Next Article in Journal
Machine Learning-Driven Consensus Modeling for Activity Ranking and Chemical Landscape Analysis of HIV-1 Inhibitors
Previous Article in Journal
Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer
Previous Article in Special Issue
Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment

by
Douglas B. Kell
1,2,3,*,
Etheresia Pretorius
1,2,* and
Huihui Zhao
4,5
1
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
2
The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
3
Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
4
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China
5
Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
*
Authors to whom correspondence should be addressed.
Pharmaceuticals 2025, 18(5), 712; https://doi.org/10.3390/ph18050712
Submission received: 27 March 2025 / Revised: 29 April 2025 / Accepted: 7 May 2025 / Published: 12 May 2025

Abstract

:
‘Blood stasis’ (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (血瘀). Similar concepts exist in Traditional Korean Medicine (‘Eohyul’) and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down (‘stasis’) of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.

1. Introduction

1.1. Preamble, Audience, and Scope

This review integrates concepts of systems medicine from both Eastern and Western traditions. It is intended to be read (and readable) by scientists, clinicians, and patients from very different intellectual and cultural backgrounds, and will necessarily include subsections that are completely familiar to some but entirely arcane to others. We hope that at the end readers will recognize that the discovery of fibrinaloid microclots provides a ready general explanation for the traditional, if molecularly ill-defined, concept of ‘blood stasis’. Equivalently, the concepts (and extensive traditional knowledge) of blood stasis may provide extremely useful insights into the biology of fibrinaloid microclots and the means of treating them and the diseases with which they are associated. Our focus is on Chinese Herbal Medicine, and we acknowledge (but for reasons of scope we mainly do not rehearse) the underlying principles of Traditional Chinese Medicine (TCM), such as five-element theory and the analysis of pulses, meridians, and Qi [1]. We do not directly consider other adjunctive treatment elements of TCM such as acupuncture, moxibustion, cupping, massage, and so on, since the focus is the mode of action of relevant Chinese herbal formulae and the molecules they contain, as they relate to blood stasis. We then focus on a particular herbal formulation used to treat blood stasis and the nature and mechanisms of the bioactive chemicals that it contains. For reasons of accessibility we have avoided Chinese-language publications. A preprint has been lodged [2].

1.2. A Note on Systems and Personalized Medicine

Modern Western medicine, especially that based on pharmaceuticals, has tended to give the impression that a particular drug may be targeted at, and will be efficacious in, all patients. Given the existence of some 25,000 genes, each with many alleles, leav aside phenotypic variations such as those based on lifestyle effects, it has always been obvious that this could not be the case (e.g., [3]). As phrased by the 18th century physician Caleb Parry (quoted in [4]), ‘[i]t is much more important to know what kind of patient has a disease than to know what kind of disease a patient has’. This principle of personalized medicine (e.g., [5,6], including the role of AI therein [7,8]) lies at the heart of TCM and is intimately linked with equivalent Western concepts such as systems biology [9,10,11,12,13,14,15], systems medicine [16,17], polypharmacology [18,19,20,21,22,23,24,25,26,27,28,29,30], and network pharmacology [31,32,33,34,35,36]. An early approach to this (that could be seen as a subset of systems biology) known as metabolic control analysis (e.g., [37,38,39,40,41,42,43,44]) describes explicitly how and why individual biochemical reactions contribute only weakly to the control of metabolic fluxes, and why, to have big effects, one must modulate multiple reactions simultaneously. Natural evolution selects for robustness to individual insults [45], and the kinetic and architectural [46] properties of such networks tend to provide it; indeed, the interlinked kinetics of biochemical networks mean that it is easy to find circumstances in which two inhibitors individually have negligible effects on a metabolic flux, whereas together their effect can be massive [47,48].
As a systems approach, Chinese herbal medicine adheres to the Jun-Chen-Zuo-Shi principle [49,50,51,52,53] (Westerners will find some minor variations of the Chinese characters). As phrased by [50], ‘[t]he Jun (emperor) component is the principal phytocomplex targeting the major symptom of the disease. There are only a few varieties of Jun medicinals that are administered as a single formula, usually in large doses. The Chen (minister) herbs synergize with Jun to strengthen its therapeutic effects, and may also treat secondary symptoms. The Zuo (assistant) medicinal reduces or eliminates possible adverse or toxic effects of the Jun and/or Chen components, while also enhancing their effects and sometimes treating secondary symptoms. Finally, the Shi (courier) herbs facilitate delivery of the principal components to the lesion sites, or facilitate the overall action of the other components’. It is particularly interesting that the last component effectively relates to the significance of pharmaceutical drug transporter proteins, something finally being recognized more widely (e.g., [54,55,56,57,58]) and that in fact had evolved precisely to transport natural products [59].
While recognizing that TCM practitioners will vary treatments precisely to suit the individual, we do not normally have access to such information for our scientific purposes. Equally, we rarely know the multiple targets of even single pharmaceutical drugs [60] (in 2008 the average number of known targets per drug molecule was six [61]). Consequently, this review will seek to paint a big picture, recognizing in particular that it is combinations of herbs affecting multiple processes that have the greatest chance of having useful effects [34,62,63,64,65,66], while seeking to bring together the biochemistry of microclots (see below) with what is known of blood stasis.

1.3. Blood Stasis

‘Blood stasis’ (or blood stasis syndrome, BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (血瘀) [67]. BSS refers to conditions in which the circulation of blood is not smooth or is slowed down in some way (e.g., [68,69], and see later). It has been known (using other terms) at least from the time of The Yellow Emperor’s Inner Classic (Huang Di Nei Jing) [67,70]. The same concept exists in many other traditional medicines, including Traditional Korean Medicine (where blood stasis is known as ‘Eohyul’ or ‘Ouhyul’) [15,71] and in Japanese Kampo medicine (where it is termed Oketsu). Even within TCM there are similar variants (e.g., [72]). Overall, while we recognize that there are nuanced differences of interpretation both within and between these traditions, and probably also among individual practitioners, it is also recognized that blood stasis may in fact manifest differently in different populations [73,74], and this cannot easily be deconvolved. Blood stasis can be caused by vascular obstruction, abnormal flow of blood, and blood congestion in viscous, contaminated blood, and has at least four subtypes [75]. It is regarded as the cause or the result of a great many chronic inflammatory diseases [76,77,78], which we summarize later. Many general reviews of blood stasis exist, e.g., [68,73,76,79,80,81,82,83].
Traditionally, BSS is measured somewhat subjectively by a practitioner’s observation of symptoms or manifestations such as tongue color and the results of palpations. More recently, attempts have been made to objectify or quantify the extent of BSS using various kinds of scores (e.g., [70,84,85,86,87,88,89,90,91,92,93,94,95]). Blood stasis is fundamentally related to hemorheology measurements (i.e., viscosity) [88,96,97]. We rehearse explicitly this point about scoring BSS, as such quantitative measurements (as used, e.g., for scoring fatigue in long COVID [98]) will be highly desirable for future studies that seek to relate microclot burden to BSS. However, such data presently do not exist.
It is also worth rehearsing here that the 19th-century physiologist Virchow recognized three factors (known as Virchow’s triad [99,100,101,102,103]) that contribute to the development of venous thrombosis, and these are stasis of blood flow, hypercoagulability, and endothelial injury. The significance of the terminology of the first one is not lost on us, and the parallel between ‘stasis of blood flow’ in Virchow’s triad and BSS supports a potential physiological basis for this traditional concept. However, the precise overlap of such terminology with biomedical phenomena and terminology more commonly used nowadays in Western medicine, such as vascular insufficiency, microcirculation disorders, or coagulopathies, is not at all established, and, as mentioned [73,74], the manifestation of blood stasis syndrome may even differ between populations. To this end, part of the purpose of this review is to suggest that it would be very desirable to address these issues.

1.4. Fibrinaloid Microclots

Fibrinogen, one of the most abundant plasma proteins (2–4 g·L−1), has dimensions of some 5 × 45 nm, giving a length:diameter ratio of ~9. As is well known, a key part of blood clotting involves the removal from fibrinogen by the protease thrombin of two fibrinopeptides (FpA and FpB), leading to a remarkable self-organization in which fibrinogen molecules accrete to form far larger fibrils and protofibrils via a ‘knobs and stalks’ mechanism (Figure 1A–C). In normal clotting, the fibrinogen molecules are essentially oriented in the direction of the growing chain, which looks somewhat like cooked spaghetti in the electron microscope (EM) (Figure 1B). Other things such as erythrocytes and platelets may also be trapped, along with non-fibrin proteins whose concentrations in the clot roughly correlate with those in normal soluble plasma [104,105].
Over a decade ago, it was discovered was that certain small molecules such as specific estrogens [106,107] or unliganded iron [108,109,110,111,112,113] could cause fibrinogen to form highly anomalous clots that in the EM appeared like claggy aggregations of partly boiled spaghetti, and that were referred to at the time as ‘dense matted deposits’ [110,111,114,115,116] (Figure 1C). Their properties differ from those of normal clots in a variety of different ways, and at the helpful suggestion of a referee, Table 1 summarizes the main differences we have noticed between ‘conventional’ clots and the fibrinaloid (micro)clots that we discovered.
Table 1. Some differences between the properties of fibrinaloid microclots and those of normal blood clots (see also [117]).
Table 1. Some differences between the properties of fibrinaloid microclots and those of normal blood clots (see also [117]).
PropertyNormal ClotsFibrinaloid MicroclotsSelected References
Appearance under an electron microscopeLike spaghetti cooked al denteLike parboiled spaghetti congealed in a claggy mess (and originally known as ‘dense matted deposits’)Figure 1 and [111,112,113,116,118,119,120,121]
Significant autofluorescence when excited at 405 nm or below (for one-photon excitation [122])NoYes (as with all amyloid proteins)[123,124,125,126,127,128]
Fluoresce strongly when stained with thioflavin T or Amytracker dyesNoYes[129,130]
High α-helix contentYesNo[120,131,132]
High β-sheet contentNoYes[120,131,132]
Lysis/fibrinolysis by various common proteases is relatively easyYesNo[133,134]
Proteome of clot reflects plasma proteomeYesNo[131,132]
Proteome of clot rich in amyloidogenic proteinsNoYes[131,132]
Typical fiber diameterVariable but ca 100 nmCan be much greater[129,131,135,136,137,138,139,140]
Figure 1. Structure and dimensions of fibrinogen and its folding into healthy and pathological amyloid fibrin(ogen). (A) Fluorescence microscopy of healthy plasma (with and without spike protein), with thioflavin T (to show amyloid areas in fibrin(ogen)) and added thrombin. (B) Scanning electron microscopy of fibrin(ogen) with and without lipopolysaccharide (LPS) and thrombin (C) Scanning electron microscopy of human plasma with FeCl3 and thrombin. (Adapted from [111,141]). Generated with Biorender.com.
Figure 1. Structure and dimensions of fibrinogen and its folding into healthy and pathological amyloid fibrin(ogen). (A) Fluorescence microscopy of healthy plasma (with and without spike protein), with thioflavin T (to show amyloid areas in fibrin(ogen)) and added thrombin. (B) Scanning electron microscopy of fibrin(ogen) with and without lipopolysaccharide (LPS) and thrombin (C) Scanning electron microscopy of human plasma with FeCl3 and thrombin. (Adapted from [111,141]). Generated with Biorender.com.
Pharmaceuticals 18 00712 g001
Subsequent studies, using the well-established [142,143,144] amyloid stain thioflavin T (Figure 2), as well as the commercial oligothiophene ‘Amytracker™’ stains [129,145], showed that this anomalous clotting (i) was actually due to conversion of the fibrin(ogen) into amyloid forms, which are characterized by cross-β motifs that bind these stains and effect their observable fluorescence, (ii) could be induced by minuscule amounts of bacterial cell wall components (e.g., one molecule of bacterial lipopolysaccharide per 100 million fibrinogen molecules [129]), and (iii) could be observed in a large variety of chronic, inflammatory diseases (e.g., [146] and Table 1). Much as with prions and other amyloid proteins [120,147], there is no thermodynamic problem; the clotting will happen anyway, and these molecules simply catalyze a different route of self-organization that maintains the necessary close packing in the relevant macrostates.
Clearly, such insoluble microclots (like other microparticulates [148,149]) can straightforwardly interfere with the flow of blood cells through microcapillaries, i.e., block them, leading to a loss of O2 transfer, hypoxia, and other pathological consequences [150]. Finally, here, we recognize that amyloid proteins generally share cross-β structural motifs that serve to bind stains such as thioflavin T [142,144,151,152,153,154,155,156,157,158,159,160,161], as well as ‘pan-amyloid’ peptides and antibodies (e.g., [162,163,164,165,166]).

2. Diseases Involving Blood Stasis in Which Raised Levels of Fibrinaloid Microclots Have Been Detected

Over the years, we and others have assessed the raised presence of fibrinaloid microclots in a series of chronic, inflammatory diseases, each of which, it transpires, is considered to involve blood stasis. Table 2 provides a summary. Note, of course, that many of these syndromes, especially those (as here) involving vascular issues, exhibit comorbidity with each other because they have common causes. Comorbid diabetes and Alzheimer’s disease provides one such example [146,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181] of many. TCM of course recognizes this explicitly, where it is known as ‘Treating Different Diseases with the Same Treatment’ [83,182,183,184].
We would stress that each of these diseases is closely related to blood stasis syndrome. Thus, blood stasis syndrome is a commonality of these diseases. It is also a good bridge for communication between Chinese and Western medicine.

3. Diseases Involving Blood Stasis Where Fibrinaloid Microclots Are Yet to Be Measured Directly

In a similar vein, effectively the converse of the above, there are many diseases involving blood stasis in which microclots have yet to be assessed, but which would make obvious objects of study from this point of view. The basic reasoning is as per the paired papers [131,132] on amyloid clot proteomics. In the first [131], we showed that known amyloid microclots had proteomes that differed markedly from those of known (‘normal’) clots. Besides fibrin, they contained various proteins that were in low concentration in soluble plasma yet lacked many that were in high concentration there. Indeed, normal clots had a proteome that roughly mirrored the soluble plasma proteome, implying relatively weak binding or sequestration (see Figure 3). The proteins ‘enriched’ in the microclots were highly amyloidogenic, suggesting that they were actually incorporated into the fibrils via the cross-β motifs common to all amyloids. The second paper [132] asked the ‘inverse’ question, i.e., if we know the composition of the clot proteome in various thrombotic diseases, can we predict whether or not the clot is amyloid (ogenic)? In all cases, the answer was that these clots should indeed be amyloid, which can thus be tested (and in the case of ischemic stroke had been [277]).
Table 3 gives a listing of various vascular and thrombotic diseases that are known from TCM to be associated with blood stasis but that are not in Table 2, along with some mechanistic comments that suggest that studies assessing whether or not the microclots were both present and amyloid in character in these diseases would likely be attended with success.
These all tend to be systems diseases, and so the different components of herbal preparations will tend to interrogate different elements of what has been disrupted. An example from traumatic brain injury [403] is given in Figure 4, and one from long COVID, showing the multiplicity of symptoms, in Figure 5.

Cancer and Classical Amyloidoses

We did not include the classical amyloidoses in the above table (though Alzheimer’s and Parkinson’s, listed in Table 2, would certainly fall into those categories), not least because there are a great variety of them (including polymorphs) [406,407,408,409,410,411,412,413,414,415,416], cross-seeding is commonplace (e.g., [131,417]), and they deserve a separate treatment in their own right. Similarly, cancer is a topic that is so broad and massive that it too deserves (and will receive) a separate treatment. Consequently, we here note only four things:

4. Amyloid Nature of the Blood Clots in Blood Stasis

While we are not aware of any measurement of the amyloid nature (or otherwise) of microclots in samples characterized by CHM practitioners as involving blood stasis, proteomics can on its own predict whether a clot is likely to be normal or amyloid in character [131,476], and all the recent assessments of the microclots occurring in these various diseases show that they are amyloid in character. Such proteins (that include prions and prionoids) are well known, because of the cross-β sheet motifs, to be rather resistant to most proteases [477,478,479,480,481,482,483]. This, together with the presence of various anti-fibrinolytics trapped in such clots [133,134], provides a ready explanation for the failure to remove them, such that they can contribute strongly to the phenomena of blood stasis.

5. A Focus on Xue Fu Zhu Yu

Having established the consonance between cases (accompanied by inflammation and coagulopathies) where fibrinaloid microclots have been measured and the co-existence of blood stasis as defined within TCM, it is of interest to begin to understand what these various herbs may be doing. As mentioned, even single pharmaceutical drugs have multiple known targets [61]; in some cases (such as statins, reviewed in [484]), the so-called ‘off-target’ effects are actually largely responsible for the efficacy of the drug in terms of increasing longevity. Consequently, deconvolving accurately what everything is doing within a Chinese herbal medicine cocktail is going to be very difficult. However, this does not mean that some progress cannot be made in terms of establishing components that, e.g., are anti-inflammatory or anti-oxidant and [336] provides a nice example for pulmonary fibrosis. To rehearse again, it is by hitting these multiple targets simultaneously that one can expect and find that the formulae are efficacious.
Xue Fu Zhu Yu (sometimes written as XueFu ZhuYu or Xuefuzhuyu) is an herb combination designed to boost Qi and remove blood stasis [485,486,487,488,489,490]. Xue Fu Zhu Yu decoction (Xue Fu Zhu Yu tang, XFZYD) is used explicitly for a variety of coronary diseases [302,307,309,310,341,343,352,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507] (notably decreased mortality from ischemic heart disease by more than four-fold [508]), as well as traumatic brain injury [51,401,509,510,511,512,513,514,515,516,517,518,519,520], NAFLD [371,521] (nowadays known as MASLD [370]), deep vein thrombosis [356], fibrosis [522], ischemic stroke [504,523,524], COPD [335], sepsis [237] (including a five-herb injectable variant known as Xuebijing (XBJ, see below) [238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263]), amyloidogenesis [189], myocardial fibrosis [494], dysmenorrhea [357,359,360], hypertension [525], and tumors [462].
For illustrative purposes, we are therefore going to concentrate on Xue Fu Zhu Yu (血府逐瘀); ‘blood stasis–expelling decoction’ or ‘stasis in the mansion of blood’), since, while others such as Danshen–Chuanxiong are certainly in use against some diseases of blood stasis (e.g., [526,527,528]), this Xue Fu Zhu Yu formula https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 February 2025) is among those most commonly used to treat blood stasis (e.g., [341,487,490,497,529,530]). Figure 6 provides a screen dump from part of that page, while Figure 7 provides a summary analysis.
The aim here is to indicate the kind of knowledge we presently have of the most significant chemical components in each herb, while recognizing that some modest variations would likely be prescribed for individuals who are physically seen by a Chinese Medical Herbalist.
Xue Fu Zhu Yu, or Xuefu Zhuyu, has 11 herbal components [531,532,533]. Proportions vary, but we give the percentages in a particular preparation of which we are aware. The ingredients are Semen persicae aka Prunus persica = peach seed (Tao Ren) 16%, Radix rehmanniae from Rehmannia glutinosa Libosch (Di Huang or Sheng Di, depending on whether dried or fresh) 12%, Radix achyranthis bidentata or Cyathulae radix (Niu Xi) 12%, Radix angelicae sinensis (Chinese angelica) (Dang Gui) 12%, Flos carthami aka safflower (Hong Hua) 12%, Fructus aurantia (Zhi Qiao) 8%, Radix paeoniae rubra (Chi Shao) 8%, Radix platycodonis (Jie Geng) 6%, Rhizoma chuanxiong (Ligusticum chuanxiong) or Szechaun lovage roots 6%, Radix glycorrhizae (Chinese licorice) (Gan Cao) 4%, and Radix bupleuri (Chinese Thorawax Root) (Chai Hu) 4%. We note that Angelica sinensis also houses endophytic fungi that can have great effects on the metabolome [534]. Xuebijing is an injectable subset of Xue Fu Xhu Yu plus Danshen (Salviae Miltiorrhizae Radix et Rhizoma) composed of five Chinese herbs, which are Honghua (Carthami flos), Chishao (Paeoniae radix rubra), Chuanxiong (Chuanxiong rhizoma), Danggui (Angelicae sinensis radix), and Danshen (Salviae miltiorrhizae radix et rhizoma), particularly used against sepsis [248,257]. A recent study [260] selected hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances as the main active ingredients of XueBijing through a comprehensive analysis of metabolomics and network pharmacology. Among them, HSYA showed outstanding performance in promoting endothelial cell proliferation [260].
According to https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 May 2025) (and using slightly different names), within the Jun-Chen-Zuo-Shi (Emperor-Minister-Assistant-Courier) principle mentioned above, the components are considered to be: Tao Ren and Hong Hua as Emperor; Chi Shao, ChuanXiong, and Niu Xi as Minister; Sheng Di, Danggui, Jie Geng, Zhi Qiao, and Chai Hu as Assistant; and Gan Cao as Courier.

Bioactive Molecules in Xue Fu Zhu Yu

We now look at some of the molecules that are considered to be active within the different herbs (Table 4). While this is likely to be far from complete, it shows clearly the known and multiple effects of some of the major bioactive components in the herbs comprising Xue Fu Zhu Yu.
What is also clear is that there is a wealth of literature in some cases and a dearth in others, and comparing subsets of the mixtures leads to an infeasible combinatorial explosion [713]. There are also some consonances, with molecules or classes being common to more than one of the herbs (Table 4), and of course it is well known that natural products can make for successful drugs, even in Western medicine (e.g., [714,715,716,717,718]). It is also of interest that the triterpenoid saponins (here platycodins, saikosaponins, and glycyrrhizin), a class of molecules of increasing importance in natural product drug discovery [719,720,721,722,723,724,725,726,727,728,729,730,731], can also contain most or all of a steroid nucleus [732,733,734,735,736,737] and have good bioavailability [738,739] (probably through their chemical relatedness to steroids and bile acids [740,741,742]). Importantly, such triterpenoids may inhibit toxic amyloidogenesis (e.g., [743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782]), and indeed appear in other herbal formulae for stimulating blood circulation in blood stasis syndrome (e.g., [783,784,785,786,787]).
To avoid cluttering up Table 4, chemical structures of some of the main components of the herbs in Xue Fu Zhu Yu are given in Table 5.
What is also clear from Table 5 is the large number of different chemical structures of even the main, known bioactive elements in Xue Fu Zhu Yu, as well as their multiple targets (Table 4).
Natural products tend to be larger than purely chemical drugs [788,789,790,791,792,793,794,795,796,797], which may imply that they have even more targets than the average of six mentioned above for pharmaceutical drugs [61]. While relatively little is known of the transporters responsible for their uptake into cells, it is known that pharmaceutical drugs that are taken up do mimic natural products [59].

