fanek, Z. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017, 47, 566–581.e9. [Google Scholar] [CrossRef]
- Kostuk, E.W.; Cai, J.; Iacovitti, L. Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson’s disease. J. Neuroinflammation 2018, 15, 139. [Google Scholar] [CrossRef]
- Basso, M.; Pozzi, S.; Tortarolo, M.; Fiordaliso, F.; Bisighini, C.; Pasetto, L.; Spaltro, G.; Lidonnici, D.; Gensano, F.; Battaglia, E. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: Implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J. Biol. Chem. 2013, 288, 15699–15711. [Google Scholar] [CrossRef]
- Tian, J.; Yao, H.; Liu, Y.; Wang, X.; Wu, J.; Wang, J.; Yu, D.; Xie, Y.; Gao, J.; Zhu, Y. Extracellular vesicles from bone marrow stromal cells reduce the impact of stroke on glial cell activation and blood brain-barrier permeability via a putative miR-124/PRX1 signalling pathway. Eur. J. Neurosci. 2022, 56, 3786–3805. [Google Scholar] [CrossRef] [PubMed]
- Attaluri, S.; Jaimes Gonzalez, J.; Kirmani, M.; Vogel, A.D.; Upadhya, R.; Kodali, M.; Madhu, L.N.; Rao, S.; Shuai, B.; Babu, R.S. Intranasally administered extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells quickly incorporate into neurons and microglia in 5xFAD mice. Front. Aging Neurosci. 2023, 15, 1200445. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.; Oberländer, J.; Mateos-Maroto, A.; Schunke, J.; Fichter, M.; Krämer-Albers, E.M.; Landfester, K.; Mailänder, V. Uptake of extracellular vesicles into immune cells is enhanced by the protein corona. J. Extracell. Vesicles 2023, 12, e12399. [Google Scholar] [CrossRef] [PubMed]
- Lerner, N.; Avissar, S.; Beit-Yannai, E. Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system. PLoS ONE 2017, 12, e0171153. [Google Scholar] [CrossRef]
- Chaiyadet, S.; Sotillo, J.; Smout, M.; Cantacessi, C.; Jones, M.K.; Johnson, M.S.; Turnbull, L.; Whitchurch, C.B.; Potriquet, J.; Laohaviroj, M. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype. J. Infect. Dis. 2015, 212, 1636–1645. [Google Scholar] [CrossRef]
- Kong, J.; Tian, H.; Zhang, F.; Zhang, Z.; Li, J.; Liu, X.; Li, X.; Liu, J.; Li, X.; Jin, D. Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts. Mol. Cancer 2019, 18, 175. [Google Scholar] [CrossRef]
- Guo, Z.; Tuo, H.; Tang, N.; Liu, F.-Y.; Ma, S.-Q.; An, P.; Yang, D.; Wang, M.-Y.; Fan, D.; Yang, Z. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int. J. Biol. Sci. 2022, 18, 826–840. [Google Scholar] [CrossRef]
- Howlader, M.A.; Demina, E.P.; Samarani, S.; Guo, T.; Caillon, A.; Ahmad, A.; Pshezhetsky, A.V.; Cairo, C.W. The Janus-like role of neuraminidase isoenzymes in inflammation. FASEB J. 2022, 36, e22285. [Google Scholar] [CrossRef]
- Stranford, D.M.; Hung, M.E.; Gargus, E.S.; Shah, R.N.; Leonard, J.N. A systematic evaluation of factors affecting extracellular vesicle uptake by breast cancer cells. Tissue Eng. Part A 2017, 23, 1274–1282. [Google Scholar] [CrossRef]
- Tóth, E.Á.; Turiák, L.; Visnovitz, T.; Cserép, C.; Mázló, A.; Sódar, B.W.; Försönits, A.I.; Petővári, G.; Sebestyén, A.; Komlósi, Z. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 2021, 10, e12140. [Google Scholar] [CrossRef]
- Jhaveri, J.R.; Khare, P.; Pinky, P.P.; Kamte, Y.S.; Chandwani, M.N.; Milosevic, J.; Abraham, N.; Dave, K.M.; Zheng, S.-y.; O’Donnell, L. Effect of homotypic vs. heterotypic interactions on the cellular uptake of extracellular vesicles. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sil, S.; Singh, S.; Chemparathy, D.T.; Chivero, E.T.; Gordon, L.; Buch, S. Astrocytes & astrocyte derived extracellular vesicles in morphine induced amyloidopathy: Implications for cognitive deficits in opiate abusers. Aging Dis. 2021, 12, 1389–1408. [Google Scholar] [PubMed]