6. Discussion, with a Focus on Mechanism(s) of Action of Xue Fu Zhu Yu Decoction

This article, as a synthetic review [798], has brought together four major themes that had not previously been related to each other:
  • The concept from traditional Eastern medicines of blood stasis, however imperfectly understood mechanistically, as a recognition that in many syndromes blood is not flowing as freely as normal or desirable;
  • The discovery and properties of fibrin amyloid (‘fibrinaloid’) microclots that form when blood clots into an anomalous amyloid form; this can be catalyzed by infectious agents (that were of course unknown to early traditional medicines); as amyloids, as well as by entrapping anti-proteolytic substances, they are resistant to the normal mechanisms of fibrinolysis and can thus block the normal transport of red blood cells (and hence oxygen transport to tissues), leading to many unhealthy sequelae;
  • The recognition that many traditional herbal formulas or cocktails, carefully designed to target multiple things simultaneously and exemplified by Xue Fu Zhu Yu decoction (XFZYD), are efficacious in removing the symptoms (and possibly the causes) of blood stasis;
  • The increases in our understanding of both the molecular constituents of such cocktails, illustrated by Xue Fu Zhu Yu, and some of the molecular targets with which have been found to interact.
For illustrative purposes, these effects include at least the following:
  • Neuroprotective effects: XFZYD may exert neuroprotective effects by regulating miRNA expression and promoting synaptic remodeling. A study found that XFZYD could reverse the reduction of BDNF and TrkB in the hippocampus caused by traumatic brain injury and increase the number of synaptic connections, as well as the expression of synaptic-related protein PSD95, axon-related protein GAP43, and neuron-specific protein TUBB3 [519].
  • Anti-inflammatory effects: Multiple studies have shown that XFZYD has anti-inflammatory effects. In an alopecia model, XFZYD can significantly inhibit the levels of IL-6, IL-1β, and TNF-α in serum and skin tissue [799].
  • Promoting angiogenesis: A study evaluated the angiogenic effect of XFZYD using a PTK787-induced segmental vascular injury zebrafish model. Through various analytical methods, seven active components promoting angiogenesis were identified, including ferulic acid, paeoniflorin, and hesperidin [800].

7. Summarizing and Concluding Remarks

The concept of blood stasis is exceptionally important in traditional Asian medicines, and we have here argued that it reflects the fibrinaloid microclots that two of us had discovered. The recognition that herbal formulae such as Xue Fu Zhu Yu are well known (by relevant practitioners) to be of value in treating blood stasis, as well as some of the bioactive molecules that it contains, thus opens up the area of microclots to focused pharmacological analyses. This said, Xue Fu Zhu Yu contains 11 separate herbs, each containing multiple bioactive elements, each of which is likely to have multiple targets (Table 4, and more generally [60,61,801]). Deconvolving the precise effects in different cases is consequently going to be difficult, though progress is being made (Table 4). However, the recognition that microclots may largely equate to or be responsible for ‘blood stasis’ also offers the hope of effective treatments.
Traditional Eastern medicines recognize that, while herbal cocktails such as Xue Fu Zhu Yu are commonly efficacious against blood stasis syndrome (and may be suggested, especially when the individual is unable to visit a suitable practitioner), ideally one should seek to obtain a variant recipe more precisely tailored to the individual’s needs. However, from the perspective of the mechanism(s) of action of the molecules and herbs in XFZYD, future research might focus on the synergistic effects of Xue Fu Zhu Yu components at both the herb and bioactive molecule levels, their pharmacokinetics, their effects on fibrinaloid microclot generation and persistence coupled to any symptom amelioration, and their clinical efficacy in treating chronic diseases, as well as metabolomics methods for their composition and effects. Additionally, the development of standardized biomarkers for BSS and microclot burden will be crucial for personalized treatment strategies.

Author Contributions

Conceptualization, D.B.K., E.P. and H.Z.; methodology, D.B.K., E.P. and H.Z.; formal analysis, D.B.K., E.P. and H.Z.; writing—original draft preparation, D.B.K.; writing—review and editing, D.B.K., E.P. and H.Z.; visualization, D.B.K., E.P. and H.Z.; funding acquisition, D.B.K. and E.P. All authors have read and agreed to the published version of the manuscript.

Funding

D.B.K. thanks the Balvi Foundation (grant 18) and the Novo Nordisk Foundation for funding (grant NNF20CC0035580). Funding for E.P. was provided by NRF of South Africa (grant number 142142), SA MRC (self-initiated research (SIR) grant), and the Balvi Foundation. The content and findings reported and illustrated are the sole deduction, view, and responsibility of the researchers and do not reflect the official position and sentiments of the funders.

Data Availability Statement

Not applicable.

Acknowledgments

D.B.K. thanks a great many people for useful discussions, including Yisheng Chen, Victoria Conran, Amanda Crist, Meng Li, Linghui Lu, Michael Moran, and Louanne Richards.