- Allendorf, D.H.; Brown, G.C. Neu1 is released from activated microglia, stimulating microglial phagocytosis and sensitizing neurons to glutamate. Front. Cell. Neurosci. 2022, 16, 917884. [Google Scholar] [CrossRef] [PubMed]
- Sundararaj, K.; Rodgers, J.; Angel, P.; Wolf, B.; Nowling, T.K. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021, 162, 418–433. [Google Scholar] [CrossRef]
- Liu, B.; Nguyen, P.L.; Yu, H.; Li, X.; Wang, H.; Price, J.; Niu, M.; Guda, C.; Cheng, X.; Sun, X. Critical contributions of protein cargos to the functions of macrophage-derived extracellular vesicles. J. Nanobiotechnol. 2023, 21, 352. [Google Scholar] [CrossRef]
- Cao, M.; Yan, H.; Han, X.; Weng, L.; Wei, Q.; Sun, X.; Lu, W.; Wei, Q.; Ye, J.; Cai, X. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326. [Google Scholar] [CrossRef]
- Ji, Z.; Jiang, X.; Li, Y.; Song, J.; Chai, C.; Lu, X. Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp. Ther. Med. 2020, 20, 148. [Google Scholar] [CrossRef]
- Popēna, I.; Ābols, A.; Saulīte, L.; Pleiko, K.; Zandberga, E.; Jēkabsons, K.; Endzeliņš, E.; Llorente, A.; Linē, A.; Riekstiņa, U. Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun. Signal. 2018, 16, 17. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, P.; Wang, W.; Horst, K.; Bläsius, F.; Relja, B.; Xu, D.; Hildebrand, F.; Greven, J. M1 but not M0 extracellular vesicles induce polarization of RAW264. 7 macrophages via the TLR4-NFκB pathway in vitro. Inflammation 2020, 43, 1611–1619. [Google Scholar] [CrossRef]
- Wang, P.; Yi, T.; Mao, S.; Li, M. Neuroprotective mechanism of human umbilical cord mesenchymal stem cell-derived extracellular vesicles improving the phenotype polarization of microglia via the PI3K/AKT/Nrf2 pathway in vascular dementia. Synapse 2023, 77, e22268. [Google Scholar] [CrossRef]
- Howlader, M.A.; Guo, T.; Chakraberty, R.; Cairo, C.W. Isoenzyme-selective inhibitors of human neuraminidases reveal distinct effects on cell migration. ACS Chem. Biol. 2020, 15, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Liao, K.; Niu, F.; Yang, L.; Dallon, B.W.; Callen, S.; Tian, C.; Shu, J.; Cui, J.; Sun, Z. Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: Implications for morphine-mediated neurodegeneration. Mol. Ther. Nucleic Acids 2018, 13, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, F.; Montesinos, J.; Ureña-Peralta, J.R.; Guerri, C.; Pascual, M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J. Neuroinflammation 2019, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Kim, J.-H.; Song, G.J.; Seo, M.; Hwang, E.M.; Suk, K. Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation. J. Neurosci. 2017, 37, 2878–2894. [Google Scholar] [CrossRef]
- Sil, S.; Periyasamy, P.; Guo, M.-L.; Callen, S.; Buch, S. Morphine-mediated brain region-specific astrocytosis involves the ER stress-autophagy axis. Mol. Neurobiol. 2018, 55, 6713–6733. [Google Scholar] [CrossRef]
- Long, X.; Yao, X.; Jiang, Q.; Yang, Y.; He, X.; Tian, W.; Zhao, K.; Zhang, H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J. Neuroinflammation 2020, 17, 89. [Google Scholar] [CrossRef]
- Albrecht, C.; Kuznetsov, A.S.; Appert-Collin, A.; Dhaideh, Z.; Callewaert, M.; Bershatsky, Y.V.; Urban, A.S.; Bocharov, E.V.; Bagnard, D.; Baud, S. Transmembrane peptides as a new strategy to inhibit neuraminidase-1 activation. Front. Cell Dev. Biol. 2020, 8, 611121. [Google Scholar] [CrossRef]
- Bonten, E.J.; Yogalingam, G.; Hu, H.; Gomero, E.; van de Vlekkert, D.; d’Azzo, A. Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 1784–1792. [Google Scholar] [CrossRef]
- Fremuth, L.E.; Hu, H.; van de Vlekkert, D.; Annunziata, I.; Weesner, J.A.; Gomero, E.; d’Azzo, A. Neuraminidase 1 regulates the cellular state of microglia by modulating the sialylation of Trem2. bioRxiv 2024. [Google Scholar] [CrossRef]
- Toussaint, K.; Appert-Collin, A.; Vanalderwiert, L.; Bour, C.; Terryn, C.; Spenlé, C.; Van Der Heyden, M.; Roumieux, M.; Maurice, P.; Romier-Crouzet, B.; et al. Inhibition of neuraminidase-1 sialidase activity by interfering peptides impairs insulin receptor activity in vitro and glucose homeostasis in vivo. J. Biol. Chem. 2024, 300, 107316. [Google Scholar] [CrossRef]
- Li, J.; Long, Q.; Ding, H.; Wang, Y.; Luo, D.; Li, Z.; Zhang, W. Progress in the treatment of central nervous system diseases based on nanosized traditional Chinese medicine. Adv. Sci. 2024, 11, 2308677. [Google Scholar] [CrossRef]
- Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018, 30, 1801362. [Google Scholar] [CrossRef] [PubMed]
- Witika, B.A.; Poka, M.S.; Demana, P.H.; Matafwali, S.K.; Melamane, S.; Malungelo Khamanga, S.M.; Makoni, P.A. Lipid-based nanocarriers for neurological disorders: A review of the state-of-the-art and therapeutic success to date. Pharmaceutics 2022, 14, 836. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.P.; Torrado, M.; Custódio, B.; Silva-Reis, S.C.; Santos, S.D.; Leiro, V.; Pêgo, A.P. Breaking barriers: Bioinspired strategies for targeted neuronal delivery to the central nervous system. Pharmaceutics 2020, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, J.J.; Cunnane, E.M.; Ross, A.M.; Duskey, J.T.; Tosi, G.; Grabrucker, A.M. Drug delivery across the blood–brain barrier: Recent advances in the use of nanocarriers. Nanomedicine 2020, 15, 205–214. [Google Scholar] [CrossRef]
- Hegde, M.M.; Prabhu, S.; Mutalik, S.; Chatterjee, A.; Goda, J.S.; Satish Rao, B.S. Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: Recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J. Pharm. Investig. 2022, 52, 49–74. [Google Scholar] [CrossRef]
- Fougerat, A.; Pan, X.; Smutova, V.; Heveker, N.; Cairo, C.W.; Issad, T.; Larrivée, B.; Medin, J.A.; Pshezhetsky, A.V. Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. Mol. Metab. 2018, 12, 76–88. [Google Scholar] [CrossRef]
- Dridi, L.; Seyrantepe, V.; Fougerat, A.; Pan, X.; Bonneil, É.; Thibault, P.; Moreau, A.; Mitchell, G.A.; Heveker, N.; Cairo, C.W. Positive regulation of insulin signaling by neuraminidase 1. Diabetes 2013, 62, 2338–2346. [Google Scholar] [CrossRef]
- Howlader, M.A.; Li, C.; Zou, C.; Chakraberty, R.; Ebesoh, N.; Cairo, C.W. Neuraminidase-3 is a negative regulator of LFA-1 adhesion. Front. Chem. 2019, 7, 791. [Google Scholar] [CrossRef]
- Romier, B.; Ivaldi, C.; Sartelet, H.; Heinz, A.; Schmelzer, C.E.; Garnotel, R.; Guillot, A.; Jonquet, J.; Bertin, E.; Guéant, J.-L. Production of elastin-derived peptides contributes to the development of nonalcoholic steatohepatitis. Diabetes 2018, 67, 1604–1615. [Google Scholar] [CrossRef]
- Rusciani, A.; Duca, L.; Sartelet, H.; Chatron-Colliet, A.; Bobichon, H.; Ploton, D.; Le Naour, R.; Blaise, S.; Martiny, L.; Debelle, L. Elastin peptides signaling relies on neuraminidase-1-dependent lactosylceramide generation. PLoS ONE 2010, 5, e14010. [Google Scholar] [CrossRef] [PubMed]