Conflicts of Interest

E.P. is a named inventor on a patent application covering the use of fluorescence methods for microclot detection in long COVID. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Ko, K.M.; Leung, H.Y. The Essential Role of Zheng Qi in Promoting Health: From the Perspective of Chinese Medicine and Modern Medicine. Chin. Med. 2024, 15, 27–33. [Google Scholar] [CrossRef]
  2. Kell, D.B.; Pretorius, E.; Zhao, H. A direct relationship between ‘blood stasis’ and fibrinaloid microclots in chronic, inflammatory and vascular diseases, and some traditional natural products approaches to treatment. Preprints 2025, 2025021537. Available online: https://www.preprints.org/manuscript/202502.1537/v1 (accessed on 6 May 2025). [CrossRef]
  3. Williams, R.J. Biochemical Individuality; John Wiley: New York, NY, USA, 1956. [Google Scholar]
  4. Henney, A.M. The promise and challenge of personalized medicine: Aging populations, complex diseases, and unmet medical need. Croat. Med. J. 2012, 53, 207–210. [Google Scholar] [CrossRef] [PubMed]
  5. Mastrangelo, A.; Armitage, E.G.; Garcia, A.; Barbas, C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr. Top. Med. Chem. 2014, 14, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
  6. Superchi, C.; Brion Bouvier, F.; Gerardi, C.; Carmona, M.; San Miguel, L.; Sanchez-Gomez, L.M.; Imaz-Iglesia, I.; Garcia, P.; Demotes, J.; Banzi, R.; et al. Study designs for clinical trials applied to personalised medicine: A scoping review. BMJ Open 2022, 12, e052926. [Google Scholar] [CrossRef] [PubMed]
  7. Banerji, C.R.S.; Chakraborti, T.; Harbron, C.; MacArthur, B.D. Clinical AI tools must convey predictive uncertainty for each individual patient. Nat. Med. 2023, 29, 2996–2998. [Google Scholar] [CrossRef] [PubMed]
  8. Banerji, C.R.S.; Chakraborti, T.; Ismail, A.A.; Ostmann, F.; MacArthur, B.D. Train clinical AI to reason like a team of doctors. Nature 2025, 639, 32–34. [Google Scholar] [CrossRef]
  9. Kitano, H. Systems biology: A brief overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef]
  10. Hood, L. Systems biology: Integrating technology, biology, and computation. Mech. Ageing Dev. 2003, 124, 9–16. [Google Scholar] [CrossRef]
  11. Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Lehrach, H. Systems Biology in Practice: Concepts, Implementation and Clinical Application; Wiley/VCH: Berlin, Germany, 2005. [Google Scholar]
  12. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman and Hall/CRC: London, UK, 2006. [Google Scholar]
  13. Noble, D. The Music of Life: Biology Beyond Genes; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
  14. Palsson, B.Ø. Systems Biology: Properties of Reconstructed Networks; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
  15. Park, M.S.; Kim, J.; Kim, K.H.; Yoo, H.R.; Chae, I.; Lee, J.; Joo, I.H.; Kim, D.H. Modern concepts and biomarkers of blood stasis in cardio- and cerebrovascular diseases from the perspectives of Eastern and Western medicine: A scoping review protocol. JBI Evid. Synth. 2023, 21, 214–222. [Google Scholar] [CrossRef]
  16. Auffray, C.; Chen, Z.; Hood, L. Systems medicine: The future of medical genomics and healthcare. Genome Med. 2009, 1, 2. [Google Scholar] [CrossRef] [PubMed]
  17. Hood, L.; Flores, M. A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnol. 2012, 29, 613–624. [Google Scholar] [CrossRef]
  18. Achenbach, J.; Tiikkainen, P.; Franke, L.; Proschak, E. Computational tools for polypharmacology and repurposing. Futur. Med. Chem. 2011, 3, 961–968. [Google Scholar] [CrossRef] [PubMed]
  19. Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and Opportunities in Drug Discovery. J. Med. Chem. 2014, 57, 7874–7887. [Google Scholar] [CrossRef]
  20. Boran, A.D.W.; Iyengar, R. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Dev. 2010, 13, 297–309. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3068535/ (accessed on 6 May 2025).
  21. Lavecchia, A.; Cerchia, C. In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov. Today 2016, 21, 288–298. [Google Scholar] [CrossRef] [PubMed]
  22. Peters, J.U. Polypharmacology—Foe or Friend? J. Med. Chem. 2013, 56, 8955–8971. [Google Scholar] [CrossRef] [PubMed]
  23. Plake, C.; Schroeder, M. Computational polypharmacology with text mining and ontologies. Curr. Pharm. Biotechnol. 2011, 12, 449–457. [Google Scholar] [CrossRef]
  24. Reddy, A.S.; Zhang, S. Polypharmacology: Drug discovery for the future. Expert Rev. Clin. Pharmacol. 2013, 6, 41–47. [Google Scholar] [CrossRef] [PubMed]
  25. Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: Protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol. 2014, 116, 174–186. [Google Scholar] [CrossRef]
  26. Xie, L.; Xie, L.; Kinnings, S.L.; Bourne, P.E. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 361–379. [Google Scholar] [CrossRef]
  27. Chand, J.; Panda, S.R.; Jain, S.; Murty, U.S.N.; Das, A.M.; Kumar, G.J.; Naidu, V.G.M. Phytochemistry and polypharmacology of cleome species: A comprehensive Ethnopharmacological review of the medicinal plants. J. Ethnopharmacol. 2022, 282, 114600. [Google Scholar] [CrossRef]
  28. Stefan, S.M.; Rafehi, M. Medicinal polypharmacology-a scientific glossary of terminology and concepts. Front. Pharmacol. 2024, 15, 1419110. [Google Scholar] [CrossRef]
  29. Manzoni, O.J.; Manduca, A.; Trezza, V. Therapeutic potential of cannabidiol polypharmacology in neuropsychiatric disorders. Trends Pharmacol. Sci. 2025, 46, 145–162. [Google Scholar] [CrossRef]
  30. Paricharak, S.; Cortés-Ciriano, I.; IJzerman, A.P.; Malliavin, T.E.; Bender, A. Proteochemometric modelling coupled to in silico target prediction: An integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules. J. Chemin. 2015, 7, 15. [Google Scholar] [CrossRef]
  31. Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
  32. Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep. 2015, 32, 1249–1266. [Google Scholar] [CrossRef]
  33. Dagar, N.; Kale, A.; Jadhav, H.R.; Gaikwad, A.B. Nutraceuticals and network pharmacology approach for acute kidney injury: A review from the drug discovery aspect. Fitoterapia 2023, 168, 105563. [Google Scholar] [CrossRef] [PubMed]
  34. Duan, X.; Wang, N.; Peng, D. Application of network pharmacology in synergistic action of Chinese herbal compounds. Theory Biosci. 2024, 143, 195–203. [Google Scholar] [CrossRef]
  35. Koutsoukas, A.; Simms, B.; Kirchmair, J.; Bond, P.J.; Whitmore, A.V.; Zimmer, S.; Young, M.P.; Jenkins, J.L.; Glick, M.; Glen, R.C.; et al. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J. Proteom. 2011, 74, 2554–2574. [Google Scholar] [CrossRef] [PubMed]
  36. Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based Approaches in Pharmacology. Mol. Inf. 2017, 36, 1700048. [Google Scholar] [CrossRef] [PubMed]
  37. Kacser, H.; Burns, J.A. The control of flux. In Rate Control of Biological Processes. Symposium of the Society for Experimental Biology; Davies, D.D., Ed.; Cambridge University Press: Cambridge, UK, 1973; Volume 27, pp. 65–104. [Google Scholar]
  38. Heinrich, R.; Rapoport, T.A. Linear theory of enzymatic chains: Its application for the analysis of the crossover theorem and of the glycolysis of human erythrocytes. Acta Biol. Medica Ger. 1973, 31, 479–494. [Google Scholar]
  39. Heinrich, R.; Rapoport, T.A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 1974, 42, 89–95. [Google Scholar] [CrossRef]
  40. Kell, D.B.; Westerhoff, H.V. Metabolic control theory: Its role in microbiology and biotechnology. FEMS Microbiol. Rev. 1986, 39, 305–320. [Google Scholar] [CrossRef]
  41. Fell, D.A. Metabolic Control Analysis—A survey of its theoretical and experimental development. Biochem. J. 1992, 286, 313–330. [Google Scholar] [CrossRef]
  42. Cornish-Bowden, A.; Hofmeyr, J.-H.S.; Cárdenas, M.L. Strategies for manipulating metabolic fluxes in biotechnology. Bioorg. Chem. 1995, 23, 439–449. [Google Scholar] [CrossRef]
  43. Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Chapman & Hall: New York, NY, USA, 1996. [Google Scholar]
  44. Fell, D.A.; Saavedra, E.; Rohwer, J. 50 years of Metabolic Control Analysis: Its past and current influence in the biological sciences. Biosystems 2024, 235, 105086. [Google Scholar] [CrossRef]
  45. Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef]
  46. Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network motifs: Simple building blocks of complex networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef]
  47. Small, B.G.; McColl, B.W.; Allmendinger, R.; Pahle, R.; Lopez-Castejon, G.; Rothwell, N.J.; Knowles, J.; Mendes, P.; Brough, D.; Kell, D.B. Efficient discovery of anti-inflammatory small molecule combinations using evolutionary computing. Nat. Chem. Biol. 2011, 7, 902–908. [Google Scholar] [CrossRef]
  48. Ihekwaba, A.E.C.; Broomhead, D.S.; Grimley, R.; Benson, N.; White, M.R.H.; Kell, D.B. Synergistic control of oscillations in the NF-kB signalling pathway. IEE Syst. Biol. 2005, 152, 153–160. [Google Scholar] [CrossRef]
  49. Yao, Y.; Zhang, X.; Wang, Z.; Zheng, C.; Li, P.; Huang, C.; Tao, W.; Xiao, W.; Wang, Y.; Huang, L.; et al. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction. J. Ethnopharmacol. 2013, 150, 619–638. [Google Scholar] [CrossRef]
  50. Zhao, X.; Zheng, X.; Fan, T.-P.; Li, Z.; Zhang, Y.; Zhang, J. A novel drug discovery strategy inspired by traditional medicine philosophies. Science 2015, 347, S38–S40. Available online: https://www.researchgate.net/publication/271488086 (accessed on 6 May 2025).
  51. Zhong, Y.; Luo, J.; Tang, T.; Li, P.; Liu, T.; Cui, H.; Wang, Y.; Huang, Z. Exploring Pharmacological Mechanisms of Xuefu Zhuyu Decoction in the Treatment of Traumatic Brain Injury via a Network Pharmacology Approach. Evid. Based Complement. Altern. Med. 2018, 2018, 8916938. [Google Scholar] [CrossRef]
  52. Zhao, M.; Chen, Y.; Wang, C.; Xiao, W.; Chen, S.; Zhang, S.; Yang, L.; Li, Y. Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases. Front. Pharmacol. 2018, 9, 1448. [Google Scholar] [CrossRef]
  53. Chen, Y.; Zheng, J.-N.; Fang, J.; Li, S.-G.; Guan, J.-L.; Yang, P. Application of “Monarch, Minister, Assistant and Envoy” Principle to Rheumatoid Arthritis Management. J. Rheum. Arth. Dis. 2017, 2, 1–4. [Google Scholar] [CrossRef]
  54. Dobson, P.D.; Kell, D.B. Carrier-mediated cellular uptake of pharmaceutical drugs: An exception or the rule? Nat. Rev. Drug Discov. 2008, 7, 205–220. [Google Scholar] [CrossRef]
  55. Kell, D.B.; Dobson, P.D.; Oliver, S.G. Pharmaceutical drug transport: The issues and the implications that it is essentially carrier-mediated only. Drug Discov. Today 2011, 16, 704–714. [Google Scholar] [CrossRef]
  56. Kell, D.B.; Oliver, S.G. How drugs get into cells: Tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front. Pharmacol. 2014, 5, 231. [Google Scholar] [CrossRef]
  57. Grixti, J.; O’Hagan, S.; Day, P.J.; Kell, D.B. Enhancing drug efficacy and therapeutic index through cheminformatics-based selection of small molecule binary weapons that improve transporter-mediated targeting: A cytotoxicity system based on gemcitabine. Front. Pharmacol. 2017, 8, 155. [Google Scholar] [CrossRef]
  58. Kell, D.B. The transporter-mediated cellular uptake and efflux of pharmaceutical drugs and biotechnology products: How and why phospholipid bilayer transport is negligible in real biomembranes. Molecules 2021, 26, 5629. [Google Scholar] [CrossRef]
  59. O’Hagan, S.; Kell, D.B. Consensus rank orderings of molecular fingerprints illustrate the ‘most genuine’ similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates. ADMET DMPK 2017, 5, 85–125. [Google Scholar] [CrossRef]
  60. Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
  61. Mestres, J.; Gregori-Puigjané, E.; Valverde, S.; Solé, R.V. The topology of drug-target interaction networks: Implicit dependence on drug properties and target families. Mol. Biosyst. 2009, 5, 1051–1057. [Google Scholar] [CrossRef]
  62. Li, S.; Zhang, B.; Jiang, D.; Wei, Y.; Zhang, N. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinform. 2010, 11 (Suppl. S11), S6. [Google Scholar] [CrossRef]
  63. Su, X.; Yao, Z.; Li, S.; Sun, H. Synergism of Chinese Herbal Medicine: Illustrated by Danshen Compound. Evid. Based Complement. Altern. Med. 2016, 2016, 7279361. [Google Scholar] [CrossRef]
  64. Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef]
  65. Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front. Pharmacol. 2016, 7, 201. [Google Scholar] [CrossRef]
  66. Rigby, S.P. Uses of Molecular Docking Simulations in Elucidating Synergistic, Additive, and/or Multi-Target (SAM) Effects of Herbal Medicines. Molecules 2024, 29, 5406. [Google Scholar] [CrossRef]
  67. Yan, D.-X. Aging and Blood Stasis: A New TCM Approach to Geriatrics; Blue Poppy Press: Boulder, CO, USA, 2015. [Google Scholar]
  68. Chen, K.J. Blood stasis syndrome and its treatment with activating blood circulation to remove blood stasis therapy. Chin. J. Integr. Med. 2012, 18, 891–896. [Google Scholar] [CrossRef]
  69. Choi, T.Y.; Jun, J.H.; Lee, J.A.; Park, B.; You, S.; Jung, J.; Lee, M.S. Expert opinions on the concept of blood stasis in China: An interview study. Chin. J. Integr. Med. 2016, 22, 823–831. [Google Scholar] [CrossRef]
  70. Li, S.M.; Xu, H.; Chen, K.J. The diagnostic criteria of blood-stasis syndrome: Considerations for standardization of pattern identification. Chin. J. Integr. Med. 2014, 20, 483–489. [Google Scholar] [CrossRef]
  71. Park, B.; You, S.; Jung, J.; Lee, J.A.; Yun, K.J.; Lee, M.S. Korean studies on blood stasis: An overview. Evid. Based Complement. Altern. Med. 2015, 2015, 316872. [Google Scholar] [CrossRef]
  72. Hao, Q.-Y.; Jiang, Z.-X.; Wang, X.; Lu, H.-P.; Zhu, Y.; Liu, Y.-L.; Li, K.; Xie, Y.-Q. Studies on blood stasis in the traditional medicine of the Li Culture. Hist. Philos. Med. 2021, 3, 18. [Google Scholar] [CrossRef]
  73. Birch, S.; Alraek, T.; Lee, M.S.; Lee, J.A.; Kim, T.-H. Understanding blood stasis in traditional East Asian medicine: A comparison of Asian and Western sources. Eur. J. Integr. Med. 2021, 44, 101341. [Google Scholar] [CrossRef]
  74. Birch, S.; Alraek, T.; Lee, M.S.; Kim, T.-H. Descriptions of qi deficiency and qi stagnation in traditional East Asian medicine: A comparison of Asian and Western sources. Eur. J. Integr. Med. 2022, 55, 102180. [Google Scholar] [CrossRef]
  75. You, S.; Kang, B.K.; Kim, J.; Lee, H.; Shim, E.H.; Ko, M.M.; Choi, J.; Choi, T.Y.; Jun, J.H.; Jung, J.; et al. Four Subgroups of Blood Stasis Syndrome Are Identified by Manifestation Cluster Analysis in Males. Evid. Based Compl. Alt. 2019, 2019, 2647525. [Google Scholar] [CrossRef]
  76. Choi, T.Y.; Jun, J.H.; Park, B.; Lee, J.A.; You, S.S.; Jung, J.Y.; Lee, M.S. Concept of blood stasis in Chinese medical textbooks: A systematic review. Eur. J. Integr. Med. 2016, 8, 158–164. [Google Scholar] [CrossRef]
  77. Liu, L.; Liang, Y.-B.; Liu, X.-L.; Wang, H.-Q.; Qi, Y.-F.; Wang, M.; Chen, B.-X.; Zhou, Q.-B.; Tong, W.-X.; Zhang, Y. Untargeted metabolomics combined with pseudotargeted lipidomics revealed the metabolite profiles of blood-stasis syndrome in type 2 diabetes mellitus. Heliyon 2024, 10, e39554. [Google Scholar] [CrossRef]
  78. Sun, Z.; Ping, P.; Li, Y.; Feng, L.; Liu, F.; Zhao, Y.; Yao, Y.; Zhang, P.; Fu, S. Relationships Between Traditional Chinese Medicine Constitution and Age-Related Cognitive Decline in Chinese Centenarians. Front. Aging Neurosci. 2022, 14, 870442. [Google Scholar] [CrossRef]
  79. Luo, X.; Xie, J.; Huang, L.; Gan, W.; Chen, M. Efficacy and safety of activating blood circulation and removing blood stasis of Traditional Chinese Medicine for managing renal fibrosis in patients with chronic kidney disease: A systematic review and Meta-analysis. J. Tradit. Chin. Med. 2023, 43, 429–440. [Google Scholar] [CrossRef]
  80. Liao, J.; Wang, J.; Liu, Y.; Li, J.; Duan, L.; Chen, G.; Hu, J. Modern researches on Blood Stasis syndrome 1989-2015: A bibliometric analysis. Medicine 2016, 95, e5533. [Google Scholar] [CrossRef]
  81. Yan, J.; Dong, Y.; Niu, L.; Cai, J.; Jiang, L.; Wang, C.; Xing, J. Clinical effect of Chinese herbal medicine for removing blood stasis combined with acupuncture on sequelae of cerebral infarction. Am. J. Transl. Res. 2021, 13, 10843–10849. [Google Scholar]
  82. Rosenthal, L.; Hernandez, P.; Vaamonde, D. Traditional Chinese medicine, Ayurveda, and fertility. Fertil. Pregnancy Wellness 2022, 209–247. [Google Scholar]
  83. Zhai, X.; Wang, X.; Wang, L.; Xiu, L.; Wang, W.; Pang, X. Treating Different Diseases With the Same Method-A Traditional Chinese Medicine Concept Analyzed for Its Biological Basis. Front. Pharmacol. 2020, 11, 946. [Google Scholar] [CrossRef]
  84. Terasawa, K.; Shinoda, H.; Imadaya, A.; Tosa, H.; Bandoh, M.; Satoh, N. The presentation of diagnostic criteria for “Yuxie” (stagnated blood) conformation. Int. J. Orient. Med. 1989, 14, 194–213. [Google Scholar]
  85. Matsumoto, C.; Kojima, T.; Ogawa, K.; Kamegai, S.; Oyama, T.; Shibagaki, Y.; Kawasaki, T.; Fujinaga, H.; Takahashi, K.; Hikiami, H.; et al. A Proteomic Approach for the Diagnosis of ‘Oketsu’ (blood stasis), a Pathophysiologic Concept of Japanese Traditional (Kampo) Medicine. Evid. Based Complement. Altern. Med. 2008, 5, 463–474. [Google Scholar] [CrossRef]
  86. Wang, S.; Wang, J.; Li, J. Relationship between the Gensini Score of Blood-Stasis Syndrome in Coronary Heart Disease and VEGF. World Sci. Technol. 2010, 12, 355–357. [Google Scholar] [CrossRef]
  87. Cho, K.H.; Kim, K.P.; Woo, B.C.; Kim, Y.J.; Park, J.Y.; Cho, S.Y.; Park, S.U.; Jung, W.S.; Park, J.M.; Moon, S.K. Relationship between Blood Stasis Syndrome Score and Cardioankle Vascular Index in Stroke Patients. Evid. Based Complement. Altern. Med. 2012, 2012, 696983. [Google Scholar] [CrossRef]
  88. Goto, H. Blood stasis syndrome in Japan and its molecular biological analysis. Chin. J. Integr. Med. 2014, 20, 490–495. [Google Scholar] [CrossRef]
  89. Liao, J.; Liu, Y.; Wang, J. Identification of more objective biomarkers for Blood-Stasis syndrome diagnosis. BMC Complement. Altern. Med. 2016, 16, 371. [Google Scholar] [CrossRef]
  90. Kang, B.K.; Park, T.Y.; Jung, J.; Ko, M.; Lee, M.S.; Lee, J.A. The Optimal Cut-Off Value of Blood Stasis Syndrome Score in BSS Diagnosis in Korea. Evid. Based Complement. Altern. Med. 2017, 2017, 8049481. [Google Scholar] [CrossRef]
  91. Zhou, X.; Li, X.T.; Liu, X.Q.; Wang, B.; Fang, G. Assessment of Intermingled Phlegm and Blood Stasis Syndrome in Coronary Heart Disease: Development of a Diagnostic Scale. Evid. Based Complement. Altern. Med. 2018, 2018, 4683431. [Google Scholar] [CrossRef]
  92. Zhao, Y.; Peng, H.; Wang, S.; Liu, J. Clinical analysis of acute coronary syndrome patients with Qi-blood syndromes: Establishment of a diagnostic prediction model for syndrome differentiation. Ann. Palliat. Med. 2020, 9, 2096–2110. [Google Scholar] [CrossRef]
  93. Morita, A.; Murakami, A.; Noguchi, K.; Watanabe, Y.; Nakaguchi, T.; Ochi, S.; Okudaira, K.; Hirasaki, Y.; Namiki, T. Combination Image Analysis of Tongue Color and Sublingual Vein Improves the Diagnostic Accuracy of Oketsu (Blood Stasis) in Kampo Medicine. Front. Med. 2021, 8, 790542. [Google Scholar] [CrossRef]
  94. Chen, K.-J.; Xu, H. International Diagnostic Guidelines for Blood-Stasis Syndrome. Chin. J. Integr. Med. 2022, 28, 297–303. [Google Scholar] [CrossRef]
  95. Morita, A.; Murakami, A.; Watanabe, Y.; Tamura, Y.; Suganami, A.; Shiko, Y.; Kawasaki, Y.; Nakaguchi, T.; Ochi, S.; Okudaira, K.; et al. The association in Kampo medicine between Oketsu (blood stasis) and sublingual vein width of the tongue on a tongue image analyzing system. Tradit. Kampo Med. 2020, 7, 108–112. [Google Scholar] [CrossRef]
  96. Mchedlishvili, G. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Clin. Hemorheol. Microcirc. 1998, 19, 315–325. [Google Scholar]
  97. Zhang, J.X.; Feng, Y.; Zhang, Y.; Liu, Y.; Li, S.D.; Yang, M.H. Hemorheology Index Changes in a Rat Acute Blood Stasis Model: A Systematic Review and Meta-Analysis. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 96–107. [Google Scholar] [CrossRef]
  98. Dalton, C.F.; de Oliveira, M.I.R.; Stafford, P.; Peake, N.; Kane, B.; Higham, A.; Singh, D.; Jackson, N.; Davies, H.; Price, D.; et al. Increased fibrinaloid microclot counts in platelet-poor plasma are associated with Long COVID. medRxiv 2024, 2024.2004.2004.24305318. [Google Scholar] [CrossRef]
  99. Bagot, C.N.; Arya, R. Virchow and his triad: A question of attribution. Br. J. Haematol. 2008, 143, 180–190. [Google Scholar] [CrossRef]
  100. Mehta, J.L.; Calcaterra, G.; Bassareo, P.P. COVID-19, thromboembolic risk, and Virchow’s triad: Lesson from the past. Clin. Cardiol. 2020, 43, 1362–1367. [Google Scholar] [CrossRef]
  101. Ahmed, S.; Zimba, O.; Gasparyan, A.Y. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin. Rheumatol. 2020, 39, 2529–2543. [Google Scholar] [CrossRef]
  102. Wolberg, A.S.; Aleman, M.M.; Leiderman, K.; Machlus, K.R. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth. Analg. 2012, 114, 275–285. [Google Scholar] [CrossRef]
  103. Gonzalez-Gonzalez, F.J.; Ziccardi, M.R.; McCauley, M.D. Virchow’s Triad and the Role of Thrombosis in COVID-Related Stroke. Front. Physiol. 2021, 12, 769254. [Google Scholar] [CrossRef]
  104. Ząbczyk, M.; Stachowicz, A.; Natorska, J.; Olszanecki, R.; Wiśniewski, J.R.; Undas, A. Plasma fibrin clot proteomics in healthy subjects: Relation to clot permeability and lysis time. J. Proteom. 2019, 208, 103487. [Google Scholar] [CrossRef]
  105. Kell, D.B.; Pretorius, E. Proteomic evidence for amyloidogenic cross-seeding in fibrinaloid microclots. bioRxiv 2024, 2024.2007.2016.603837. [Google Scholar] [CrossRef]
  106. Swanepoel, A.C.; Lindeque, B.G.; Swart, P.J.; Abdool, Z.; Pretorius, E. Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: A qualitative investigation. Microsc. Res. Tech. 2014, 77, 594–601. [Google Scholar] [CrossRef]
  107. Swanepoel, A.C.; Lindeque, B.G.; Swart, P.J.; Abdool, Z.; Pretorius, E. Ultrastructural changes of fibrin networks during three phases of pregnancy: A qualitative investigation. Microsc. Res. Tech. 2014, 77, 602–608. [Google Scholar] [CrossRef] [PubMed]
  108. Jankun, J.; Landeta, P.; Pretorius, E.; Skrzypczak-Jankun, E.; Lipinski, B. Unusual clotting dynamics of plasma supplemented with iron(III). Int. J. Mol. Med. 2014, 33, 367–372. [Google Scholar] [CrossRef] [PubMed]
  109. Lipinski, B.; Pretorius, E.; Oberholzer, H.M.; Van Der Spuy, W.J. Iron enhances generation of fibrin fibers in human blood: Implications for pathogenesis of stroke. Microsc. Res. Tech. 2012, 75, 1185–1190. [Google Scholar] [CrossRef]
  110. Lipinski, B.; Pretorius, E. Novel pathway of iron-induced blood coagulation: Implications for diabetes mellitus and its complications. Pol. Arch. Med. Wewn. 2012, 122, 115–122. [Google Scholar] [CrossRef]
  111. Pretorius, E.; Vermeulen, N.; Bester, J.; Lipinski, B.; Kell, D.B. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: The use of scanning electron microscopy. Toxicol. Mech. Methods 2013, 23, 352–359. [Google Scholar] [CrossRef] [PubMed]
  112. Pretorius, E.; Bester, J.; Vermeulen, N.; Lipinski, B.; Gericke, G.S.; Kell, D.B. Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents. PLoS ONE 2014, 9, e85271. [Google Scholar] [CrossRef]
  113. Pretorius, E.; Kell, D.B. Diagnostic morphology: Biophysical indicators for iron-driven inflammatory diseases. Integr. Biol. 2014, 6, 486–510. [Google Scholar] [CrossRef]
  114. Pretorius, E.; Vermeulen, N.; Bester, J.; Lipinski, B. Novel use of scanning electron microscopy for detection of iron-induced morphological changes in human blood. Microsc. Res. Tech. 2013, 76, 268–271. [Google Scholar] [CrossRef]
  115. Pretorius, E.; Lipinski, B. Differences in morphology of fibrin clots induced with thrombin and ferric ions and its pathophysiological consequences. Hear. Lung Circ. 2013, 22, 447–449. [Google Scholar] [CrossRef] [PubMed]
  116. Swanepoel, A.C.; Visagie, A.; de Lange, Z.; Emmerson, O.; Nielsen, V.G.; Pretorius, E. The clinical relevance of altered fibrinogen packaging in the presence of 17beta-estradiol and progesterone. Thromb. Res. 2016, 146, 23–34. [Google Scholar] [CrossRef]
  117. Pretorius, E.; Kell, D.B. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin. Thromb. Hemost. 2024, 50, 537–551. [Google Scholar] [CrossRef] [PubMed]
  118. Kell, D.B.; Pretorius, E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr. Biol. 2015, 7, 24–52. [Google Scholar] [CrossRef]
  119. Pretorius, E.; Bester, J.; Vermeulen, N.; Alummoottil, S.; Soma, P.; Buys, A.V.; Kell, D.B. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: Implications for diagnostics. Cardiovasc. Diabetol. 2015, 134, 30. [Google Scholar] [CrossRef] [PubMed]
  120. Kell, D.B.; Pretorius, E. Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: Lessons from and for blood clotting. Progr. Biophys. Mol. Biol. 2017, 123, 16–41. [Google Scholar] [CrossRef]
  121. Pretorius, E.; Page, M.J.; Mbotwe, S.; Kell, D.B. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson’s disease. PLoS ONE 2018, 13, e0192121. [Google Scholar] [CrossRef]
  122. Grelich-Mucha, M.; Lipok, M.; Różycka, M.; Samoć, M.; Olesiak-Bańska, J. One- and Two-Photon Excited Autofluorescence of Lysozyme Amyloids. J. Phys. Chem. Lett. 2022, 13, 4673–4681. [Google Scholar] [CrossRef]
  123. Tikhonova, T.N.; Rovnyagina, N.R.; Zherebker, A.Y.; Sluchanko, N.N.; Rubekina, A.A.; Orekhov, A.S.; Nikolaev, E.N.; Fadeev, V.V.; Uversky, V.N.; Shirshin, E.A. Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch. Biochem. Biophys. 2018, 651, 13–20. [Google Scholar] [CrossRef]
  124. Grelich-Mucha, M.; Garcia, A.M.; Torbeev, V.; Ożga, K.; Berlicki, Ł.; Olesiak-Bańska, J. Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides. J. Phys. Chem. B 2021, 125, 5502–5510. [Google Scholar] [CrossRef]
  125. Gao, Y.; Liu, Q.; Xu, L.; Zheng, N.; He, X.; Xu, F. Imaging and Spectral Characteristics of Amyloid Plaque Autofluorescence in Brain Slices from the APP/PS1 Mouse Model of Alzheimer’s Disease. Neurosci. Bull. 2019, 35, 1126–1137. [Google Scholar] [CrossRef]
  126. Jesus, C.S.H.; Soares, H.T.; Piedade, A.P.; Cortes, L.; Serpa, C. Using amyloid autofluorescence as a biomarker for lysozyme aggregation inhibition. Analyst 2021, 146, 2383–2391. [Google Scholar] [CrossRef] [PubMed]
  127. Lochocki, B.; Boon, B.D.C.; Verheul, S.R.; Zada, L.; Hoozemans, J.J.M.; Ariese, F.; de Boer, J.F. Multimodal, label-free fluorescence and Raman imaging of amyloid deposits in snap-frozen Alzheimer’s disease human brain tissue. Commun. Biol. 2021, 4, 474. [Google Scholar] [CrossRef] [PubMed]
  128. Fu, H.; Li, J.; Zhang, C.; Du, P.; Gao, G.; Ge, Q.; Guan, X.; Cui, D. Abeta-Aggregation-Generated Blue Autofluorescence Illuminates Senile Plaques as well as Complex Blood and Vascular Pathologies in Alzheimer’s Disease. Neurosci. Bull. 2024, 40, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
  129. Pretorius, E.; Mbotwe, S.; Bester, J.; Robinson, C.J.; Kell, D.B. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J. R. Soc. Interface 2016, 123, 20160539. [Google Scholar] [CrossRef]
  130. Pretorius, E.; Page, M.J.; Hendricks, L.; Nkosi, N.B.; Benson, S.R.; Kell, D.B. Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: Assessment with novel Amytracker™ stains. J. R. Soc. Interface 2018, 15, 20170941. [Google Scholar] [CrossRef]
  131. Kell, D.B.; Pretorius, E. Proteomic evidence for amyloidogenic cross-seeding in fibrinaloid microclots. Int. J. Mol. Sci. 2024, 25, 10809. [Google Scholar] [CrossRef]
  132. Kell, D.B.; Pretorius, E. The proteome content of blood clots observed under different conditions: Successful role in predicting clot amyloid(ogenicity). Molecules 2025, 30, 668. [Google Scholar] [CrossRef]
  133. Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 172. [Google Scholar] [CrossRef]
  134. Kruger, A.; Vlok, M.; Turner, S.; Venter, C.; Laubscher, G.J.; Kell, D.B.; Pretorius, E. Proteomics of fibrin amyloid microclots in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc. Diabetol. 2022, 21, 190. [Google Scholar] [CrossRef]
  135. Blinc, A.; Magdič, J.; Fric, J.; Muševič, I. Atomic force microscopy of fibrin networks and plasma clots during fibrinolysis. Fibrinol. Proteol. 2000, 14, 288–299. [Google Scholar] [CrossRef]
  136. Collet, J.P.; Lesty, C.; Montalescot, G.; Weisel, J.W. Dynamic changes of fibrin architecture during fibrin formation and intrinsic fibrinolysis of fibrin-rich clots. J. Biol. Chem. 2003, 278, 21331–21335. [Google Scholar] [CrossRef]
  137. Yermolenko, I.S.; Lishko, V.K.; Ugarova, T.P.; Magonov, S.N. High-resolution visualization of fibrinogen molecules and fibrin fibers with atomic force microscopy. Biomacromolecules 2011, 12, 370–379. [Google Scholar] [CrossRef] [PubMed]
  138. Li, W.; Sigley, J.; Pieters, M.; Helms, C.C.; Nagaswami, C.; Weisel, J.W.; Guthold, M. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation. Biophys. J. 2016, 110, 1400–1410. [Google Scholar] [CrossRef]
  139. Li, W.; Sigley, J.; Baker, S.R.; Helms, C.C.; Kinney, M.T.; Pieters, M.; Brubaker, P.H.; Cubcciotti, R.; Guthold, M. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter. Biomed. Res. Int. 2017, 2017, 6385628. [Google Scholar] [CrossRef] [PubMed]
  140. Zhmurov, A.; Protopopova, A.D.; Litvinov, R.I.; Zhukov, P.; Weisel, J.W.; Barsegov, V. Atomic Structural Models of Fibrin Oligomers. Structure 2018, 26, 857–868.e854. [Google Scholar] [CrossRef]
  141. Kell, D.B.; Pretorius, E. Potential roles of fibrinaloid microclots in fibromyalgia syndrome. OSF Preprint 2024. Available online: https://osf.io/9e2y5/ (accessed on 6 May 2025).
  142. Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405–1412. [Google Scholar] [CrossRef]
  143. Amdursky, N.; Erez, Y.; Huppert, D. Molecular rotors: What lies behind the high sensitivity of the thioflavin-T fluorescent marker. Acc. Chem. Res. 2012, 45, 1548–1557. [Google Scholar] [CrossRef]
  144. Malmos, K.G.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid 2017, 24, 1–16. [Google Scholar] [CrossRef]
  145. Pretorius, E.; Mbotwe, S.; Kell, D.B. Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular comorbidities. Sci. Rep. 2017, 7, 9680. [Google Scholar] [CrossRef] [PubMed]
  146. Kell, D.B.; Pretorius, E. No effects without causes. The Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol. Rev. 2018, 93, 1518–1557. [Google Scholar] [CrossRef]
  147. Kell, D.B.; Pretorius, E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem. J. 2023, 480, 1217–1240. [Google Scholar] [CrossRef] [PubMed]
  148. Huang, H.; Hou, J.; Li, M.; Wei, F.; Liao, Y.; Xi, B. Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities. Sci. Adv. 2025, 11, eadr8243. [Google Scholar] [CrossRef]
  149. Mallapaty, S. Microplastics block blood flow in the brain, mouse study reveals. Nature 2025, 638, 20. [Google Scholar] [CrossRef] [PubMed]
  150. Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef] [PubMed]
  151. Biancalana, M.; Makabe, K.; Koide, A.; Koide, S. Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J. Mol. Biol. 2009, 385, 1052–1063. [Google Scholar] [CrossRef]
  152. Schlein, M. Insulin Formulation Characterization-the Thioflavin T Assays. AAPS J. 2017, 19, 397–408. [Google Scholar] [CrossRef]
  153. Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef]
  154. Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J. Chem. Biol. 2010, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
  155. Ivancic, V.; Ekanayake, O.; Lazo, N. Binding Modes of Thioflavin T on the Surface of Amyloid Fibrils by NMR. ChemPhysChem 2016, 17, 2461–2464. [Google Scholar] [CrossRef]
  156. Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S.A.; Krishna, V.; Grover, R.K.; Roy, R.; Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 2005, 151, 229–238. [Google Scholar] [CrossRef]
  157. LeVine, H., 3rd. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzym. 1999, 309, 274–284. [Google Scholar]
  158. Picken, M.M.; Herrera, G.A. Thioflavin T Stain: An Easier and More Sensitive Method for Amyloid Detection. Curr. Clin. Pathol. 2012, 187–189. [Google Scholar] [CrossRef]
  159. Spehar, K.; Ding, T.; Sun, Y.; Kedia, N.; Lu, J.; Nahass, G.R.; Lew, M.D.; Bieschke, J. Super-resolution Imaging of Amyloid Structures over Extended Times by Using Transient Binding of Single Thioflavin T Molecules. Chembiochem 2018, 19, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
  160. Sulatskaya, A.I.; Rodina, N.P.; Sulatsky, M.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Investigation of alpha-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. Int. J. Mol. Sci. 2018, 19, 2486. [Google Scholar] [CrossRef]
  161. Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef] [PubMed]
  162. Foster, J.S.; Williams, A.D.; Macy, S.; Richey, T.; Stuckey, A.; Wooliver, D.C.; Koul-Tiwari, R.; Martin, E.B.; Kennel, S.J.; Wall, J.S. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity. Front. Immunol. 2017, 8, 1082. [Google Scholar] [CrossRef] [PubMed]
  163. Wall, J.S.; Williams, A.; Foster, J.S.; Martin, E.B.; Richey, T.; Stuckey, A.; Macy, S.; Zago, W.; Kinney, G.G.; Kennel, S.J. A bifunctional peptide, “peptope”, for pre-targeting antibody 7D8 to systemic amyloid deposits. Amyloid 2017, 24, 22–23. [Google Scholar] [CrossRef]
  164. Foster, J.S.; Balachandran, M.; Hancock, T.J.; Martin, E.B.; Macy, S.; Wooliver, C.; Richey, T.; Stuckey, A.; Williams, A.D.; Jackson, J.W.; et al. Development and characterization of a prototypic pan-amyloid clearing agent—A novel murine peptide-immunoglobulin fusion. Front. Immunol. 2023, 14, 1275372. [Google Scholar] [CrossRef] [PubMed]
  165. Martin, E.B.; Stuckey, A.; Powell, D.; Lands, R.; Whittle, B.; Wooliver, C.; Macy, S.; Foster, J.S.; Guthrie, S.; Kennel, S.J.; et al. Clinical Confirmation of Pan-Amyloid Reactivity of Radioiodinated Peptide (124)I-p5+14 (AT-01) in Patients with Diverse Types of Systemic Amyloidosis Demonstrated by PET/CT Imaging. Pharmaceuticals 2023, 16, 629. [Google Scholar] [CrossRef]
  166. Tursi, S.A.; Puligedda, R.D.; Szabo, P.; Nicastro, L.K.; Miller, A.L.; Qiu, C.; Gallucci, S.; Relkin, N.R.; Buttaro, B.A.; Dessain, S.K.; et al. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 2020, 11, 1007. [Google Scholar] [CrossRef]
  167. Götz, J.; Ittner, L.M.; Lim, Y.A. Common features between diabetes mellitus and Alzheimer’s disease. Cell. Mol. Life. Sci. 2009, 66, 1321–1325. [Google Scholar] [CrossRef]
  168. Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004, 53, 474–481. [Google Scholar] [CrossRef]
  169. Li, L.; Hölscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Res. Rev. 2007, 56, 384–402. [Google Scholar] [CrossRef]
  170. Li, X.; Song, D.; Leng, S.X. Link between type 2 diabetes and Alzheimer’s disease: From epidemiology to mechanism and treatment. Clin. Interv. Aging 2015, 10, 549–560. [Google Scholar] [CrossRef] [PubMed]
  171. Luchsinger, J.A.; Gustafson, D.R. Adiposity, type 2 diabetes, and Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 693–704. [Google Scholar] [CrossRef] [PubMed]
  172. Mascitelli, L.; Pezzetta, F.; Goldstein, M.R. Iron, type 2 diabetes mellitus, and Alzheimer’s disease. Cell. Mol. Life Sci. 2009, 66, 2943. [Google Scholar] [CrossRef]
  173. Miklossy, J.; McGeer, P.L. Common mechanisms involved in Alzheimer’s disease and type 2 diabetes: A key role of chronic bacterial infection and inflammation. Aging 2016, 8, 575–588. [Google Scholar] [CrossRef] [PubMed]
  174. Mittal, K.; Katare, D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr. 2016, 10, S144–S149. [Google Scholar] [CrossRef] [PubMed]
  175. Moroz, N.; Tong, M.; Longato, L.; Xu, H.; de la Monte, S.M. Limited Alzheimer-type neurodegeneration in experimental obesity and type 2 diabetes mellitus. J. Alzheimers Dis. 2008, 15, 29–44. [Google Scholar] [CrossRef]
  176. Oskarsson, M.E.; Paulsson, J.F.; Schultz, S.W.; Ingelsson, M.; Westermark, P.; Westermark, G.T. In vivo seeding and cross-seeding of localized amyloidosis: A molecular link between type 2 diabetes and Alzheimer disease. Am. J. Pathol. 2015, 185, 834–846. [Google Scholar] [CrossRef]
  177. Taguchi, A. Vascular factors in diabetes and Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 859–864. [Google Scholar] [CrossRef] [PubMed]
  178. Toro, P.; Schonknecht, P.; Schroder, J. Type II diabetes in mild cognitive impairment and Alzheimer’s disease: Results from a prospective population-based study in Germany. J. Alzheimers Dis. 2009, 16, 687–691. [Google Scholar] [CrossRef]
  179. Vignini, A.; Giulietti, A.; Nanetti, L.; Raffaelli, F.; Giusti, L.; Mazzanti, L.; Provinciali, L. Alzheimer’s disease and diabetes: New insights and unifying therapies. Curr. Diabetes Rev. 2013, 9, 218–227. [Google Scholar] [CrossRef] [PubMed]
  180. Xu, W.L.; von Strauss, E.; Qiu, C.X.; Winblad, B.; Fratiglioni, L. Uncontrolled diabetes increases the risk of Alzheimer’s disease: A population-based cohort study. Diabetologia 2009, 52, 1031–1039. [Google Scholar] [CrossRef]
  181. Zhao, W.Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim. Biophys. Acta 2009, 1792, 482–496. [Google Scholar] [CrossRef] [PubMed]
  182. Zhang, C.-J.; Zhang, X.-J.; Chen, L.-F.; Lai, S.-G.; Wu, Q. The mechanism of different diseases treated by the same way of acupuncture at Chanqqianq for cognitive disorder. World J. Acupunc. Moxibust. 2016, 26, 24–29. [Google Scholar] [CrossRef]
  183. Zhang, X.; Zhou, L.; Qian, X. The Mechanism of “Treating Different Diseases with the Same Treatment” by Qiangji Jianpi Decoction in Ankylosing Spondylitis Combined with Inflammatory Bowel Disease: A Comprehensive Analysis of Multiple Methods. Gastroenterol. Res. Pract. 2024, 2024, 9709260. [Google Scholar] [CrossRef]
  184. Fu, S.F.; Yi, W.; Ai, J.Q.; Bah, A.J.; Gao, X.M. Clinical application of “treating different diseases with the same method”—Xuefu Zhuyu Capsule (a traditional Chinese patent medicine) for blood stasis syndrome. J. Am. Coll. Cardiol. 2014, 64, C208–C209. [Google Scholar]
  185. Bester, J.; Soma, P.; Kell, D.B.; Pretorius, E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget Gerontol. 2015, 6, 35284–35303. [Google Scholar] [CrossRef] [PubMed]
  186. de Waal, G.M.; Engelbrecht, L.; Davis, T.; de Villiers, W.J.S.; Kell, D.B.; Pretorius, E. Correlative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes Mellitus. Sci. Rep. 2018, 8, 16798. [Google Scholar] [CrossRef] [PubMed]
  187. Pretorius, E.; Bester, J.; Kell, D.B. A bacterial component to Alzheimer-type dementia seen via a systems biology approach that links iron dysregulation and inflammagen shedding to disease. J. Alzheimers Dis. 2016, 53, 1237–1256. [Google Scholar] [CrossRef] [PubMed]
  188. Pretorius, E.; Bester, J.; Page, M.J.; Kell, D.B. The potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia. Front. Aging Neurosci. 2018, 10, 257. [Google Scholar] [CrossRef]
  189. Yeh, C.W.; Liu, H.K.; Lin, L.C.; Liou, K.T.; Huang, Y.C.; Lin, C.H.; Tzeng, T.T.; Shie, F.S.; Tsay, H.J.; Shiao, Y.J. Xuefu Zhuyu decoction ameliorates obesity, hepatic steatosis, neuroinflammation, amyloid deposition and cognition impairment in metabolically stressed APPswe/PS1dE9 mice. J. Ethnopharmacol. 2017, 209, 50–61. [Google Scholar] [CrossRef] [PubMed]
  190. Tao, P.; Xu, W.; Gu, S.; Shi, H.; Wang, Q.; Xu, Y. Traditional Chinese medicine promotes the control and treatment of dementia. Front. Pharmacol. 2022, 13, 1015966. [Google Scholar] [CrossRef] [PubMed]
  191. Tao, P.; Ji, J.; Gu, S.; Wang, Q.; Xu, Y. Progress in the Mechanism of Autophagy and Traditional Chinese Medicine Herb Involved in Dementia. Front. Pharmacol. 2022, 12, 825330. [Google Scholar] [CrossRef] [PubMed]
  192. Grobbelaar, L.M.; Venter, C.; Vlok, M.; Ngoepe, M.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B.; Pretorius, E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: Implications for microclot formation in COVID-19. Biosci. Rep. 2021, 41, BSR20210611. [Google Scholar] [CrossRef]
  193. Grobbelaar, L.M.; Kruger, A.; Venter, C.; Burger, E.M.; Laubscher, G.J.; Maponga, T.G.; Kotze, M.J.; Kwaan, H.C.; Miller, J.B.; Fulkerson, D.; et al. Relative hypercoagulopathy of the SARS-CoV-2 Beta and Delta variants when compared to the less severe Omicron variants is related to TEG parameters, the extent of fibrin amyloid microclots, and the severity of clinical illness. Semin. Thromb. Haemost. 2022, 48, 858–868. [Google Scholar] [CrossRef]
  194. Laubscher, G.J.; Lourens, P.J.; Venter, C.; Kell, D.B.; Pretorius, E. TEG®, Microclot and Platelet Mapping for Guiding Early Management of Severe COVID-19 Coagulopathy. J. Clin. Med. 2021, 10, 5381. [Google Scholar] [CrossRef]
  195. Pretorius, E.; Venter, C.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B. Prevalence of amyloid blood clots in COVID-19 plasma. medRxiv 2020, 2020.2007.2028.20163543v20163541. [Google Scholar] [CrossRef]
  196. Pretorius, E.; Venter, C.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B. Prevalence of readily detected amyloid blood clots in ‘unclotted’ Type 2 Diabetes Mellitus and COVID-19 plasma: A preliminary report. Cardiovasc. Diabetol. 2020, 19, 193. [Google Scholar] [CrossRef]
  197. Guo, H.; Zheng, J.; Huang, G.; Xiang, Y.; Lang, C.; Li, B.; Huang, D.; Sun, Q.; Luo, Y.; Zhang, Y.; et al. Xuebijing injection in the treatment of COVID-19: A retrospective case-control study. Ann. Palliat. Med. 2020, 9, 3235–3248. [Google Scholar] [CrossRef]
  198. Wu, D.Y.; Hou, X.T.; Xia, Z.S.; Hao, E.W.; Xie, J.L.; Liang, J.Y.; Liang, Q.M.; Du, Z.C.; Deng, J.G. Analysis on oral medication rules of traditional Chinese medicine prescriptions for prevention of COVID-19. Chin. Herb. Med. 2021, 13, 502–517. [Google Scholar] [CrossRef] [PubMed]
  199. Ling, L.; Wang, X.; Zhang, Y.; Yin, F.; Zhang, Z.; Lyu, X. Efficacy of Qingfei Paidu Granules combined with non-drug traditional Chinese medicine therapy in the treatment of patients with asymptomatic coronavirus disease: A retrospective study. Medicine 2023, 102, e34868. [Google Scholar] [CrossRef] [PubMed]