- Scandolera, A.; Rabenoelina, F.; Chaintreuil, C.; Rusciani, A.; Maurice, P.; Blaise, S.; Romier-Crouzet, B.; El Btaouri, H.; Martiny, L.; Debelle, L. Uncoupling of elastin complex receptor during in vitro aging is related to modifications in its intrinsic sialidase activity and the subsequent lactosylceramide production. PLoS ONE 2015, 10, e0129994. [Google Scholar] [CrossRef] [PubMed]
- Chami, L.; Checler, F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol. Neurodegener. 2012, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Prati, F.; Bottegoni, G.; Bolognesi, M.L.; Cavalli, A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease: Miniperspective. J. Med. Chem. 2018, 61, 619–637. [Google Scholar] [CrossRef]
- Guo, T.; Héon-Roberts, R.; Zou, C.; Zheng, R.; Pshezhetsky, A.V.; Cairo, C.W. Selective inhibitors of human neuraminidase 1 (NEU1). J. Med. Chem. 2018, 61, 11261–11279. [Google Scholar] [CrossRef]
- Zhou, X.; Zhai, Y.; Liu, C.; Yang, G.; Guo, J.; Li, G.; Sun, C.; Qi, X.; Li, X.; Guan, F.J.C.C.; et al. Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin α5β1 interaction and Akt signaling pathway. Cell Commun. Signal. 2020, 18, 44. [Google Scholar] [CrossRef]
- Xu, T.; Heon-Roberts, R.; Moore, T.; Dubot, P.; Pan, X.; Guo, T.; Cairo, C.W.; Holley, R.; Bigger, B.; Durcan, T.M.J.b. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. bioRxiv 2024. [Google Scholar] [CrossRef]
- Fremuth, L.E.; Hu, H.; van de Vlekkert, D.; Annunziata, I.; Weesner, J.A.; d’Azzo, A. Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation. Cell Rep. 2025, 44, 115204. [Google Scholar] [CrossRef]
- Heimerl, M.; Sieve, I.; Ricke-Hoch, M.; Erschow, S.; Battmer, K.; Scherr, M.; Hilfiker-Kleiner, D. Neuraminidase-1 promotes heart failure after ischemia/reperfusion injury by affecting cardiomyocytes and invading monocytes/macrophages. Basic Res. Cardiol. 2020, 115, 62. [Google Scholar] [CrossRef]
- Peng, M.-L.; Chau, S.-F.; Chien, J.-Y.; Woon, P.-Y.; Chen, Y.-C.; Cheang, W.-M.; Tsai, H.-Y.; Huang, S.-P. Genetic Insights and Clinical Implications of NEU1 Mutations in Sialidosis. Genes 2025, 16, 151. [Google Scholar] [CrossRef]
- Luzina, I.G.; Lillehoj, E.P.; Lockatell, V.; Hyun, S.W.; Lugkey, K.N.; Imamura, A.; Ishida, H.; Cairo, C.W.; Atamas, S.P.; Goldblum, S.E. Therapeutic effect of neuraminidase-1–Selective inhibition in mouse models of bleomycin-induced pulmonary inflammation and fibrosis. J. Pharmacol. Exp. Ther. 2021, 376, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Thiesler, H.; Küçükerden, M.; Gretenkort, L.; Röckle, I.; Hildebrandt, H. News and views on polysialic acid: From tumor progression and brain development to psychiatric disorders, neurodegeneration, myelin repair and immunomodulation. Front. Cell Dev. Biol. 2022, 10, 871757. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Komamizu, M.; Hayashi, A.; Yamasaki, C.; Okada, K.; Kawabe, M.; Komatsu, M.; Shiozaki, K. Neu1 deficiency induces abnormal emotional behavior in zebrafish. Sci. Rep. 2021, 11, 13477. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Shui, H.; Chen, R.; Dong, Y.; Xiao, C.; Hu, Y.; Wong, N.-K. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr. Issues Mol. Biol. 2024, 46, 8031–8052. [Google Scholar] [CrossRef]