  200. Ruan, J.; Chen, S.; Ho, Y.S.; Wong, V.T.; Lam, M.Y.; Tsang, H.W.H.; Cheng, I.H.; Yeung, W.F. Chinese medicine practitioners’ consensus on traditional Chinese medicine diagnostic patterns, symptoms, and herbal formulas for COVID-19 survivors: A Delphi study. Eur. J. Chin. Med. 2024, 66, 102339. [Google Scholar] [CrossRef]
  201. Zhang, H.; Liu, Y.; Shang, X.; Cao, Y.; Li, J.; Chen, G.; Ji, X.; Zhang, L.; Fan, Y.; Ma, Y. Status and hotspot analysis of Qingfei Paidu Decoction for the prevention and treatment of COVID-19 based on bibliometric analysis. Front. Pharmacol. 2024, 15, 1422773. [Google Scholar] [CrossRef] [PubMed]
  202. Zhang, Q.; Liang, Z.; Wang, X.; Zhang, S.; Yang, Z. Exploring the potential mechanisms of Danshen against COVID-19 via network pharmacology analysis and molecular docking. Sci. Rep. 2024, 14, 12780. [Google Scholar] [CrossRef]
  203. Zhou, X.; Cheng, Z.; Hu, Y. COVID-19 and Venous Thromboembolism: From Pathological Mechanisms to Clinical Management. J. Pers. Med. 2021, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
  204. Yang, Z.; Liu, Y.; Wang, L.; Lin, S.; Dai, X.; Yan, H.; Ge, Z.; Ren, Q.; Wang, H.; Zhu, F.; et al. Traditional Chinese medicine against COVID-19: Role of the gut microbiota. Biomed. Pharmacother. 2022, 149, 112787. [Google Scholar] [CrossRef] [PubMed]
  205. Pretorius, E.; Oberholzer, H.M.; van der Spuy, W.J.; Swanepoel, A.C.; Soma, P. Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood. Coagul. Fibrinol. 2011, 22, 463–467. [Google Scholar] [CrossRef]
  206. Pretorius, E.; Page, M.J.; Engelbrecht, L.; Ellis, G.C.; Kell, D.B. Substantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains. Cardiovasc. Diabetol. 2017, 16, 141. [Google Scholar] [CrossRef]
  207. Wei, J.; Wu, R.; Zhao, D. Analysis on traditional Chinese medicine syndrome elements and relevant factors for senile diabetes. J. Tradit. Chin. Med. 2013, 33, 473–478. [Google Scholar] [CrossRef]
  208. Xu, J.; Bai, L.; Ma, E.; Guo, Q.; Wang, Y.; Zhang, M.; Chen, Z. Correlativity between blood measures related to blood stasis blocking collaterals and gene expression of angiotensin-converting enzyme of renal cortex in diabetic rats and effect of stasis removing and collaterals dredging. J. Tradit. Chin. Med. 2014, 34, 597–603. [Google Scholar] [CrossRef]
  209. Wang, J.; Ma, Q.; Li, Y.; Li, P.; Wang, M.; Wang, T.; Wang, C.; Wang, T.; Zhao, B. Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomed. Pharmacother. 2020, 121, 109565. [Google Scholar] [CrossRef] [PubMed]
  210. Tanaka, K.; Chiba, K.; Nara, K. A Review on the Mechanism and Application of Keishibukuryogan. Front. Nutr. 2021, 8, 760918. [Google Scholar] [CrossRef]
  211. Kell, D.B.; Pretorius, E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, long COVID and ME/CFS: Evidence, mechanisms, and therapeutic implications. Biochem. J. 2022, 479, 1653–1708. [Google Scholar] [CrossRef]
  212. Pretorius, E.; Venter, C.; Laubscher, G.J.; Kotze, M.J.; Oladejo, S.; Watson, L.R.; Rajaratnam, K.; Watson, B.W.; Kell, D.B. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/ Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 2022, 21, 148. [Google Scholar] [CrossRef] [PubMed]
  213. Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormal coagulation. Trends. Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef]
  214. Turner, S.; Naidoo, C.A.; Usher, T.J.; Kruger, A.; Venter, C.; Laubscher, G.J.; Khan, M.A.; Kell, D.B.; Pretorius, E. Increased Levels of Inflammatory and Endothelial Biomarkers in Blood of Long COVID Patients Point to Thrombotic Endothelialitis. Semin. Thromb. Hemost. 2023. [Google Scholar] [CrossRef] [PubMed]
  215. Turner, S.; Laubscher, G.J.; Khan, M.A.; Kell, D.B.; Pretorius, E. Accelerating discovery: A novel flow cytometric method for detecting fibrin(ogen) amyloid microclots using long COVID as a model. Heliyon 2023, 9, e19605. [Google Scholar] [CrossRef]
  216. Ono, R.; Arita, R.; Takayama, S.; Kanno, T.; Kikuchi, A.; Suzuki, S.; Ohsawa, M.; Saito, N.; Abe, M.; Onodera, K.; et al. Progress and treatment of “long COVID”in non-hospitalized patients: A single-centerretrospective cohort study. Trad. Kampo. Med. 2023, 10, 150–158. [Google Scholar] [CrossRef]
  217. Hu, L.Y.; Cai, A.Q.; Li, B.; Li, Z.; Liu, J.P.; Cao, H.J. Chinese herbal medicine for post-viral fatigue: A systematic review of randomized controlled trials. PLoS ONE 2024, 19, e0300896. [Google Scholar] [CrossRef] [PubMed]
  218. de Villiers, S.; Bester, J.; Kell, D.B.; Pretorius, E. Erythrocyte health and the possible role of amyloidogenic blood clotting in the evolving haemodynamics of female migraine-with-aura pathophysiology: Results from a pilot study. Front. Neurol. 2019, 10, 1262. [Google Scholar] [CrossRef]
  219. Shan, C.S.; Xu, Q.Q.; Shi, Y.H.; Wang, Y.; He, Z.X.; Zheng, G.Q. Chuanxiong Formulae for Migraine: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. Front. Pharmacol. 2018, 9, 589. [Google Scholar] [CrossRef] [PubMed]
  220. Nunes, J.M.; Kruger, A.; Proal, A.; Kell, D.B.; Pretorius, E. The Occurrence of Hyperactivated Platelets and Fibrinaloid Microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Pharmaceuticals 2022, 15, 931. [Google Scholar] [CrossRef] [PubMed]
  221. Nunes, J.M.; Kell, D.B.; Pretorius, E. Cardiovascular and haematological pathology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A role for Viruses. Blood Rev. 2023, 60, 101075. [Google Scholar] [CrossRef] [PubMed]
  222. Li, Y.; Yang, J.; Chau, C.I.; Shi, J.; Chen, X.; Hu, H.; Ung, C.O.L. Is there a role for traditional and complementary medicines in managing chronic fatigue? A systematic review of randomized controlled trials. Front. Pharmacol. 2023, 14, 1266803. [Google Scholar] [CrossRef] [PubMed]
  223. Zhang, Y.; Jin, F.; Wei, X.; Jin, Q.; Xie, J.; Pan, Y.; Shen, W. Chinese herbal medicine for the treatment of chronic fatigue syndrome: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 958005. [Google Scholar] [CrossRef] [PubMed]
  224. Liu, Z.; Lv, Z.; Zhou, X.; Shi, J.; Hong, S.; Huang, H.; Lv, L. Efficacy of traditional Chinese exercises in patients with post-COVID-19 chronic fatigue syndrome: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31450. [Google Scholar] [CrossRef]
  225. Liu, T.; Sun, W.; Guo, S.; Chen, T.; Zhu, M.; Yuan, Z.; Li, B.; Lu, J.; Shao, Y.; Qu, Y.; et al. Research progress on pathogenesis of chronic fatigue syndrome and treatment of traditional Chinese and Western medicine. Auton. Neurosci. 2024, 255, 103198. [Google Scholar] [CrossRef]
  226. Wirth, K.J.; Löhn, M. Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Evolving from the Post COVID-19 Syndrome. Medicina 2024, 60, 194. [Google Scholar] [CrossRef]
  227. Adams, B.; Nunes, J.M.; Page, M.J.; Roberts, T.; Carr, J.; Nell, T.A.; Kell, D.B.; Pretorius, E. Parkinson’s disease: A systemic inflammatory disease accompanied by bacterial inflammagens. Front. Aging Neurosci. 2019, 11, 210. [Google Scholar] [CrossRef] [PubMed]
  228. van Vuuren, M.J.; Nell, T.A.; Carr, J.A.; Kell, D.B.; Pretorius, E. Iron dysregulation and inflammagens related to oral and gut health are central to the development of Parkinson’s disease. Biomolecules 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
  229. Chen, P.; Zhang, J.; Wang, C.; Chai, Y.H.; Wu, A.G.; Huang, N.Y.; Wang, L. The pathogenesis and treatment mechanism of Parkinson’s disease from the perspective of traditional Chinese medicine. Phytomedicine 2022, 100, 154044. [Google Scholar] [CrossRef] [PubMed]
  230. Huo, M.; Peng, S.; Li, J.; Cao, Y.; Chen, Z.; Zhang, Y.; Qiao, Y. Comparison of the clinical effect features of Han-Ku-Gan and Wen-Xin-Gan based on the efficacy of promoting blood circulation and removing blood stasis. J. Trad. Chin. Med. Sci. 2022, 9, 237–245. [Google Scholar] [CrossRef]
  231. Wang, L.; An, H.; Yu, F.; Yang, J.; Ding, H.; Bao, Y.; Xie, H.; Huang, D. The neuroprotective effects of paeoniflorin against MPP(+)-induced damage to dopaminergic neurons via the Akt/Nrf2/GPX4 pathway. J. Chem. Neuroanat. 2022, 122, 102103. [Google Scholar] [CrossRef] [PubMed]
  232. Pretorius, E.; Oberholzer, H.M.; van der Spuy, W.J.; Swanepoel, A.C.; Soma, P. Scanning electron microscopy of fibrin networks in rheumatoid arthritis: A qualitative analysis. Rheumatol. Int. 2012, 32, 1611–1615. [Google Scholar] [CrossRef]
  233. Pretorius, E.; Akeredolu, O.-O.; Soma, P.; Kell, D.B. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp. Biol. Med. 2017, 242, 355–373. [Google Scholar] [CrossRef]
  234. Nozaki, K.; Hikiami, H.; Goto, H.; Nakagawa, T.; Shibahara, N.; Shimada, Y. Keishibukuryogan (gui-zhi-fu-ling-wan), a Kampo formula, decreases disease activity and soluble vascular adhesion molecule-1 in patients with rheumatoid arthritis. Evid. Based Complement. Altern. Med. 2006, 3, 359–364. [Google Scholar] [CrossRef] [PubMed]
  235. Hou, W.; Xu, G.; Wang, H. Overview of Chinese Medicine and Autoimmune Diseases, and the Role of Yin Deficiency. In Treating Autoimmune Disease with Chinese Medicine; Hou, W., Xu, G., Wang, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 13–52. [Google Scholar]
  236. Schofield, J.; Abrams, S.T.; Jenkins, R.; Lane, S.; Wang, G.; Toh, C.H. Microclots, as defined by amyloid-fibrinogen aggregates, predict risks of disseminated intravascular coagulation and mortality. Blood Adv. 2024, 8, 2499–2508. [Google Scholar] [CrossRef]
  237. Meng, F.; Lai, H.; Luo, Z.; Liu, Y.; Huang, X.; Chen, J.; Liu, B.; Guo, Y.; Cai, Y.; Huang, Q. Effect of Xuefu Zhuyu Decoction Pretreatment on Myocardium in Sepsis Rats. Evid. Based Complement. Altern. Med. 2018, 2018, 2939307. [Google Scholar] [CrossRef]
  238. Bi, C.F.; Liu, J.; Hao, S.W.; Xu, Z.X.; Ma, X.; Kang, X.F.; Yang, L.S.; Zhang, J.F. Xuebijing injection protects against sepsis-induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging 2023, 15, 4374–4390. [Google Scholar] [CrossRef]
  239. Sun, J.; Xue, Q.; Guo, L.; Cui, L.; Wang, J. Xuebijing protects against lipopolysaccharide-induced lung injury in rabbits. Exp. Lung Res. 2010, 36, 211–218. [Google Scholar] [CrossRef]
  240. Wang, J.; Zhu, J.; Guo, J.; Wang, Q. Could Xuebijing Injection Reduce the Mortality of Severe Pneumonia Patients? A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2020, 2020, 9605793. [Google Scholar] [CrossRef] [PubMed]
  241. Chen, G.; Gao, Y.; Jiang, Y.; Yang, F.; Li, S.; Tan, D.; Ma, Q. Efficacy and Safety of Xuebijing Injection Combined with Ulinastatin as Adjunctive Therapy on Sepsis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2018, 9, 743. [Google Scholar] [CrossRef]
  242. He, X.D.; Wang, Y.; Wu, Q.; Wang, H.X.; Chen, Z.D.; Zheng, R.S.; Wang, Z.S.; Wang, J.B.; Yang, Y. Xuebijing Protects Rats from Sepsis Challenged with Acinetobacter baumannii by Promoting Annexin A1 Expression and Inhibiting Proinflammatory Cytokines Secretion. Evid. Based Complement. Altern. Med. 2013, 2013, 804940. [Google Scholar] [CrossRef] [PubMed]
  243. Hou, S.Y.; Feng, X.H.; Lin, C.L.; Tan, Y.F. Efficacy of Xuebijing for coagulopathy in patients with sepsis. Saudi Med. J. 2015, 36, 164–169. [Google Scholar] [CrossRef]
  244. Li, C.; Wang, P.; Zhang, L.; Li, M.; Lei, X.; Liu, S.; Feng, Z.; Yao, Y.; Chang, B.; Liu, B.; et al. Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2018, 224, 512–521. [Google Scholar] [CrossRef] [PubMed]
  245. Xiao, S.H.; Luo, L.; Liu, X.H.; Zhou, Y.M.; Liu, H.M.; Huang, Z.F. Curative efficacy and safety of traditional Chinese medicine xuebijing injections combined with ulinastatin for treating sepsis in the Chinese population: A meta-analysis. Medicine 2018, 97, e10971. [Google Scholar] [CrossRef] [PubMed]
  246. Zheng, J.; Xiang, X.; Xiao, B.; Li, H.; Gong, X.; Yao, S.; Yuan, T. Xuebijing combined with ulinastation benefits patients with sepsis: A meta-analysis. Am. J. Emerg. Med. 2018, 36, 480–487. [Google Scholar] [CrossRef] [PubMed]
  247. Song, Y.; Yao, C.; Yao, Y.; Han, H.; Zhao, X.; Yu, K.; Liu, L.; Xu, Y.; Liu, Z.; Zhou, Q.; et al. XueBiJing Injection Versus Placebo for Critically Ill Patients With Severe Community-Acquired Pneumonia: A Randomized Controlled Trial. Crit. Care Med. 2019, 47, e735–e743. [Google Scholar] [CrossRef]
  248. Cheng, C.; Yu, X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int. J. Mol. Sci. 2021, 22, 11078. [Google Scholar] [CrossRef] [PubMed]
  249. Li, C.; Wang, P.; Li, M.; Zheng, R.; Chen, S.; Liu, S.; Feng, Z.; Yao, Y.; Shang, H. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms. J. Ethnopharmacol. 2021, 265, 113301. [Google Scholar] [CrossRef]
  250. Wu, Q.; Yin, C.H.; Li, Y.; Cai, J.Q.; Yang, H.Y.; Huang, Y.Y.; Zheng, Y.X.; Xiong, K.; Yu, H.L.; Lu, A.P.; et al. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front. Pharmacol. 2021, 12, 769190. [Google Scholar] [CrossRef] [PubMed]
  251. Lv, J.; Guo, X.; Zhao, H.; Zhou, G.; An, Y. Xuebijing Administration Alleviates Pulmonary Endothelial Inflammation and Coagulation Dysregulation in the Early Phase of Sepsis in Rats. J. Clin. Med. 2022, 11, 6696. [Google Scholar] [CrossRef]
  252. Shang, T.; Zhang, Z.S.; Wang, X.T.; Chang, J.; Zhou, M.E.; Lyu, M.; He, S.; Yang, J.; Chang, Y.X.; Wang, Y.; et al. Xuebijing injection inhibited neutrophil extracellular traps to reverse lung injury in sepsis mice via reducing Gasdermin D. Front. Pharmacol. 2022, 13, 1054176. [Google Scholar] [CrossRef]
  253. Yu, X.; Niu, W.; Wang, Y.Y.; Olaleye, O.E.; Wang, J.N.; Duan, M.Y.; Yang, J.L.; He, R.R.; Chu, Z.X.; Dong, K.; et al. Novel assays for quality evaluation of XueBiJing: Quality variability of a Chinese herbal injection for sepsis management. J. Pharm. Anal. 2022, 12, 664–682. [Google Scholar] [CrossRef]
  254. Chen, F.; Yan, S.; Xu, J.; Jiang, Y.; Wang, J.; Deng, H.; Wang, J.; Zou, L.; Liu, Y.; Zhu, Y. Exploring the potential mechanism of Xuebijing injection against sepsis based on metabolomics and network pharmacology. Anal. Biochem. 2023, 682, 115332. [Google Scholar] [CrossRef] [PubMed]
  255. Liao, X.; Rello, J. Efficacy of Xuebijing Injection for Sepsis (EXIT-SEP): Lost in Translation. Anaesth. Crit. Care Pain Med. 2023, 42, 101257. [Google Scholar] [CrossRef] [PubMed]
  256. Liu, S.; Yao, C.; Xie, J.; Liu, H.; Wang, H.; Lin, Z.; Qin, B.; Wang, D.; Lu, W.; Ma, X.; et al. Effect of an Herbal-Based Injection on 28-Day Mortality in Patients With Sepsis: The EXIT-SEP Randomized Clinical Trial. JAMA Intern. Med. 2023, 183, 647–655. [Google Scholar] [CrossRef] [PubMed]
  257. Zhang, M.; Zheng, R.; Liu, W.J.; Hou, J.L.; Yang, Y.L.; Shang, H.C. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. J. Integr. Med. 2023, 21, 413–422. [Google Scholar] [CrossRef] [PubMed]
  258. Kang, X.F.; Lu, X.L.; Bi, C.F.; Hu, X.D.; Li, Y.; Li, J.K.; Yang, L.S.; Liu, J.; Ma, L.; Zhang, J.F. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-kappaB/IKKalpha and JAK2/STAT3 signaling pathways. Aging 2023, 15, 8501–8517. [Google Scholar] [CrossRef]
  259. Zhang, C.; Chen, X.; Wei, T.; Song, J.; Tang, X.; Bi, J.; Chen, C.; Zhou, J.; Su, X.; Song, Y. Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells. Chin. J. Nat. Med. 2023, 21, 576–588. [Google Scholar] [CrossRef]
  260. Cheng, C.; Ren, C.; Li, M.Z.; Liu, Y.H.; Yao, R.Q.; Yu, Y.; Yu, X.; Wang, J.L.; Wang, L.X.; Leng, Y.C.; et al. Pharmacologically significant constituents collectively responsible for anti-sepsis action of XueBiJing, a Chinese herb-based intravenous formulation. Acta Pharmacol. Sin. 2024, 45, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
  261. Wang, J.; Luo, C.; Luo, M.; Zhou, S.; Kuang, G. Targets and Mechanisms of Xuebijing in the Treatment of Acute Kidney Injury Associated with Sepsis: A Network Pharmacology-based Study. Curr. Comput. Aided Drug Des. 2024, 20, 752–763. [Google Scholar] [CrossRef] [PubMed]
  262. Zhou, X.; Zhong, M.; Xi, X.; Li., J.; Tang, G. Efficacy and safety of Chinese herbal medicine as adjunctive therapy in sepsis patients with bloodstream infection: A propensity-matched analysis. J. Tradit. Chin. Med. 2024, 44, 197–204. [Google Scholar] [CrossRef]
  263. Zou, F.; Zou, J.; Du, Q.; Liu, L.; Li, D.; Zhao, L.; Tang, M.; Zuo, L.; Sun, Z. XueBiJing injection improves the symptoms of sepsis-induced acute lung injury by mitigating oxidative stress and ferroptosis. J. Ethnopharmacol. 2025, 337, 118732. [Google Scholar] [CrossRef] [PubMed]
  264. Wu, W.; Jiang, R.L.; Wang, L.C.; Lei, S.; Xing, X.; Zhi, Y.H.; Wu, J.N.; Wu, Y.C.; Zhu, M.F.; Huang, L.Q. Effect of Shenfu injection on intestinal mucosal barrier in a rat model of sepsis. Am. J. Emerg. Med. 2015, 33, 1237–1243. [Google Scholar] [CrossRef]
  265. Zhang, N.; Liu, J.; Qiu, Z.; Ye, Y.; Zhang, J.; Lou, T. Shenfu injection for improving cellular immunity and clinical outcome in patients with sepsis or septic shock. Am. J. Emerg. Med. 2017, 35, 1–6. [Google Scholar] [CrossRef]
  266. Jin, S.; Jiang, R.; Lei, S.; Jin, L.; Zhu, C.; Feng, W.; Shen, Y. Shenfu injection prolongs survival and protects the intestinal mucosa in rats with sepsis by modulating immune response. Turk. J. Gastroenterol. 2019, 30, 364–371. [Google Scholar] [CrossRef]
  267. Liu, J.; Liu, F.; Liang, T.; Cao, P.; Li, J.; Zhang, Y.; Liu, Y. Efficacy of Shenfu decoction on sepsis in rats with condition induced by cecal ligation and puncture. J. Tradit. Chin. Med. 2020, 40, 621–628. [Google Scholar] [CrossRef]
  268. Xu, P.; Zhang, W.Q.; Xie, J.; Wen, Y.S.; Zhang, G.X.; Lu, S.Q. Shenfu injection prevents sepsis-induced myocardial injury by inhibiting mitochondrial apoptosis. J. Ethnopharmacol. 2020, 261, 113068. [Google Scholar] [CrossRef] [PubMed]
  269. Luo, S.; Gou, L.; Liu, S.; Cao, X. Efficacy and safety of Shenfu injection in the treatment of sepsis: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e27196. [Google Scholar] [CrossRef]
  270. Xu, C.; Xia, Y.; Jia, Z.; Wang, S.; Zhao, T.; Wu, L. The curative effect of Shenfu-injection in the treatment of burn sepsis and its effect on the patient’s immune function, HMGB, and vWF. Am. J. Transl. Res. 2022, 14, 2428–2435. [Google Scholar]
  271. Huang, P.; Guo, Y.; Hu, X.; Fang, X.; Xu, X.; Liu, Q. Mechanism of Shenfu injection in suppressing inflammation and preventing sepsis-induced apoptosis in murine cardiomyocytes based on network pharmacology and experimental validation. J. Ethnopharmacol. 2024, 322, 117599. [Google Scholar] [CrossRef] [PubMed]
  272. Liao, J.; Qin, C.; Wang, Z.; Gao, L.; Zhang, S.; Feng, Y.; Liu, J.; Tao, L. Effect of shenfu injection in patients with septic shock: A systemic review and meta-analysis for randomized clinical trials. J. Ethnopharmacol. 2024, 320, 117431. [Google Scholar] [CrossRef] [PubMed]
  273. Liu, D.; Pan, T.; Li, X.; Zhu, D.; Li, Y.; He, H.; Wu, F.; Jiang, L.; Chen, Y.; Wang, X.; et al. Effectiveness and safety of Shenfu injection in septic patients with hypoperfusion: A multi-center, open-label, randomized, controlled trial. J. Intensive Med. 2024, 4, 484–490. [Google Scholar] [CrossRef] [PubMed]
  274. Xiao, L.; Niu, L.; Xu, X.; Zhao, Y.; Yue, L.; Liu, X.; Li, G. Comparative Efficacy of Tonic Chinese Herbal Injections for Treating Sepsis or Septic Shock: A Systematic Review and Bayesian Network Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2022, 13, 830030. [Google Scholar] [CrossRef] [PubMed]
  275. Yuan, H.; Liu, Y.; Huang, K.; Hao, H.; Xue, Y.T. Therapeutic Mechanism and Key Active Ingredients of Shenfu Injection in Sepsis: A Network Pharmacology and Molecular Docking Approach. Evid. Based Complement. Altern. Med. 2022, 2022, 9686149. [Google Scholar] [CrossRef] [PubMed]
  276. Yuan, H.J.; Xiang, G.H.; Liu, Y.; Li, Y.; Liu, W.L.; Wei, J.X.; Xue, Y.T.; Hao, H. Exploration and verification of the therapeutic mechanism of shenfu injection in sepsis-induced myocardial injury. PLoS ONE 2025, 20, e0317738. [Google Scholar] [CrossRef]
  277. Grixti, J.M.; Chandran, A.; Pretorius, J.-H.; Walker, M.; Sekhar, A.; Pretorius, E.; Kell, D.B. The clots removed from ischaemic stroke patients by mechanical thrombectomy are amyloid in nature. medRxiv 2024. [Google Scholar] [CrossRef]
  278. Xu, M.; Wu, R.X.; Li, X.L.; Zeng, Y.S.; Liang, J.Y.; Fu, K.; Liang, Y.; Wang, Z. Traditional medicine in China for ischemic stroke: Bioactive components, pharmacology, and mechanisms. J. Integr. Neurosci. 2022, 21, 26. [Google Scholar] [CrossRef]
  279. Hsu, L.W.; Shiao, W.C.; Chang, N.C.; Yu, M.C.; Yen, T.L.; Thomas, P.A.; Jayakumar, T.; Sheu, J.R. The neuroprotective effects of Tao-Ren-Cheng-Qi Tang against embolic stroke in rats. Chin. Med. 2017, 12, 7. [Google Scholar] [CrossRef]
  280. Zhang, H.; Ouyang, H.; Zhang, J.; Lin, L.; Wei, M.; Lu, B.; Ji, L. Exploring the efficacy and mechanism of Glycyrrhizae Radix et Rhizoma in improving collagen-induced arthritis in mice. J. Ethnopharmacol. 2024, 322, 117554. [Google Scholar] [CrossRef] [PubMed]
  281. Shaw, L.H.; Chen, W.M.; Tsai, T.H. Identification of multiple ingredients for a Traditional Chinese Medicine preparation (bu-yang-huan-wu-tang) by liquid chromatography coupled with tandem mass spectrometry. Molecules 2013, 18, 11281–11298. [Google Scholar] [CrossRef]
  282. Wang, H.W.; Liou, K.T.; Wang, Y.H.; Lu, C.K.; Lin, Y.L.; Lee, I.J.; Huang, S.T.; Tsai, Y.H.; Cheng, Y.C.; Lin, H.J.; et al. Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice. J. Ethnopharmacol. 2011, 138, 22–33. [Google Scholar] [CrossRef] [PubMed]
  283. Chen, Z.Z.; Gong, X.; Guo, Q.; Zhao, H.; Wang, L. Bu Yang Huan Wu decoction prevents reperfusion injury following ischemic stroke in rats via inhibition of HIF-1 alpha, VEGF and promotion beta-ENaC expression. J. Ethnopharmacol. 2019, 228, 70–81. [Google Scholar] [CrossRef]
  284. Chen, K.Y.; Wu, K.C.; Hueng, D.Y.; Huang, K.F.; Pang, C.Y. Anti-inflammatory effects of powdered product of Bu Yang Huan Wu decoction: Possible role in protecting against Transient Focal Cerebral Ischemia. Int. J. Med. Sci. 2020, 17, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
  285. Peng, J.W.; Liu, Y.; Meng, G.; Zhang, J.Y.; Yu, L.F. Effects of salvianolic acid on cerebral perfusion in patients after acute stroke: A single-center randomized controlled trial. Exp. Ther. Med. 2018, 16, 2600–2614. [Google Scholar] [CrossRef] [PubMed]
  286. Lyu, J.; Xie, Y.; Wang, Z.; Wang, L. Salvianolic Acids for Injection Combined with Conventional Treatment for Patients with Acute Cerebral Infarction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med. Sci. Monit. 2019, 25, 7914–7927. [Google Scholar] [CrossRef]
  287. Liu, C.D.; Liu, N.N.; Zhang, S.; Ma, G.D.; Yang, H.G.; Kong, L.L.; Du, G.H. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol. Sin. 2021, 42, 370–381. [Google Scholar] [CrossRef]
  288. Yang, Y.; He, Y.; Wei, X.; Wan, H.; Ding, Z.; Yang, J.; Zhou, H. Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal the Protective Effect of Salvianolic Acid C in a Rat Model of Ischemic Stroke. Front. Pharmacol. 2021, 12, 799448. [Google Scholar] [CrossRef]
  289. Zhang, Q.; Zhang, L.; Liu, Y.; Tian, X.; Li, X.; Han, B.; Zhang, Y.; Wu, Z.; Yu, H.; Zhao, H.; et al. Research progress on the pharmacological effect and clinical application of Tongqiao Huoxue Decoction in the treatment of ischaemic stroke. Biomed. Pharmacother. 2021, 138, 111460. [Google Scholar] [CrossRef]
  290. Lee, H.G.; Kwon, S.; Moon, S.K.; Cho, S.Y.; Park, S.U.; Jung, W.S.; Park, J.M.; Ko, C.N.; Cho, K.H. Neuroprotective Effects of Geopung-Chunghyuldan Based on Its Salvianolic Acid B Content Using an In Vivo Stroke Model. Curr. Issues Mol. Biol. 2023, 45, 1613–1626. [Google Scholar] [CrossRef] [PubMed]
  291. Wang, L.; Liu, Y.; Wei, J.; Liang, X.; Zhang, Y. Effects of intravenous thrombolysis with and without salvianolic acids for injection on the functional recovery of patients with acute ischemic stroke: A systematic review, meta-analysis, and trial sequential analysis. Phytother. Res. 2023, 37, 2513–2530. [Google Scholar] [CrossRef] [PubMed]
  292. Ren, H.; Yang, A.H.; Cai, Y.S.; Qin, Y.; Luo, T.Y. Study on correlation between Chinese medicine syndromes in stroke and neurological deficits during recovery phase: Perspective. Medicine 2024, 103, e39600. [Google Scholar] [CrossRef] [PubMed]
  293. Wang, J.; Su, P.; Wan, C.; Xu, Y.; Huang, J.; Niu, J.; Jin, Z. Role of salvianolic acid B in the treatment of acute ischemic stroke: A systematic review and meta-analysis of animal models. Front. Pharmacol. 2024, 15, 1479765. [Google Scholar] [CrossRef] [PubMed]
  294. Yang, H.; Ibrahim, M.M.; Zhang, S.; Sun, Y.; Chang, J.; Qi, H.; Yang, S. Targeting post-stroke neuroinflammation with Salvianolic acid A: Molecular mechanisms and preclinical evidence. Front. Immunol. 2024, 15, 1433590. [Google Scholar] [CrossRef]
  295. Yang, M.Y.; Liu, Y.; Yu, Y.W.; Gong, B.F.; Ruan, J.; Fan, H.Y. Application of targeted liposomes-based salvianolic acid A for the treatment of ischemic stroke. Neurotherapeutics 2024, 21, e00342. [Google Scholar] [CrossRef]
  296. Yang, R.; Hu, N.; Liu, T.Y.; Qu, Y.; Liu, J.; Wang, J.H.; Yang, B.F.; Li, C.L. Salvianolic acid A provides neuroprotective effects on cerebral ischemia-reperfusion injury in rats via PKA/CREB/c-Fos signaling pathway. Phytomedicine 2024, 124, 155326. [Google Scholar] [CrossRef] [PubMed]
  297. Zhong, D.Y.; Li, H.Y.; Li, L.; Ma, R.M.; Jiang, C.T.; Li, D.X.; Deng, Y.H. Effect of Tongqiao Huoxue Decoction Combined with Western Medicine on Ischemic Stroke: A Systematic Review. Evid. Based Complement. Altern. Med. 2020, 2020, 8877998. [Google Scholar] [CrossRef] [PubMed]
  298. Hou, F.; Liu, H.; Gong, Q.; Xu, H. Network pharmacology of Huatan Tongluo decoction and clinical effects of its combination with acupuncture in the treatment of stroke. Am. J. Transl. Res. 2022, 14, 8215–8224. [Google Scholar]
  299. Bondarev, S.A.; Antonets, K.S.; Kajava, A.V.; Nizhnikov, A.A.; Zhouravleva, G.A. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int. J. Mol. Sci. 2018, 19, 2292. [Google Scholar] [CrossRef]
  300. Cao, W.; Liao, S.; Zhang, Y.; Zhou, L.; Li, G.; Ouyang, W.; Wen, Z. Effectiveness and safety of Xuefu Zhuyu oral liquid on -stagnation and blood-stasis pattern in patients with stable angina, tension-type headache and primary dysmenorrhea: Rationale and design of a master protocol. J. Tradit. Chin. Med. 2023, 43, 815–823. [Google Scholar] [CrossRef]
  301. Chen, J.; Lu, P.; Zuo, X.; Shi, Q.; Zhao, H.; Luo, L.; Yi, J.; Zheng, C.; Yang, Y.; Wang, W. Clinical data mining of phenotypic network in angina pectoris of coronary heart disease. Evid. Based Complement. Altern. Med. 2012, 2012, 546230. [Google Scholar] [CrossRef] [PubMed]
  302. Chu, F.Y.; Wang, J.; Yao, K.W.; Li, Z.Z. Effect of Xuefu Zhuyu Capsule (血府逐瘀胶囊) on the symptoms and signs and health-related quality of life in the unstable angina patients with blood-stasis syndrome after percutaneous coronary intervention: A Randomized controlled trial. Chin. J. Integr. Med. 2010, 16, 399–405. [Google Scholar] [CrossRef] [PubMed]
  303. Huang, P.; Li, Z.; Chen, L.; Zeng, J.; Zhao, S.; Tang, Y.; Huang, B.; Guan, H.; Chen, Y.; Feng, Y.; et al. The comparative effects of oral Chinese patent medicines combined with western medicine in stable angina: A systematic review and network meta-analysis of 179 trials. Front. Pharmacol. 2022, 13, 918689. [Google Scholar] [CrossRef]
  304. Li, J.; Zhang, P.; Zhang, Y.; Wang, H.; Wu, L.; Zhao, J.; Liu, Y.; Zeng, W.; Guo, R.; Mei, J.; et al. A Randomized Controlled Trial on the Efficacy of Xinnaoning Capsule in the Treatment of CSAP Complicated with Qi Stagnation and Blood Stasis Syndrome. Front. Cardiovasc. Med. 2022, 9, 859956. [Google Scholar] [CrossRef] [PubMed]
  305. Li, Y.; Zhao, H.; Du, J.; Jiao, Z.; Shen, D.; Gao, S.; Zheng, Y.; Li, Z.; Li, L.; Wang, Y.; et al. Clinical metabolomic analysis of Danlou tablets with antioxidant effects for treating stable angina pectoris. J. Pharm. Biomed. Anal. 2022, 219, 114922. [Google Scholar] [CrossRef] [PubMed]
  306. Liu, W.; Zhou, L.; Feng, L.; Zhang, D.; Zhang, C.; Gao, Y.; behalf of the BOSS Group. BuqiTongluo Granule for Ischemic Stroke, Stable Angina Pectoris, Diabetic Peripheral Neuropathy with Qi Deficiency and Blood Stasis Syndrome: Rationale and Novel Basket Design. Front. Pharmacol. 2021, 12, 764669. [Google Scholar] [CrossRef]
  307. Wang, J.; Yang, X.; Chu, F.; Chen, J.; He, Q.; Yao, K.; Teng, F.; Gao, Y.; Xing, Y.; Wu, A.; et al. The effects of xuefu zhuyu and shengmai on the evolution of syndromes and inflammatory markers in patients with unstable angina pectoris after percutaneous coronary intervention: A randomised controlled clinical trial. Evid. Based Complement. Altern. Med. 2013, 2013, 896467. [Google Scholar] [CrossRef]
  308. Wang, J.; Yu, G. A Systems Biology Approach to Characterize Biomarkers for Blood Stasis Syndrome of Unstable Angina Patients by Integrating MicroRNA and Messenger RNA Expression Profiling. Evid. Based Complement. Altern. Med. 2013, 2013, 510208. [Google Scholar] [CrossRef]
  309. Wang, X.R.; Song, D.D.; Tao, T.Q.; He, T.; Wu, X.D.; Li, X.M.; Liu, X.H. Qi-Regulating and Blood Circulation-Promoting Therapy Improves Health Status of Stable Angina Pectoris Patients with Depressive Symptoms. Evid. Based Complement. Altern. Med. 2021, 2021, 7319417. [Google Scholar] [CrossRef]
  310. Wang, X.; Xing, X.; Huang, P.; Zhang, Z.; Zhou, Z.; Liang, L.; Yao, R.; Wu, X.; Yang, L. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: An overview. Heliyon 2024, 10, e28919. [Google Scholar] [CrossRef] [PubMed]
  311. Weng, J.H.; Hou, F.G.; Wang, X.; Wang, Z.Y.; Wu, M.P. A Clinical Study on the Efficacy of the Yangxin Huoxue Formula in Treating Stable Angina Pectoris (Qi Deficiency and Blood Stasis Syndrome) with Concurrent Anxiety and Depression Disorders. J. Multidiscip. Healthc. 2024, 17, 5317–5327. [Google Scholar] [CrossRef] [PubMed]
  312. Yang, R.; Bai, Z.; Liang, C.; Qi, F. Treatment of microvascular angina pectoris by activating blood circulation to remove blood stasis: A systematic review and meta-analysis. Medicine 2024, 103, e40012. [Google Scholar] [CrossRef] [PubMed]
  313. Yao, K.W.; Wang, J.; Zhu, C.L.; Wu, J.T.; Fang, J.Z. Results of different quantitative diagnosis analysis on the symptoms and signs of blood stasis syndrome in coronary heart disease. World Sci. Technol. 2009, 11, 684–688. [Google Scholar] [CrossRef]
  314. Yao, K.W.; He, Q.Y.; Teng, F.; Wang, J. Logistic regression analysis of syndrome essential factors in patients with unstable angina pectoris. J. Tradit. Chin. Med. 2011, 31, 273–276. [Google Scholar] [CrossRef]
  315. Sun, Z.; Zhong, D.; Zhang, J.; Wang, Q.; Li, C.; Yuan, T.; Dai, X.; Duan, J.; Yao, K. Tongxinshu capsules in the treatment of stable angina pectoris due to qi deficiency and blood stasis in coronary heart disease: A multicenter, randomized, double-blind, placebo-controlled trial. J. Ethnopharmacol. 2025, 343, 119437. [Google Scholar] [CrossRef] [PubMed]
  316. Qi, G.P.; Zhang, A.J.; Xu, Z.; Li, Z.H.; Zeng, W.B.; Liu, X.; Ma, J.M.; Zheng, X.S.; Li, Z.J. Application of a Complex Network Modeling Approach to Explore the Material Basis and Mechanisms of Traditional Chinese Medicine: A Case Study of Xuefu Zhuyu Decoction for the Treatment of Two Types of Angina Pectoris. IEEE Access 2022, 10, 114103–114117. [Google Scholar] [CrossRef]
  317. Bai, D.; Song, J. Plasma metabolic biomarkers for syndrome of phlegm and blood stasis in hyperlipidemia and atherosclerosis. J. Tradit. Chin. Med. 2012, 32, 578–583. [Google Scholar] [CrossRef]
  318. Liu, Z.; Yang, H.; Zhang, M.; Cai, J.; Huang, Z. The Interaction Effect between Blood Stasis Constitution and Atherosclerotic Factors on Cognitive Impairment in Elderly People. Evid. Based Complement. Altern. Med. 2018, 2018, 8914090. [Google Scholar] [CrossRef] [PubMed]
  319. Morita, A.; Namiki, T.; Nakaguchi, T.; Murai, K.; Watanabe, Y.; Nakamura, M.; Kawasaki, Y.; Shiko, Y.; Tamura, Y.; Suganami, A.; et al. Role of Blood Stasis Syndrome of Kampo Medicine in the Early Pathogenic Stage of Atherosclerosis: A Retrospective Cross-Sectional Study. Evid. Based Complement. Altern. Med. 2021, 2021, 5557392. [Google Scholar] [CrossRef]
  320. Zuo, H.L.; Linghu, K.G.; Wang, Y.L.; Liu, K.M.; Gao, Y.; Yu, H.; Yang, F.Q.; Hu, Y.J. Interactions of antithrombotic herbal medicines with Western cardiovascular drugs. Pharmacol. Res. 2020, 159, 104963. [Google Scholar] [CrossRef] [PubMed]
  321. Wei, X.; Gao, M.; Sheng, N.; Yao, W.; Bao, B.; Cheng, F.; Cao, Y.; Yan, H.; Zhang, L.; Shan, M.; et al. Mechanism investigation of Shi-Xiao-San in treating blood stasis syndrome based on network pharmacology, molecular docking and in vitro/vivo pharmacological validation. J. Ethnopharmacol. 2023, 301, 115746. [Google Scholar] [CrossRef]
  322. Zhi, W.; Liu, Y.; Wang, X.; Zhang, H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. J. Ethnopharmacol. 2023, 301, 115749. [Google Scholar] [CrossRef]
  323. Tong, J.; Han, X.; Li, Y.; Wang, Y.; Liu, M.; Liu, H.; Pan, J.; Zhang, L.; Liu, Y.; Jiang, M.; et al. Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population. Nutr. Metab. Cardiovasc. Dis. 2024, 35, 103789. [Google Scholar] [CrossRef]
  324. Maione, F.; Mascolo, N. Danshen and the Cardiovascular System: New Advances for an Old Remedy. Semin. Thromb. Hemost. 2016, 42, 321–322. [Google Scholar] [CrossRef]
  325. Ammash, N.; Konik, E.A.; McBane, R.D.; Chen, D.; Tange, J.I.; Grill, D.E.; Herges, R.M.; McLeod, T.G.; Friedman, P.A.; Wysokinski, W.E. Left atrial blood stasis and Von Willebrand factor-ADAMTS13 homeostasis in atrial fibrillation. Arter. Thromb. Vasc. Biol. 2011, 31, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
  326. Bäck, S.; Skoda, I.; Lantz, J.; Henriksson, L.; Karlsson, L.O.; Persson, A.; Carlhäll, C.J.; Ebbers, T. Elevated atrial blood stasis in paroxysmal atrial fibrillation during sinus rhythm: A patient-specific computational fluid dynamics study. Front. Cardiovasc. Med. 2023, 10, 1219021. [Google Scholar] [CrossRef] [PubMed]
  327. Kell, D.B.; Lip, G.Y.H.; Pretorius, E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024, 12, 891. [Google Scholar] [CrossRef] [PubMed]
  328. Ni, X.; Zhang-James, Y.; Han, X.; Lei, S.; Sun, J.; Zhou, R. Traditional Chinese medicine in the treatment of ADHD: A review. Child Adolesc. Psychiatr. Clin. N. Am. 2014, 23, 853–881. [Google Scholar] [CrossRef]
  329. Zhao, S.; Deng, Y.; Chen, Z.; Wang, S. How does traditional chinese medicine treat attention deficit hyperactivity disorder—A different understanding and treatment strategy. Open J. Orthop. Rheumatol. 2023, 8, 13–17. [Google Scholar] [CrossRef]
  330. Zhang, Y.Y.; Li, Y.P. Progress of traditional Chinese Medicine on ADHD Treatment Based on Syndrome Differentiation. Drug Comb. Ther. 2021, 3, 11. [Google Scholar] [CrossRef]
  331. Sun, R.; Yuan, H.; Wang, J.; Zhu, K.; Xiong, Y.; Zheng, Y.; Ni, X.; Huang, M. Rehmanniae Radix Preparata ameliorates behavioral deficits and hippocampal neurodevelopmental abnormalities in ADHD rat model. Front. Neurosci. 2024, 18, 1402056. [Google Scholar] [CrossRef] [PubMed]
  332. Shen, H.S.; Hsu, C.Y.; Yip, H.T.; Lin, I.H. Lower risk of ischemic stroke among patients with chronic kidney disease using chinese herbal medicine as add-on therapy: A real-world nationwide cohort study. Front. Pharmacol. 2022, 13, 883148. [Google Scholar] [CrossRef] [PubMed]
  333. Song, C.Q.; Zhu, Z.Y.; Liu, M.; Yang, W.B.; Bai, X.T.; Nan, Z. Clinical efficacy and safety of Xuefu Zhuyu decoction in the treatment of diabetic kidney disease: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e32359. [Google Scholar] [CrossRef] [PubMed]
  334. Liu, W.; Yang, S.; Fu, M.; Li, J.; Song, Y.; Wei, B.; Liu, E.; Sun, Z. Chinese patent medicine for chronic obstructive pulmonary disease based on principles of tonifying Qi, promoting blood circulation by removing blood stasis, and resolving phlegm: A systematic review of randomized controlled trials. J. Tradit. Chin. Med. 2015, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
  335. Hu, Y.; Lan, Y.; Ran, Q.; Gan, Q.; Huang, W. Analysis of the Clinical Efficacy and Molecular Mechanism of Xuefu Zhuyu Decoction in the Treatment of COPD Based on Meta-Analysis and Network Pharmacology. Comput. Math. Methods Med. 2022, 2022, 2615580. [Google Scholar] [CrossRef]
  336. Qin, S.; Tan, P.; Xie, J.; Zhou, Y.; Zhao, J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: From a pharmacological perspective. Chin. Med. 2023, 18, 96. [Google Scholar] [CrossRef]
  337. Yang, Q.; Yin, D.; Wang, H.; Gao, Y.; Wang, X.; Wu, D.; Tong, J.; Wang, C.; Li, Z. Uncovering the action mechanism of Shenqi Tiaoshen formula in the treatment of chronic obstructive pulmonary disease through network pharmacology, molecular docking, and experimental verification. J. Tradit. Chin. Med. 2024, 44, 770–783. [Google Scholar] [CrossRef]
  338. Yu, X.; Qin, W.; Cai, H.; Ren, C.; Huang, S.; Lin, X.; Tang, L.; Shan, Z.; Al-Ameer, W.H.A.; Wang, L.; et al. Analyzing the molecular mechanism of xuefuzhuyu decoction in the treatment of pulmonary hypertension with network pharmacology and bioinformatics and verifying molecular docking. Comput. Biol. Med. 2024, 169, 107863. [Google Scholar] [CrossRef]
  339. Zhou, W.; Wang, Y. A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: Potential for therapeutics and drug discovery. J. Ethnopharmacol. 2014, 151, 66–77. [Google Scholar] [CrossRef]
  340. Chen, K.J.; Shi, D.Z.; Fu, C.G.; Gao, Z.Y.; Xu, H.; Lv, S.Z.; You, S.J.; Huang, L. Diagnostic criterion of blood stasis syndrome for coronary heart disease: Activating Blood Circulation Committee of Chinese Association of Integrative Medicine. Chin. J. Integr. Med. 2016, 22, 803–804. [Google Scholar] [CrossRef] [PubMed]
  341. Zhang, S.; Chen, Z.L.; Tang, Y.P.; Duan, J.L.; Yao, K.W. Efficacy and Safety of Xue-Fu-Zhu-Yu Decoction for Patients with Coronary Heart Disease: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2021, 2021, 9931826. [Google Scholar] [CrossRef] [PubMed]
  342. Xin, Q.Q.; Chen, X.; Yuan, R.; Yuan, Y.H.; Hui, J.Q.; Miao, Y.; Cong, W.H.; Chen, K.J. Correlation of Platelet and Coagulation Function with Blood Stasis Syndrome in Coronary Heart Disease: A Systematic Review and Meta-Analysis. Chin. J. Integr. Med. 2021, 27, 858–866. [Google Scholar] [CrossRef] [PubMed]
  343. Shi, H.; Tang, Z.; Liu, T.; Zhang, X.; Wang, Y.; Li, J.; Dong, C.; Chen, W.; Hou, R.; Si, G.; et al. The Effect and Safety of Xuefu Zhuoyue Prescription for Coronary Heart Disease: An Overview of Systematic Reviews and Meta-Analyses. Evid. Based Complement. Altern. Med. 2022, 2022, 9096940. [Google Scholar] [CrossRef] [PubMed]
  344. Yang, G.; Zhou, S.; He, H.; Shen, Z.; Liu, Y.; Hu, J.; Wang, J. Exploring the “gene-protein-metabolite” network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy. Front. Pharmacol. 2022, 13, 1022627. [Google Scholar] [CrossRef] [PubMed]
  345. Yu, G.; Wang, J. Susceptible gene polymorphisms for blood stasis syndrome of coronary heart disease. Chin. J. Integr. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
  346. Lyu, M.; Yan, C.L.; Liu, H.X.; Wang, T.Y.; Shi, X.H.; Liu, J.P.; Orgah, J.; Fan, G.W.; Han, J.H.; Wang, X.Y.; et al. Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection. Sci. Rep. 2017, 7, 15427. [Google Scholar] [CrossRef] [PubMed]
  347. Kui, F.; Gu, W.; Gao, F.; Niu, Y.; Li, W.; Zhang, Y.; Guo, L.; Wang, J.; Guo, Z.; Cen, S.; et al. Research on Effect and Mechanism of Xuefu Zhuyu Decoction on CHD Based on Meta-Analysis and Network Pharmacology. Evid. Based Complement. Altern. Med. 2021, 2021, 9473531. [Google Scholar] [CrossRef]
  348. Tao, T.Q.; He, T.; Wang, X.R.; Liu, X.H. Metabolic Profiling Analysis of Patients with Coronary Heart Disease Undergoing Xuefu Zhuyu Decoction Treatment. Front. Pharmacol. 2019, 10, 985. [Google Scholar] [CrossRef]
  349. Qian, H.; Chen, B.B.; Zhang, M.; Zeng, S.J.; Jia, Z.Z.; Wang, S.; Gao, S.; Shi, A.H.; Xie, J. Network pharmacology and molecular docking approach to explore the potential mechanisms of Xuefu Zhuyu Capsule in coronary heart disease. Medicine 2025, 104, e41154. [Google Scholar] [CrossRef]
  350. Wang, Y.; Wang, J.; Lv, W.; Chen, H.; Yang, Q.; Zhang, Y.; Guo, R.; Ma, X.L.; Zhang, Q.Y. Clinical intervention effect of Xuefu Zhuyu decoction on chronic heart failure complicated with depression. World J. Psychiatr. 2024, 14, 857–865. [Google Scholar] [CrossRef] [PubMed]
  351. Lu, X.Y.; Xu, H.; Zhao, T.; Li, G. Study of Serum Metabonomics and Formula-Pattern Correspondence in Coronary Heart Disease Patients Diagnosed as Phlegm or Blood Stasis Pattern Based on Ultra Performance Liquid Chromatography Mass Spectrometry. Chin. J. Integr. Med. 2018, 24, 905–911. [Google Scholar] [CrossRef] [PubMed]
  352. Liang, B.; Xiang, Y.; Zhang, X.; Wang, C.; Jin, B.; Zhao, Y.; Zheng, F. Systematic Pharmacology and GEO Database Mining Revealed the Therapeutic Mechanism of Xuefu Zhuyu Decoration for Atherosclerosis Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 592201. [Google Scholar] [CrossRef]
  353. Han, J.; Miao, Y.; Song, L.; Zhou, X.; Liu, Y.; Wang, L.; Zhu, K.; Ma, H.; Ma, Y.; Li, Q.; et al. Xuefu Zhuyu Decoction improves hyperlipidemia through the MAPK/NF-kappaB and MAPK/PPARalpha/CPT-1A signaling pathway. FASEB J. 2025, 39, e70363. [Google Scholar] [CrossRef]
  354. Zhu, S.; Song, Y.; Chen, X.; Qian, W. Traditional Chinese and western medicine for the prevention of deep venous thrombosis after lower extremity orthopedic surgery: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2018, 13, 79. [Google Scholar] [CrossRef]
  355. Yan, S.T.; Gao, F.; Dong, T.W.; Fan, H.; Xi, M.M.; Miao, F.; Wei, P.F. Meta-Analysis of Randomized Controlled Trials of Xueshuantong Injection in Prevention of Deep Venous Thrombosis of Lower Extremity after Orthopedic Surgery. Evid. Based Complement. Altern. Med. 2020, 2020, 8877791. [Google Scholar] [CrossRef] [PubMed]
  356. Huang, B.; Tang, P.; Liu, Y.; Liu, F.; Zheng, Y.; Yang, X.; Zhang, X.; Xie, H.; Lin, L.; Lin, B.; et al. Xuefu Zhuyu decoction alleviates deep vein thrombosis through inhibiting the activation of platelets and neutrophils via sirtuin 1/nuclear factor kappa-B pathway. J. Ethnopharmacol. 2024, 333, 118485. [Google Scholar] [CrossRef] [PubMed]
  357. Jo, J.; Leem, J.; Lee, J.M.; Park, K.S. Herbal medicine (Hyeolbuchukeo-tang or Xuefu Zhuyu decoction) for treating primary dysmenorrhoea: Protocol for a systematic review of randomised controlled trials. BMJ Open 2017, 7, e015056. [Google Scholar] [CrossRef] [PubMed]