- Zheng, W.; He, R.; Liang, X.; Roudi, S.; Bost, J.; Coly, P.M.; van Niel, G.; Andaloussi, S.E. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J. Extracell. Vesicles 2022, 11, e12290. [Google Scholar] [CrossRef]
- Perez, C.M.; Liang, X.; Gupta, D.; Haughton, E.R.; Conceição, M.; Mäger, I.; Andaloussi, S.E.; Wood, M.J.; Roberts, T.C. An extracellular vesicle delivery platform based on the PTTG1IP protein. Extracell. Vesicle 2024, 4, 100054. [Google Scholar] [CrossRef]
- Freitas, D.; Balmaña, M.; Poças, J.; Campos, D.; Osório, H.; Konstantinidi, A.; Vakhrushev, S.Y.; Magalhães, A.; Reis, C.A. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J. Extracell. Vesicles 2019, 8, 1621131. [Google Scholar] [CrossRef]
- Williams, C.; Pazos, R.; Royo, F.; González, E.; Roura-Ferrer, M.; Martinez, A.; Gamiz, J.; Reichardt, N.-C.; Falcón-Pérez, J.M. Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci. Rep. 2019, 9, 11920. [Google Scholar] [CrossRef]
- D’Acunzo, P.; Pérez-González, R.; Kim, Y.; Hargash, T.; Miller, C.; Alldred, M.J.; Erdjument-Bromage, H.; Penikalapati, S.C.; Pawlik, M.; Saito, M. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci. Adv. 2021, 7, eabe5085. [Google Scholar] [CrossRef]
- Cone, A.S.; Hurwitz, S.N.; Lee, G.S.; Yuan, X.; Zhou, Y.; Li, Y.; Meckes, D.G. Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Mol. Cell Biol. 2020, 21, 58. [Google Scholar] [CrossRef]
- Vella, L.J.; Hill, A.F.; Cheng, L. Focus on extracellular vesicles: Exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 2016, 17, 173. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Lyketsos, C.G. Alterations of the sphingolipid pathway in Alzheimer’s disease: New biomarkers and treatment targets? Neuromolecular Med. 2010, 12, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mankhong, S.; Kang, J.-H. Extracellular vesicle as a source of Alzheimer’s biomarkers: Opportunities and challenges. Int. J. Mol. Sci. 2019, 20, 1728. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Vella, L.J.; Barnham, K.J.; McLean, C.; Masters, C.L.; Hill, A.F. Small RNA fingerprinting of Alzheimer’s disease frontal cortex extracellular vesicles and their comparison with peripheral extracellular vesicles. J. Extracell. Vesicles 2020, 9, 1766822. [Google Scholar] [CrossRef]
- Williams, C.; Royo, F.; Aizpurua-Olaizola, O.; Pazos, R.; Boons, G.-J.; Reichardt, N.-C.; Falcon-Perez, J.M. Glycosylation of extracellular vesicles: Current knowledge, tools and clinical perspectives. J. Extracell. Vesicles 2018, 7, 1442985. [Google Scholar] [CrossRef]
- Morrison, M.S.; Aparicio, H.J.; Blennow, K.; Zetterberg, H.; Ashton, N.J.; Karikari, T.K.; Tripodis, Y.; Martin, B.; Palmisano, J.N.; Sugarman, M.A. Ante-mortem plasma phosphorylated tau (181) predicts Alzheimer’s disease neuropathology and regional tau at autopsy. Brain 2022, 145, 3546–3557. [Google Scholar] [CrossRef]
- Zhang, Y.; Albohy, A.; Zou, Y.; Smutova, V.; Pshezhetsky, A.V.; Cairo, C.W. Identification of selective inhibitors for human neuraminidase isoenzymes using C4, C7-modified 2-deoxy-2, 3-didehydro-N-acetylneuraminic acid (DANA) analogues. J. Med. Chem. 2013, 56, 2948–2958. [Google Scholar] [CrossRef]
- Szabó, E.; Hornung, Á.; Monostori, É.; Bocskai, M.; Czibula, Á.; Kovács, L. Altered cell surface N-glycosylation of resting and activated T cells in systemic lupus erythematosus. Int. J. Mol. Sci. 2019, 20, 4455. [Google Scholar] [CrossRef]
- Murakami, K.; Kambe, D.; Yokoi, Y.; Wakui, H.; Hayakawa, S.; Hirane, N.; Koide, R.; Otaki, M.; Nagahori, N.; Nishimura, S.-I. Smart Nanomedicine Targeting Endocytosis Mediated by Cancer Cell Surface Neuraminidase-1. Adv. NanoBiomed. Res. 2023, 3, 2300076. [Google Scholar] [CrossRef]