  358. Jung, J.; Ko, M.M.; Lee, M.S.; Lee, S.M.; Lee, J.A. Diagnostic Indicators for Blood Stasis Syndrome Patients with Gynaecological Diseases. Chin. J. Integr. Med. 2018, 24, 752–757. [Google Scholar] [CrossRef]
  359. Leem, J.; Jo, J.; Kwon, C.Y.; Lee, H.; Park, K.S.; Lee, J.M. Herbal medicine (Hyeolbuchukeo-tang or Xuefu Zhuyu decoction) for treating primary dysmenorrhea: A systematic review and meta-analysis of randomized controlled trials. Medicine 2019, 98, e14170. [Google Scholar] [CrossRef]
  360. Li, G.; Zhang, Z.; Zhou, L.; Liao, S.; Sun, J.; Liu, Y.; Wang, X.; Wen, Z. Chinese herbal formula Xuefu Zhuyu for primary dysmenorrhea patients (CheruPDYS): A study protocol for a randomized placebo-controlled trial. Trials 2021, 22, 95. [Google Scholar] [CrossRef] [PubMed]
  361. Tran, M.N.; Jun, H.J.; Lee, S. Identifying the molecular mechanism of blood stasis syndrome through the symptom phenotype-genotype association approach. Medicine 2024, 103, e40717. [Google Scholar] [CrossRef]
  362. Li, X.L.; Jin, Y.; Gao, R.; Zhou, Q.X.; Huang, F.; Liu, L. Wenjing decoction: Mechanism in the treatment of dysmenorrhea with blood stasis syndrome through network pharmacology and experimental verification. J. Ethnopharmacol. 2025, 337, 118818. [Google Scholar] [CrossRef]
  363. Chen, R.; Moriya, J.; Yamakawa, J.; Takahashi, T.; Kanda, T. Traditional chinese medicine for chronic fatigue syndrome. Evid. Based Complement. Altern. Med. 2010, 7, 3–10. [Google Scholar] [CrossRef]
  364. Shi, Q.; Zhao, H.; Chen, J.; Li, Y.; Li, Z.; Wang, J.; Wang, W. Study on qi deficiency syndrome identification modes of coronary heart disease based on metabolomic biomarkers. Evid. Based Complement. Altern. Med. 2014, 2014, 281829. [Google Scholar] [CrossRef]
  365. Luo, L.; Chen, J.; Guo, S.; Wang, J.; Gao, K.; Zhang, P.; Chen, C.; Zhao, H.; Wang, W. Chinese Herbal Medicine in the Treatment of Chronic Heart Failure: Three-Stage Study Protocol for a Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2015, 2015, 927160. [Google Scholar] [CrossRef]
  366. Gao, K.; Zhao, H.; Gao, J.; Wen, B.; Jia, C.; Wang, Z.; Zhang, F.; Wang, J.; Xie, H.; Wang, J.; et al. Mechanism of Chinese Medicine Herbs Effects on Chronic Heart Failure Based on Metabolic Profiling. Front. Pharmacol. 2017, 8, 864. [Google Scholar] [CrossRef] [PubMed]
  367. Lin, Y.; Han, Y.; Wang, Y. Traditional Chinese medicine for cardiovascular disease: Efficacy and safety. Front. Cardiovasc. Med. 2024, 11, 1419169. [Google Scholar] [CrossRef]
  368. Kang, B.K.; Jang, S.; Ko, M.M.; Jung, J. A Study on the Development of a Korean Metabolic Syndrome Questionnaire Using Blood Stasis Clinical Data. Evid. Based Complement. Altern. Med. 2019, 2019, 8761417. [Google Scholar] [CrossRef] [PubMed]
  369. Ko, M.M.; Jang, S.; Jung, J. An observational study on diagnosis index of metabolic disease with blood-stasis. Medicine 2020, 99, e21140. [Google Scholar] [CrossRef]
  370. Bae, J.C. No More NAFLD: The Term Is Now MASLD. Endocrinol. Metab. 2024, 39, 92–94. [Google Scholar] [CrossRef] [PubMed]
  371. Liu, J.; Dong, B.; Yang, L.; Huang, W.; Tang, S. Xuefu Zhuyu decoction for nonalcoholic fatty liver disease: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e25358. [Google Scholar] [CrossRef] [PubMed]
  372. Zheng, S.; Xue, C.; Li, S.; Zao, X.; Li, X.; Liu, Q.; Cao, X.; Wang, W.; Qi, W.; Zhang, P.; et al. Chinese medicine in the treatment of non-alcoholic fatty liver disease based on network pharmacology: A review. Front. Pharmacol. 2024, 15, 1381712. [Google Scholar] [CrossRef] [PubMed]
  373. El Hussein, M.T.; Hewko, A. Management of Postural Orthostatic Tachycardia Syndrome: A Canadian Approach. J. Nurs. Pract. 2025, 21, 105258. [Google Scholar] [CrossRef]
  374. Kell, D.B.; Khan, M.A.; Kane, B.; Lip, G.Y.H.; Pretorius, E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J. Pers. Med. 2024, 14, 170. [Google Scholar] [CrossRef] [PubMed]
  375. Wirth, K.J.; Löhn, M. Orthostatic Intolerance after COVID-19 Infection: Is Disturbed Microcirculation of the Vasa Vasorum of Capacitance Vessels the Primary Defect? Medicina 2022, 58, 1807. [Google Scholar] [CrossRef]
  376. Wang, X.; Wei, W.; Qi, Y.; Dong, L.; Zhang, Y. Clinical Effects of Integrated Traditional Chinese and Western Medicine in Treating Severe Preeclampsia and Its Influence on Maternal and Infant Outcomes after Cesarean Section under Combined Lumbar and Epidural Anesthesia. Evid. Based Complement. Altern. Med. 2021, 2021, 6366914. [Google Scholar] [CrossRef]
  377. Dong, H.; Song, J.; Jia, Y.; Cui, H.; Chen, X. Research on the Improvement of Endothelial Cell Function and Trophoblast Apoptosis in Rats with Preeclampsia by Tanshinone IIA. Pharmmacognosy Mag. 2025, 21, 116–123. [Google Scholar] [CrossRef]
  378. Zhang, X.; Li, J.; Zhou, P.; Luo, Q.; Xiang, Z.; Wu, H. Effect of Salvia Miltiorrhiza Injection on Blood Pressure and Cardiac Function in Rats with Gestational Hypertension and Preeclampsia. J. Biosci. Med. 2023, 11, 152–160. [Google Scholar] [CrossRef]
  379. Chen, Y.; Liu, Y.; Liang, M.; Wang, Y.; Zhang, H.; Huang, L.; Ye, J. Effects of magnesium sulfate combined with compound Danshen injection on pregnancy outcome, vascular endothelia function, liver and kidney function in patients with EOSPE. Int. J. Clin. Med. 2020, 13, 3703–3709. [Google Scholar]
  380. Kell, D.B.; Kenny, L.C. A dormant microbial component in the development of pre-eclampsia. Front. Med. Obs. Gynecol. 2016, 3, 60. [Google Scholar] [CrossRef]
  381. Kenny, L.C.; Kell, D.B. Immunological tolerance, pregnancy and pre-eclampsia: The roles of semen microbes and the father. Front. Med. Obs. Gynecol. 2018, 4, 239. [Google Scholar] [CrossRef]
  382. Han, L.; Liu, X.; Li, H.; Zou, J.; Yang, Z.; Han, J.; Huang, W.; Yu, L.; Zheng, Y.; Li, L. Blood coagulation parameters and platelet indices: Changes in normal and preeclamptic pregnancies and predictive values for preeclampsia. PLoS ONE 2014, 9, e114488. [Google Scholar] [CrossRef] [PubMed]
  383. Glazier, C.R.; Baciewicz, F.A., Jr. Epidemiology, Etiology, and Pathophysiology of Pulmonary Embolism. Int. J. Angiol. 2024, 33, 76–81. [Google Scholar] [CrossRef] [PubMed]
  384. Li, W.; Wang, R.; Huang, W.; Shen, Y.; Du, J.; Tian, Y. BuyangHuanwu Decoction attenuates cerebral vasospasm caused by subarachnoid hemorrhage in rats via PI3K/AKT/eNOS axis. Open Life Sci. 2022, 17, 735–743. [Google Scholar] [CrossRef]
  385. Zhou, J.; Guo, P.; Guo, Z.; Sun, X.; Chen, Y.; Feng, H. Fluid metabolic pathways after subarachnoid hemorrhage. J. Neurochem. 2022, 160, 13–33. [Google Scholar] [CrossRef]
  386. McMahon, C.J.; Hopkins, S.; Vail, A.; King, A.T.; Smith, D.; Illingworth, K.J.; Clark, S.; Rothwell, N.J.; Tyrrell, P.J. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J. Neurointerv. Surg. 2013, 5, 512–517. [Google Scholar] [CrossRef]
  387. Tang, X.; Liu, X.; Zhao, M.S.M.H.; Zhang, Y. Traditional Chinese medicine in the treatment of high incidence diseases in cold areas: The thrombotic diseases. Frigid Zone Med. 2021, 23–44. [Google Scholar] [CrossRef]
  388. Yin, Q.; Zhang, X.; Liao, S.; Huang, X.; Wan, C.C.; Wang, Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. Phytomedicine 2023, 116, 154880. [Google Scholar] [CrossRef]
  389. Yu, H.; Chai, X.; Geng, W.C.; Zhang, L.; Ding, F.; Guo, D.S.; Wang, Y. Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair. Biosens. Bioelectron. 2021, 192, 113488. [Google Scholar] [CrossRef] [PubMed]
  390. Sha, R.N.; Tang, L.; Du, Y.W.; Wu, S.X.; Shi, H.W.; Zou, H.X.; Zhang, X.R.; Dong, X.L.; Zhou, L. Effectiveness and safety of Ginkgo biloba extract (GBE50) in the treatment of dizziness caused by cerebral arteriosclerosis: A multi-center, double-blind, randomized controlled trial. J. Tradit. Chin. Med. 2022, 42, 83–89. [Google Scholar] [CrossRef] [PubMed]
  391. Ahmed, S.H.; Waseem, S.; Shaikh, T.G.; Qadir, N.A.; Siddiqui, S.A.; Ullah, I.; Waris, A.; Yousaf, Z. SARS-CoV-2 vaccine-associated-tinnitus: A review. Ann. Med. Surg. 2022, 75, 103293. [Google Scholar] [CrossRef] [PubMed]
  392. Figueiredo, R.R.; de O. Penido, N.; de Azevedo, A.A.; de Oliveira, P.M.; de Siqueira, A.G.; Figueiredo, G.M.R.; Schlee, W.; Langguth, B. Tinnitus emerging in the context of a COVID-19 infection seems not to differ in its characteristics from tinnitus unrelated to COVID-19. Front. Neurol. 2022, 13, 974179. [Google Scholar] [CrossRef] [PubMed]
  393. Wang, W.; Yellamsetty, A.; Edmonds, R.M.; Barcavage, S.R.; Bao, S. COVID-19 vaccination-related tinnitus is associated with pre-vaccination metabolic disorders. Front. Pharmacol. 2024, 15, 1374320. [Google Scholar] [CrossRef] [PubMed]
  394. Yao, Q.; Zhang, L.; Zhou, J.; Li, M.; Jing, W.; Li, X.; Han, J.; He, L.; Zhang, Y. Imaging Diagnosis of Transient Ischemic Attack in Clinic and Traditional Chinese Medicine. Biomed. Res. Int. 2019, 2019, 5094842. [Google Scholar] [CrossRef] [PubMed]
  395. Kang, Y.; Yang, Z.; Zhou, K.; Zhou, Y. Treating transient ischemic attack from the evil of Phlegm and blood stasis based on abnormal lipid metabolism. Acad. J. Med. Health Sci. 2023, 4, 51–55. [Google Scholar] [CrossRef]
  396. Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef] [PubMed]
  397. Jin, X.; Shen, G.; Gao, F.; Zheng, X.; Xu, X.; Shen, F.; Li, G.; Gong, J.; Wen, L.; Yang, X.; et al. Traditional Chinese drug ShuXueTong facilitates angiogenesis during wound healing following traumatic brain injury. J. Ethnopharmacol. 2008, 117, 473–477. [Google Scholar] [CrossRef]
  398. Liu, Z.K.; Ng, C.F.; Shiu, H.T.; Wong, H.L.; Chin, W.C.; Zhang, J.F.; Lam, P.K.; Poon, W.S.; Lau, C.B.; Leung, P.C.; et al. Neuroprotective effect of Da Chuanxiong Formula against cognitive and motor deficits in a rat controlled cortical impact model of traumatic brain injury. J. Ethnopharmacol. 2018, 217, 11–22. [Google Scholar] [CrossRef]
  399. Kwon, C.Y.; Lee, B.; Leem, J.; Chung, S.Y.; Kim, J.W. Korean medicine treatments including blood stasis-removing therapy and auriculotherapy for persistent headache after traumatic brain injury: A case report. Explore 2019, 15, 419–424. [Google Scholar] [CrossRef]
  400. Lee, B.; Leem, J.; Kim, H.; Jo, H.G.; Yoon, S.H.; Shin, A.; Sul, J.U.; Choi, Y.Y.; Yun, Y.; Kwon, C.Y. Herbal medicine for acute management and rehabilitation of traumatic brain injury: A protocol for a systematic review. Medicine 2019, 98, e14145. [Google Scholar] [CrossRef]
  401. Li, T.; Hu, E.; Li, P.; Yang, Z.; Wu, Y.; Ding, R.; Zhu, X.; Tang, T.; Wang, Y. Metabolomics Deciphers Potential Targets of Xuefu Zhuyu Decoction Against Traumatic Brain Injury in Rat. Front. Pharmacol. 2020, 11, 559618. [Google Scholar] [CrossRef]
  402. Yang, Z.Y.; Tang, T.; Li, P.F.; Li, X.X.; Wu, Y.; Feng, D.D.; Hu, M.R.; Dai, F.; Zheng, F.; Zhang, W.; et al. Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. Phytomedicine 2022, 102, 154168. [Google Scholar] [CrossRef] [PubMed]
  403. Wei, C.; Wang, J.; Yu, J.; Tang, Q.; Liu, X.; Zhang, Y.; Cui, D.; Zhu, Y.; Mei, Y.; Wang, Y.; et al. Therapy of traumatic brain injury by modern agents and traditional Chinese medicine. Chin. Med. 2023, 18, 25. [Google Scholar] [CrossRef] [PubMed]
  404. Maegele, M.; Schöchl, H.; Menovsky, T.; Maréchal, H.; Marklund, N.; Buki, A.; Stanworth, S. Coagulopathy and haemorrhagic progression in traumatic brain injury: Advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017, 16, 630–647. [Google Scholar] [CrossRef] [PubMed]
  405. Jung, J.; Ko, M.M.; Lee, J.A.; Lee, M.S. Recognition of Association Between Blood Stasis Syndrome and Traumatic Injury among Doctors of Korean Medicine: A Cross-Sectional Observation Study. Chin. J. Integr. Med. 2018, 24, 254–259. [Google Scholar] [CrossRef]
  406. Law, S.; Gillmore, J.D. When to Suspect and How to Approach a Diagnosis of Amyloidosis. Am. J. Med. 2022, 135 (Suppl. S1), S2–S8. [Google Scholar] [CrossRef]
  407. Muchtar, E.; Dispenzieri, A.; Magen, H.; Grogan, M.; Mauermann, M.; McPhail, E.D.; Kurtin, P.J.; Leung, N.; Buadi, F.K.; Dingli, D.; et al. Systemic amyloidosis from A (AA) to T (ATTR): A review. J. Intern. Med. 2021, 289, 268–292. [Google Scholar] [CrossRef]
  408. van der Kant, R.; Louros, N.; Schymkowitz, J.; Rousseau, F. Thermodynamic analysis of amyloid fibril structures reveals a common framework for stability in amyloid polymorphs. Structure 2022, 30, 1178–1189.e1173. [Google Scholar] [CrossRef]
  409. Aubrey, L.D.; Blakeman, B.J.F.; Lutter, L.; Serpell, C.J.; Tuite, M.F.; Serpell, L.C.; Xue, W.F. Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Commun. Chem. 2020, 3, 125. [Google Scholar] [CrossRef]
  410. Banerjee, S.; Baghel, D.; Edmonds, H.O.; Ghosh, A. Heterotypic Seeding Generates Mixed Amyloid Polymorphs. Small Sci. 2024, 4, 2400109. [Google Scholar] [CrossRef] [PubMed]
  411. De Luca, G.; Fennema Galparsoro, D.; Sancataldo, G.; Leone, M.; Fodera, V.; Vetri, V. Probing ensemble polymorphism and single aggregate structural heterogeneity in insulin amyloid self-assembly. J. Colloid Interface Sci. 2020, 574, 229–240. [Google Scholar] [CrossRef]
  412. Farzadfard, A.; Kunka, A.; Mason, T.O.; Larsen, J.A.; Norrild, R.K.; Dominguez, E.T.; Ray, S.; Buell, A.K. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chem. Sci. 2024, 15, 2528–2544. [Google Scholar] [CrossRef]
  413. Guenther, E.L.; Ge, P.; Trinh, H.; Sawaya, M.R.; Cascio, D.; Boyer, D.R.; Gonen, T.; Zhou, Z.H.; Eisenberg, D.S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 2018, 25, 311–319. [Google Scholar] [CrossRef] [PubMed]
  414. Li, D.; Liu, C. Molecular rules governing the structural polymorphism of amyloid fibrils in neurodegenerative diseases. Structure 2023, 31, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
  415. Sharma, K.; Stockert, F.; Shenoy, J.; Berbon, M.; Abdul-Shukkoor, M.B.; Habenstein, B.; Loquet, A.; Schmidt, M.; Fändrich, M. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat. Commun. 2024, 15, 486. [Google Scholar] [CrossRef] [PubMed]
  416. Wilkinson, M.; Xu, Y.; Thacker, D.; Taylor, A.I.P.; Fisher, D.G.; Gallardo, R.U.; Radford, S.E.; Ranson, N.A. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023, 186, 5798–5811.e5726. [Google Scholar] [CrossRef]
  417. Jung, J.; Cha, M.H.; Lee, H.; Ko, M.M.; Lee, J.A.; Lee, S.; Lee, M.S. The association of C-reactive protein and serum amyloid P with blood stasis syndrome in Traditional Korean Medicine for general disease conditions: A cross-sectional, observational study. Eur. J. Integr. Med. 2016, 8, 432–437. [Google Scholar] [CrossRef]
  418. Noble, S.; Pasi, J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br. J. Cancer 2010, 102 (Suppl. S1), S2–S9. [Google Scholar] [CrossRef]
  419. Leiva, O.; Newcomb, R.; Connors, J.M.; Al-Samkari, H. Cancer and thrombosis: New insights to an old problem. J. Med. Vasc. 2020, 45, 6S8–6S16. [Google Scholar] [CrossRef] [PubMed]
  420. Leiva, O.; AbdelHameid, D.; Connors, J.M.; Cannon, C.P.; Bhatt, D.L. Common Pathophysiology in Cancer, Atrial Fibrillation, Atherosclerosis, and Thrombosis: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2021, 3, 619–634. [Google Scholar] [CrossRef] [PubMed]
  421. Khorana, A.A.; Fine, R.L. Pancreatic cancer and thromboembolic disease. Lancet Oncol. 2004, 5, 655–663. [Google Scholar] [CrossRef] [PubMed]
  422. Epstein, A.S.; Soff, G.A.; Capanu, M.; Crosbie, C.; Shah, M.A.; Kelsen, D.P.; Denton, B.; Gardos, S.; O’Reilly, E.M. Analysis of incidence and clinical outcomes in patients with thromboembolic events and invasive exocrine pancreatic cancer. Cancer 2012, 118, 3053–3061. [Google Scholar] [CrossRef]
  423. Timp, J.F.; Braekkan, S.K.; Versteeg, H.H.; Cannegieter, S.C. Epidemiology of cancer-associated venous thrombosis. Blood 2013, 122, 1712–1723. [Google Scholar] [CrossRef]
  424. Ansari, D.; Ansari, D.; Andersson, R.; Andren-Sandberg, A. Pancreatic cancer and thromboembolic disease, 150 years after Trousseau. Hepatobiliary Surg. Nutr. 2015, 4, 325–335. [Google Scholar] [CrossRef] [PubMed]
  425. Ouaïssi, M.; Frasconi, C.; Mege, D.; Panicot-Dubois, L.; Boiron, L.; Dahan, L.; Debourdeau, P.; Dubois, C.; Farge, D.; Sielezneff, I. Impact of venous thromboembolism on the natural history of pancreatic adenocarcinoma. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 436–442. [Google Scholar] [CrossRef]
  426. Berger, A.K.; Singh, H.M.; Werft, W.; Muckenhuber, A.; Sprick, M.R.; Trumpp, A.; Weichert, W.; Jager, D.; Springfeld, C. High prevalence of incidental and symptomatic venous thromboembolic events in patients with advanced pancreatic cancer under palliative chemotherapy: A retrospective cohort study. Pancreatology 2017, 17, 629–634. [Google Scholar] [CrossRef]
  427. Ishigaki, K.; Nakai, Y.; Isayama, H.; Saito, K.; Hamada, T.; Takahara, N.; Mizuno, S.; Mohri, D.; Kogure, H.; Matsubara, S.; et al. Thromboembolisms in Advanced Pancreatic Cancer: A Retrospective Analysis of 475 Patients. Pancreas 2017, 46, 1069–1075. [Google Scholar] [CrossRef]
  428. Mege, D.; Crescence, L.; Ouaissi, M.; Sielezneff, I.; Guieu, R.; Dignat-George, F.; Dubois, C.; Panicot-Dubois, L. Fibrin-bearing microparticles: Marker of thrombo-embolic events in pancreatic and colorectal cancers. Oncotarget 2017, 8, 97394–97406. [Google Scholar] [CrossRef]
  429. Bosch, F.T.M.; Mulder, F.I.; Kamphuisen, P.W.; Middeldorp, S.; Bossuyt, P.M.; Buller, H.R.; van Es, N. Primary thromboprophylaxis in ambulatory cancer patients with a high Khorana score: A systematic review and meta-analysis. Blood Adv. 2020, 4, 5215–5225. [Google Scholar] [CrossRef] [PubMed]
  430. Fuentes, H.E.; Oramas, D.M.; Paz, L.H.; Wang, Y.; Andrade, X.A.; Tafur, A.J. Venous Thromboembolism Is an Independent Predictor of Mortality Among Patients with Gastric Cancer. J. Gastrointest. Cancer 2018, 49, 415–421. [Google Scholar] [CrossRef] [PubMed]
  431. Diaz Quintero, L.A.; Fuentes, H.E.; Tafur, A.J.; Majmudar, K.; Salazar Adum, J.P.; Golemi, I.; Paz, L.H.; Stocker, S.; Talamonti, M. Pancreatic cancer thromboembolic outcomes: Rate of thrombosis after adenocarcinoma and non-adenocarcinoma pancreatic cancer surgery. Int. Angiol. 2019, 38, 194–200. [Google Scholar] [CrossRef] [PubMed]
  432. Godinho, J.; Casa-Nova, M.; Moreira-Pinto, J.; Simoes, P.; Paralta Branco, F.; Leal-Costa, L.; Faria, A.; Lopes, F.; Teixeira, J.A.; Passos-Coelho, J.L. ONKOTEV Score as a Predictive Tool for Thromboembolic Events in Pancreatic Cancer-A Retrospective Analysis. Oncologist 2020, 25, e284–e290. [Google Scholar] [CrossRef] [PubMed]
  433. Hanna-Sawires, R.G.; Groen, J.V.; Hamming, A.; Tollenaar, R.A.E.M.; Mesker, W.E.; Luelmo, S.A.C.; Vahrmeijer, A.L.; Bonsing, B.A.; Versteeg, H.H.; Klok, F.A.; et al. Incidence, timing and risk factors of venous thromboembolic events in patients with pancreatic cancer. Thromb. Res. 2021, 207, 134–139. [Google Scholar] [CrossRef] [PubMed]
  434. Heffley, J.; Ganguly, E.; Tompkins, B.J.; Ades, S.; Holmes, C.E.; Zubarik, R. Venous thromboembolism in patients with pancreatic adenocarcinoma: Disease burden and initiation of ambulatory thromboprophylaxis. Pancreatology 2024, 24, 894–898. [Google Scholar] [CrossRef]
  435. Falanga, A.; Schieppati, F.; Russo, D. Cancer Tissue Procoagulant Mechanisms and the Hypercoagulable State of Patients with Cancer. Semin. Thromb. Hemost. 2015, 41, 756–764. [Google Scholar] [CrossRef]
  436. Proal, A.D.; VanElzakker, M.B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef] [PubMed]
  437. Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
  438. Global Burden of Disease Long Covid Collaborators; Wulf Hanson, S.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar] [CrossRef]
  439. Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
  440. Komaroff, A.L.; Lipkin, W.I. ME/CFS and Long COVID share similar symptoms and biological abnormalities: Road map to the literature. Front. Med. 2023, 10, 1187163. [Google Scholar] [CrossRef] [PubMed]
  441. Sum, C.H.; Ching, J.Y.L.; Song, T.; Cheong, P.K.; Lo, C.W.; Lai, M.K.; Chia, C.P.; Chan, K.L.; Mak, W.Y.; Leung, K.C.; et al. Chinese medicine for residual symptoms of COVID-19 recovered patients (long COVID)-A double-blind, randomized, and placebo-controlled clinical trial protocol. Front. Med. 2022, 9, 990639. [Google Scholar] [CrossRef]
  442. Eckey, M.; Li, P.; Morrison, B.; Davis, R.W.; Xiao, W. Patient-Reported Treatment Outcomes in ME/CFS and Long COVID. medRxiv 2024, 2024.2011.2027.24317656. [Google Scholar] [CrossRef]
  443. Al-Aly, Z.; Davis, H.; McCorkell, L.; Soares, L.; Wulf-Hanson, S.; Iwasaki, A.; Topol, E.J. Long COVID science, research and policy. Nat. Med. 2024, 30, 2148–2164. [Google Scholar] [CrossRef] [PubMed]
  444. Rowe, P.C.; Underhill, R.A.; Friedman, K.J.; Gurwitt, A.; Medow, M.S.; Schwartz, M.S.; Speight, N.; Stewart, J.M.; Vallings, R.; Rowe, K.S. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. Front. Pediatr. 2017, 5, 121. [Google Scholar] [CrossRef] [PubMed]
  445. Arron, H.E.; Marsh, B.D.; Kell, D.B.; Khan, M.A.; Jaeger, B.R.; Pretorius, E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The biology of a neglected disease. Front. Immunol. 2024, 15, 1386607. [Google Scholar] [CrossRef]