EV Source | Cargo | Functional Role in AD Progression or Diagnosis | References |
---|---|---|---|
Endothelial cells | Amyloid-beta (Aβ) | Facilitate the translocation of neurotoxic Aβ peptides across the blood–brain barrier (BBB), contributing to AD pathology | [71] |
Brain-derived EVs | Aβ, tau, glial markers (ANXA5, VGF, GPM6A, ACTZ) | Transport pathological proteins and glial-specific markers; may serve as diagnostic indicators for AD | [72] |
Neurons | Aβ | Mediate inter-neuronal propagation of Aβ in a prion-like fashion or from neurons to microglia, exacerbating neurodegeneration | [61,73] |
Neurons | Aβ, tau, mRNA, miRNA | EV-associated nucleic acids and proteins can be detected in plasma/serum, useful as potential blood-based biomarkers | [73,74,75,76] |
Neurons | Tau | Pathological tau proteins in cerebrospinal fluid (CSF)-derived EVs are candidate biomarkers for early AD diagnosis | [77] |
Astrocytes | Aβ | Transfer of Aβ from astrocytes to neurons, promoting intracellular Aβ accumulation | [78] |
Astrocytes | Inflammatory mediators | EVs enriched in proinflammatory proteins serve as blood/plasma biomarkers indicative of neuroinflammation in AD | [79] |
Astrocytes | Aβ and tau | The presence of circulating EVs suggests diagnostic utility for disease staging | [74,79,80] |
Microglia | Aβ | Enable intercellular communication between microglia and neurons, promoting Aβ dissemination | [64,73,81] |
Microglia | Tau | Drive the spread of tau pathology to adjacent neural cells, contributing to tauopathy | [70] |
Technique | Resolution | Throughput | Cost | Strengths | Limitations | References |
---|---|---|---|---|---|---|
Lectin microarrays | Low–moderate | High | Low–moderate | High-throughput; broad glycan | Cross-reactivity; semi-quantitative | [100] |
Mass spectrometry | High (structural) | Low–moderate | High | High specificity; structural glycan mapping | Requires expertise; low throughput; expensive instrumentation | [101] |
Enzymatic digestion | Site specific | Low | Low | Identifies glycosylation sites | Limited structural information; not comprehensive | [102] |
HPLC | High (separation) | Moderate | Moderate–high | Resolves glycan isomers; suitable for complex mixtures | Requires glycan release/derivatization; moderate throughput | [103] |
Fluorescent labeling | Low–moderate | Moderate | Low–moderate | Allows visualization and quantification | Lacks structural resolution; variability in quantification | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Siddiqui, A.J.; Bardakci, F.; Surti, M.; Badraoui, R.; Patel, M. NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting. Pharmaceuticals 2025, 18, 921. https://doi.org/10.3390/ph18060921
Adnan M, Siddiqui AJ, Bardakci F, Surti M, Badraoui R, Patel M. NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting. Pharmaceuticals. 2025; 18(6):921. https://doi.org/10.3390/ph18060921
Chicago/Turabian StyleAdnan, Mohd, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui, and Mitesh Patel. 2025. "NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting" Pharmaceuticals 18, no. 6: 921. https://doi.org/10.3390/ph18060921
APA StyleAdnan, M., Siddiqui, A. J., Bardakci, F., Surti, M., Badraoui, R., & Patel, M. (2025). NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting. Pharmaceuticals, 18(6), 921. https://doi.org/10.3390/ph18060921