  446. Bower, J.E. Cancer-related fatigue--mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef] [PubMed]
  447. Butt, Z.; Rosenbloom, S.K.; Abernethy, A.P.; Beaumont, J.L.; Paul, D.; Hampton, D.; Jacobsen, P.B.; Syrjala, K.L.; Von Roenn, J.H.; Cella, D. Fatigue is the most important symptom for advanced cancer patients who have had chemotherapy. J. Natl. Compr. Canc. Netw. 2008, 6, 448–455. [Google Scholar] [CrossRef]
  448. Narayanan, V.; Koshy, C. Fatigue in cancer: A review of literature. Indian J. Palliat. Care 2009, 15, 19–25. [Google Scholar] [CrossRef]
  449. Song, Y.; Sun, X.; Shen, L.; Qu, Z.; Yin, J.; Wang, Z.; Zhang, H. Genes of cancer-related fatigue: A scoping review. Front. Oncol. 2024, 14, 1446321. [Google Scholar] [CrossRef]
  450. Thong, M.S.Y.; van Noorden, C.J.F.; Steindorf, K.; Arndt, V. Cancer-Related Fatigue: Causes and Current Treatment Options. Curr. Treat. Options Oncol. 2020, 21, 17. [Google Scholar] [CrossRef] [PubMed]
  451. Yang, S.; Chu, S.; Gao, Y.; Ai, Q.; Liu, Y.; Li, X.; Chen, N. A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis. Cells 2019, 8, 738. [Google Scholar] [CrossRef]
  452. Yang, J.; Li, Y.; Chau, C.I.; Shi, J.; Chen, X.; Hu, H.; Ung, C.O.L. Efficacy and safety of traditional Chinese medicine for cancer-related fatigue: A systematic literature review of randomized controlled trials. Chin. Med. 2023, 18, 142. [Google Scholar] [CrossRef] [PubMed]
  453. Zeng, J.; Wu, Q.; Meng, X.D.; Wang, J. Systematic review of Buzhong Yiqi method in alleviating cancer-related fatigue: A meta-analysis and exploratory network pharmacology approach. Front. Pharmacol. 2024, 15, 1451773. [Google Scholar] [CrossRef] [PubMed]
  454. Liang, F.; Sun, J.; Li, Q.; Li, C.H.; Fan, Z.-Z. Analysis of clinical syndromes in 47 patients with pancreatic cancer at late stage. J. Tradit. Chin. Med. 2011, 31, 182–184. [Google Scholar] [CrossRef]
  455. Liu, Z.; Yu, Z.; Ouyang, X.; Du, J.; Lan, X.; Zhao, M. Applied research on serum protein fingerprints for prediction of Qi deficiency syndrome and phlegm and blood stasis in patients with non-small cell lung cancer. J. Tradit. Chin. Med. 2012, 32, 350–354. [Google Scholar] [CrossRef]
  456. Guo, Z.; Lou, Y.; Kong, M.; Luo, Q.; Liu, Z.; Wu, J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int. J. Mol. Sci. 2019, 20, 1463. [Google Scholar] [CrossRef]
  457. Huang, Y.X.; Xu, D.Q.; Yue, S.J.; Chen, Y.Y.; Tao, H.J.; Fu, R.J.; Xing, L.M.; Wang, T.; Ma, Y.L.; Wang, B.A.; et al. Deciphering the Active Compounds and Mechanisms of Qixuehe Capsule on Qi Stagnation and Blood Stasis Syndrome: A Network Pharmacology Study. Evid. Based Complement. Altern. Med. 2020, 2020, 5053914. [Google Scholar] [CrossRef]
  458. Kim, B.S.; Jin, S.; Park, J.Y.; Kim, S.Y. Scoping review of the medicinal effects of Eupolyphaga sinensis Walker and the underlying mechanisms. J. Ethnopharmacol. 2022, 296, 115454. [Google Scholar] [CrossRef]
  459. Zhang, F.; Ganesan, K.; Liu, Q.; Chen, J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022, 11, 2885. [Google Scholar] [CrossRef]
  460. Zhang, Y.; Xu, H.; Li, Y.; Sun, Y.; Peng, X. Advances in the treatment of pancreatic cancer with traditional Chinese medicine. Front. Pharmacol. 2023, 14, 1089245. [Google Scholar] [CrossRef] [PubMed]
  461. Jin, L.; Tang, B.; Liu, X.; Mao, W.; Xia, L.; Du, Y.; Ji, B.; Shou, Q.; Fu, H. Blood Stasis Syndrome Accelerates the Growth and Metastasis of Breast Cancer by Promoting Hypoxia and Immunosuppressive Microenvironment in Mice. J. Immunol. Res. 2022, 2022, 7222638. [Google Scholar] [CrossRef] [PubMed]
  462. Wang, S.; Wu, C.; Li, Y.; Ye, B.; Wang, S.; Li, G.; Wu, J.; Liu, S.; Zhang, M.; Jia, Y.; et al. Analysis of the Anti-Tumour Effect of Xuefu Zhuyu Decoction Based on Network Pharmacology and Experimental Verification in Drosophila. Front. Pharmacol. 2022, 13, 922457. [Google Scholar] [CrossRef]
  463. Chen, L.L.; Xia, L.Y.; Zhang, J.P.; Wang, Y.; Chen, J.Y.; Guo, C.; Xu, W.H. Saikosaponin D alleviates cancer cachexia by directly inhibiting STAT3. Phytother. Res. 2023, 37, 809–819. [Google Scholar] [CrossRef]
  464. Lee, Y.S.; Mun, J.G.; Park, S.Y.; Hong, D.Y.; Kim, H.Y.; Kim, S.J.; Lee, S.B.; Jang, J.H.; Han, Y.H.; Kee, J.Y. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024, 16, 1844. [Google Scholar] [CrossRef]
  465. Lei, C.; Gao, Z.; Lv, X.; Zhu, Y.; Li, R.; Li, S. Saikosaponin-b2 Inhibits Primary Liver Cancer by Regulating the STK4/IRAK1/NF-kappaB Pathway. Biomedicines 2023, 11, 2859. [Google Scholar] [CrossRef] [PubMed]
  466. Ma, X.; Zhang, M.; Xia, W.; Song, Y. Antitumor mechanism of Saikosaponin A in the Xiaoying Sanjie Decoction for treatment of anaplastic thyroid cancer by network pharmacology analysis and experiments in vitro and in vivo. Fitoterapia 2023, 170, 105665. [Google Scholar] [CrossRef]
  467. Ning, N.; Li, X.; Nan, Y.; Chen, G.; Huang, S.; Du, Y.; Gu, Q.; Li, W.; Yuan, L. Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 8943–8959. [Google Scholar] [CrossRef]
  468. Tang, T.T.; Jiang, L.; Zhong, Q.; Ni, Z.J.; Thakur, K.; Khan, M.R.; Wei, Z.J. Saikosaponin D exerts cytotoxicity on human endometrial cancer ishikawa cells by inducing apoptosis and inhibiting metastasis through MAPK pathways. Food Chem. Toxicol. 2023, 177, 113815. [Google Scholar] [CrossRef]
  469. Wang, J.; Qi, H.; Zhang, X.; Si, W.; Xu, F.; Hou, T.; Zhou, H.; Wang, A.; Li, G.; Liu, Y.; et al. Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting beta-catenin signaling. Biomed. Pharmacother. 2018, 108, 724–733. [Google Scholar] [CrossRef]
  470. Wang, C.; Zhang, R.; Chen, X.; Yuan, M.; Wu, J.; Sun, Q.; Miao, C.; Jing, Y. The potential effect and mechanism of Saikosaponin A against gastric cancer. BMC Complement. Med. Ther. 2023, 23, 295. [Google Scholar] [CrossRef]
  471. Xiao, L.X.; Zhou, H.N.; Jiao, Z.Y. Present and Future Prospects of the Anti-cancer Activities of Saikosaponins. Curr. Cancer Drug Targets 2023, 23, 2–14. [Google Scholar] [CrossRef]
  472. Xiao, X.; Gao, C. Saikosaponins Targeting Programmed Cell Death as Anticancer Agents: Mechanisms and Future Perspectives. Drug Des. Devel. Ther. 2024, 18, 3697–3714. [Google Scholar] [CrossRef] [PubMed]
  473. Zhao, X.; Liu, J.; Ge, S.; Chen, C.; Li, S.; Wu, X.; Feng, X.; Wang, Y.; Cai, D. Saikosaponin A Inhibits Breast Cancer by Regulating Th1/Th2 Balance. Front. Pharmacol. 2019, 10, 624. [Google Scholar] [CrossRef]
  474. Zhu, Y.; Lv, X.; Li, R.; Gao, Z.; Lei, C.; Wang, L.; Li, S. Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 2653426. [Google Scholar] [CrossRef]
  475. Zhu, G.; Jiang, Z.; Zhu, N.; Wang, D.; Guo, T.; Meng, Y.; Zhu, Y.; Tan, K.; Hu, M.; Tang, H.; et al. Exploring the multi-targeted mechanism of Saikosaponin A in prostate cancer treatment: A network pharmacology and molecular docking approach. Front. Pharmacol. 2025, 16, 1530715. [Google Scholar] [CrossRef]
  476. Kell, D.B.; Pretorius, E. The proteome content of blood clots observed under different conditions: Successful role in predicting clot amyloid(ogenicity). bioRxiv 2024, 2024.2011.2029.626062. [Google Scholar] [CrossRef]
  477. Aguzzi, A.; Lakkaraju, A.K.K. Cell Biology of Prions and Prionoids: A Status Report. Trends Cell Biol. 2016, 26, 40–51. [Google Scholar] [CrossRef]
  478. Ashe, K.H.; Aguzzi, A. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion 2013, 7, 55–59. [Google Scholar] [CrossRef]
  479. Hafner Bratkovič, I. Prions, prionoid complexes and amyloids: The bad, the good and something in between. Swiss Med. Wkly. 2017, 147, w14424. [Google Scholar] [CrossRef]
  480. Liberski, P.P. Prion, prionoids and infectious amyloid. Park. Relat. Disord. 2014, 20 (Suppl. S1), S80–S84. [Google Scholar] [CrossRef] [PubMed]
  481. Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef] [PubMed]
  482. Verma, A. Prions, prion-like prionoids, and neurodegenerative disorders. Ann. Indian Acad. Neurol. 2016, 19, 169–174. [Google Scholar] [CrossRef] [PubMed]
  483. Wells, C.; Brennan, S.E.; Keon, M.; Saksena, N.K. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front. Mol. Neurosci. 2019, 12, 271. [Google Scholar] [CrossRef]
  484. Kell, D.B. Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genom. 2009, 2, 2. [Google Scholar]
  485. Yi, M.; Li, Q.; Zhao, Y.; Nie, S.; Wu, N.; Wang, D. Metabolomics study on the therapeutic effect of traditional Chinese medicine Xue-Fu-Zhu-Yu decoction in coronary heart disease based on LC-Q-TOF/MS and GC-MS analysis. Drug Metab. Pharmacokinet. 2019, 34, 340–349. [Google Scholar] [CrossRef]
  486. Zhao, Y.; Nie, S.; Yi, M.; Wu, N.; Wang, W.; Zhang, Z.; Yao, Y.; Wang, D. UPLC-QTOF/MS-based metabolomics analysis of plasma reveals an effect of Xue-Fu-Zhu-Yu capsules on blood-stasis syndrome in CHD rats. J. Ethnopharmacol. 2019, 241, 111908. [Google Scholar] [CrossRef]
  487. He, H.; Chen, G.; Gao, J.; Liu, Y.; Zhang, C.; Liu, C.; Li, H.; He, Q.; Li, J.; Wang, J. Xue-Fu-Zhu-Yu capsule in the treatment of qi stagnation and blood stasis syndrome: A study protocol for a randomised controlled pilot and feasibility trial. Trials 2018, 19, 515. [Google Scholar] [CrossRef]
  488. Chen, S.; Wu, X.; Li, T.; Cheng, W.; Han, X.; Li, Y.; Wang, B.; Teng, Y.; Zhao, M.; Wang, Y. The Improvement of Cardiac and Endothelial Functions of Xue-Fu-Zhu-Yu Decoction for Patients with Acute Coronary Syndrome: A Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement. Altern. Med. 2022, 2022, 2671343. [Google Scholar] [CrossRef]
  489. Xue, D.J.; Zhen, Z.; Wang, K.X.; Zhao, J.L.; Gao, Y.; Chen, Y.P.; Shen, Y.B.; Peng, Z.Z.; Guan, D.G.; Huang, T. Uncovering the potential mechanism of Xue Fu Zhu Yu Decoction in the treatment of intracerebral hemorrhage. BMC Complement. Med. Ther. 2022, 22, 103. [Google Scholar] [CrossRef]
  490. Kuo, C.E.; Hsu, S.F.; Chen, C.C.; Wu, S.Y.; Hung, Y.C.; Hsu, C.Y.; Tsai, I.J.; Hu, W.L. Prescription characteristics of Xue-Fu-Zhu-Yu-Tang in pain management: A population-based study using the National Health Insurance Research Database in Taiwan. Front. Pharmacol. 2023, 14, 1233156. [Google Scholar] [CrossRef]
  491. Wang, D.; Wang, P.; Zhang, R.; Xi, X. Efficacy and safety of Xuefu Zhuyu decoction combined with Western medicine for angina pectoris in coronary heart disease: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e23195. [Google Scholar] [CrossRef] [PubMed]
  492. Liao, S.; Zhang, Z.; Li, G.; Zhou, L.; Jiang, J.; Zhang, N.; Wang, Y.; Du, Y.; Wen, Z. Chinese Herbal Formula Xuefu Zhuyu for Stable Angina (CheruSA): Study Protocol for a Multicenter Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2020, 2020, 7612721. [Google Scholar] [CrossRef]
  493. Huang, Q.; Qiao, X.; Xu, X. Potential synergism and inhibitors to multiple target enzymes of Xuefu Zhuyu Decoction in cardiac disease therapeutics: A computational approach. Bioorg. Med. Chem. Lett. 2007, 17, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
  494. Zhang, G.; Yang, G.; Deng, Y.; Zhao, X.; Yang, Y.; Rao, J.; Wang, W.; Liu, X.; He, J.; Lv, L. Ameliorative effects of Xue-Fu-Zhu-Yu decoction, Tian-Ma-Gou-Teng-Yin and Wen-Dan decoction on myocardial fibrosis in a hypertensive rat mode. BMC Complement. Altern. Med. 2016, 16, 56. [Google Scholar] [CrossRef] [PubMed]
  495. Chen, G.; He, H.; Hu, K.; Gao, J.; Li, J.; Han, M.; Wang, J. Sensitive Biomarker Analysis of Xue-Fu-Zhu-Yu Capsule for Patients with Qi Stagnation and Blood Stasis Pattern: A Nested Case-Control Study. Evid. Based Complement. Altern. Med. 2019, 2019, 7182865. [Google Scholar] [CrossRef]
  496. Zhao, L.; Qiu, X.; Wang, R.; Wang, D. 1H NMR-based metabolomics study of the dynamic effect of Xue-Fu-Zhu-Yu capsules on coronary heart disease rats induced by high-fat diet, coronary artery ligation. J. Pharm. Biomed. Anal. 2021, 195, 113869. [Google Scholar] [CrossRef]
  497. Yi, G.Z.; Qiu, Y.Q.; Xiao, Y.; Yuan, L.X. The usefulness of xuefu zhuyu tang for patients with angina pectoris: A meta-analysis and systematic review. Evid. Based Complement. Altern. Med. 2014, 2014, 521602. [Google Scholar] [CrossRef]
  498. Yang, X.; Xiong, X.; Yang, G.; Wang, J. Chinese patent medicine Xuefu Zhuyu capsule for the treatment of unstable angina pectoris: A systematic review of randomized controlled trials. Complement. Ther. Med. 2014, 22, 391–399. [Google Scholar] [CrossRef]
  499. Yang, T.; Li, X.; Lu, Z.; Han, X.; Zhao, M. Effectiveness and safety of Xuefu Zhuyu decoction for treating coronary heart disease angina: A systematic review and meta-analysis. Medicine 2019, 98, e14708. [Google Scholar] [CrossRef]
  500. Qi, G.; Jiang, K.; Qu, J.; Zhang, A.; Xu, Z.; Li, Z.; Zheng, X.; Li, Z. The Material Basis and Mechanism of Xuefu Zhuyu Decoction in Treating Stable Angina Pectoris and Unstable Angina Pectoris. Evid. Based Complement. Altern. Med. 2022, 2022, 3741027. [Google Scholar] [CrossRef]
  501. Li, Y.; Liu, B.; Liu, L.; Xu, Q.; Shen, Q.; Li, W.; Zhao, J. Potential active compounds and molecular mechanism of Xuefu Zhuyu decoction for atherosclerosis, based on network pharmacology and molecular docking. Medicine 2022, 101, e29654. [Google Scholar] [CrossRef] [PubMed]
  502. Liu, D.; Zeng, Y.; Liang, P.; Jiang, Y.; An, S.; Ren, P. Efficacy and safety of Xuefu Zhuyu Granules combined with western medicine in the treatment of angina pectoris of coronary heart disease: A study protocol of a randomized, double-blind, placebo-controlled clinical trial. Medicine 2022, 101, e31235. [Google Scholar] [CrossRef] [PubMed]
  503. Yuan, J.; Yan, F.; Li, W.; Yuan, G. Network pharmacological analysis of Xuefu Zhuyu decoction in the treatment of atherosclerosis. Front. Pharmacol. 2022, 13, 1069704. [Google Scholar] [CrossRef] [PubMed]
  504. Yi, T.; Gao, P.; Hou, M.; Lv, H.; Huang, M.; Gao, S.; He, J.; Yang, D.; Chen, W.; Zhu, T.; et al. The mechanisms underlying the actions of Xuefu Zhuyu decoction pretreatment against neurological deficits after ischemic stroke in mice: The mediation of glymphatic function by aquaporin-4 and its anchoring proteins. Front. Pharmacol. 2022, 13, 1053253. [Google Scholar] [CrossRef]
  505. Duan, J.; Lin, J.; Zhang, N.; Wang, Q.; Li, N.; Yao, K. Effect of Xuefu Zhuyu Capsule on Myocardial Infarction: Network Pharmacology and Experimental Verification. Evid. Based Complement. Altern. Med. 2023, 2023, 5652276. [Google Scholar] [CrossRef]
  506. Yang, Y.; Su, C.; Zhang, X.Z.; Li, J.; Huang, S.C.; Kuang, H.F.; Zhang, Q.Y. Mechanisms of Xuefu Zhuyu Decoction in the treatment of coronary heart disease based on integrated metabolomics and network pharmacology approach. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2023, 1223, 123712. [Google Scholar] [CrossRef]
  507. Jia, D.; Zhao, M.; Zhang, X.; Cheng, X.; Wei, Q.; Lou, L.; Zhao, Y.; Jin, Q.; Chen, M.; Zhang, D. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. J. Ethnopharmacol. 2024, 332, 118245. [Google Scholar] [CrossRef] [PubMed]
  508. Hung, I.L.; Chung, C.J.; Hu, W.L.; Liao, Y.N.; Hsu, C.Y.; Chiang, J.H.; Hung, Y.C. Chinese Herbal Medicine as an Adjunctive Therapy Improves the Survival Rate of Patients with Ischemic Heart Disease: A Nationwide Population-Based Cohort Study. Evid. Based Complement. Altern. Med. 2022, 2022, 5596829. [Google Scholar] [CrossRef] [PubMed]
  509. Xing, Z.; Xia, Z.; Peng, W.; Li, J.; Zhang, C.; Fu, C.; Tang, T.; Luo, J.; Zou, Y.; Fan, R.; et al. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci. Rep. 2016, 6, 20040. [Google Scholar] [CrossRef] [PubMed]
  510. Zhou, J.; Liu, T.; Cui, H.; Fan, R.; Zhang, C.; Peng, W.; Yang, A.; Zhu, L.; Wang, Y.; Tang, T. Xuefu zhuyu decoction improves cognitive impairment in experimental traumatic brain injury via synaptic regulation. Oncotarget 2017, 8, 72069–72081. [Google Scholar] [CrossRef] [PubMed]
  511. Feng, D.; Xia, Z.; Zhou, J.; Lu, H.; Zhang, C.; Fan, R.; Xiong, X.; Cui, H.; Gan, P.; Huang, W.; et al. Metabolomics reveals the effect of Xuefu Zhuyu Decoction on plasma metabolism in rats with acute traumatic brain injury. Oncotarget 2017, 8, 94692–94710. [Google Scholar] [CrossRef] [PubMed]
  512. Zhu, L.; Tang, T.; Fan, R.; Luo, J.K.; Cui, H.J.; Zhang, C.H.; Peng, W.J.; Sun, P.; Xiong, X.G.; Wang, Y. Xuefu Zhuyu decoction improves neurological dysfunction by increasing synapsin expression after traumatic brain injury. Neural Regen. Res. 2018, 13, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
  513. Yang, Z.Y.; Wu, Y.; Li, X.; Tang, T.; Wang, Y.; Huang, Z.B.; Fan, R. Bioinformatics Analysis of miRNAs and mRNAs Network-Xuefu Zhuyu Decoction Exerts Neuroprotection of Traumatic Brain Injury Mice in the Subacute Phase. Front. Pharmacol. 2022, 13, 772680. [Google Scholar] [CrossRef] [PubMed]
  514. Dai, F.; Tang, T.; Lu, R.; Li, P.; Feng, D.; Hu, M.; Wang, Y.; Gan, P. Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury. Evid. Based Complement. Altern. Med. 2022, 2022, 5748719. [Google Scholar] [CrossRef]
  515. Hu, E.; Tang, T.; Li, Y.M.; Li, T.; Zhu, L.; Ding, R.Q.; Wu, Y.; Huang, Q.; Zhang, W.; Wu, Q.; et al. Spatial amine metabolomics and histopathology reveal localized brain alterations in subacute traumatic brain injury and the underlying mechanism of herbal treatment. CNS Neurosci. Ther. 2024, 30, e14231. [Google Scholar] [CrossRef] [PubMed]
  516. Feng, D.; Li, P.; Xiao, W.; Pei, Z.; Chen, P.; Hu, M.; Yang, Z.; Li, T.; Xia, Z.; Cui, H.; et al. N(6)-methyladenosine profiling reveals that Xuefu Zhuyu decoction upregulates METTL14 and BDNF in a rat model of traumatic brain injury. J. Ethnopharmacol. 2023, 317, 116823. [Google Scholar] [CrossRef]
  517. Wang, Y.; Yan, Q.J.; Hu, E.; Wu, Y.; Ding, R.Q.; Chen, Q.; Cheng, M.H.; Yang, X.Y.; Tang, T.; Li, T. Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine. Chin. J. Integr. Med. 2025. [Google Scholar] [CrossRef]
  518. Li, T.; Zhang, L.; Cheng, M.; Hu, E.; Yan, Q.; Wu, Y.; Luo, W.; Su, H.; Yu, Z.; Guo, X.; et al. Metabolomics integrated with network pharmacology of blood-entry constituents reveals the bioactive component of Xuefu Zhuyu decoction and its angiogenic effects in treating traumatic brain injury. Chin. Med. 2024, 19, 131. [Google Scholar] [CrossRef]
  519. Pei, Z.; Guo, X.; Zheng, F.; Yang, Z.; Li, T.; Yu, Z.; Li, X.; Guo, X.; Chen, Q.; Fu, C.; et al. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. Phytomedicine 2024, 129, 155566. [Google Scholar] [CrossRef]
  520. Fu, C.; Wu, Q.; Zhang, Z.; Xia, Z.; Ji, H.; Lu, H.; Wang, Y. UPLC-ESI-IT-TOF-MS metabolomic study of the therapeutic effect of Xuefu Zhuyu decoction on rats with traumatic brain injury. J. Ethnopharmacol. 2019, 245, 112149. [Google Scholar] [CrossRef] [PubMed]
  521. Tang, H.; Wang, J.; Fang, Y.; Yin, Y.; Liu, W.; Hu, Y.; Peng, J. Hepatic transcriptome discloses the potential targets of Xuefu Zhuyu Decoction ameliorating non-alcoholic fatty liver disease induced by high-fat diet. J. Tradit. Complement. Med. 2024, 14, 135–147. [Google Scholar] [CrossRef] [PubMed]
  522. Zhang, H.; Hua, H.; Liu, J.; Wang, C.; Zhu, C.; Xia, Q.; Jiang, W.; Cheng, X.; Hu, X.; Zhang, Y. Integrative analysis of the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction in idiopathic pulmonary fibrosis via evidence-based medicine, bioinformatics, and experimental verification. Heliyon 2024, 10, e38122. [Google Scholar] [CrossRef]
  523. Xu, A.; Wen, Z.H.; Su, S.X.; Chen, Y.P.; Liu, W.C.; Guo, S.Q.; Li, X.F.; Zhang, X.; Li, R.; Xu, N.B.; et al. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front. Pharmacol. 2022, 13, 784242. [Google Scholar] [CrossRef]
  524. Ning, B.; Zhu, X.; Wu, X.; Zhu, W.; Wang, R.; Qi, C.; Li, M. Efficacy of different traditional Chinese medicine decoctions in the treatment of ischemic stroke: A network meta-analysis. Front. Pharmacol. 2024, 15, 1486458. [Google Scholar] [CrossRef] [PubMed]
  525. Wang, P.; Xiong, X.; Li, S. Efficacy and Safety of a Traditional Chinese Herbal Formula Xuefu Zhuyu Decoction for Hypertension: A Systematic Review and Meta-Analysis. Medicine 2015, 94, e1850. [Google Scholar] [CrossRef] [PubMed]
  526. Wang, X.; Zhang, D.Y.; Yin, S.J.; Jiang, H.; Lu, M.; Yang, F.Q.; Hu, Y.J. Screening of Potential Thrombin and Factor Xa Inhibitors from the Danshen-Chuanxiong Herbal Pair through a Spectrum-Effect Relationship Analysis. Molecules 2021, 26, 7293. [Google Scholar] [CrossRef]
  527. Pang, H.Q.; Guo, J.X.; Yang, Y.; Xu, L.; Wang, J.; Yang, F.; Xu, Z.B.; Huang, Y.F.; Shi, W.; Lu, X.; et al. Elucidating the chemical interaction effects of herb pair Danshen-Chuanxiong and its anti-ischemic stroke activities evaluation. J. Ethnopharmacol. 2024, 318, 117058. [Google Scholar] [CrossRef] [PubMed]
  528. Zhao, C.; Bai, X.; Ding, Y.; Wen, A.; Fu, Q. Combining systems pharmacology, metabolomics, and transcriptomics to reveal the mechanism of Salvia miltiorrhiza-Cortex moutan herb pair for the treatment of ischemic stroke. Front. Pharmacol. 2024, 15, 1431692. [Google Scholar] [CrossRef] [PubMed]
  529. Liu, Y.; Yin, H.J.; Shi, D.Z.; Chen, K.J. Chinese herb and formulas for promoting blood circulation and removing blood stasis and antiplatelet therapies. Evid. Based Complement. Altern. Med. 2012, 2012, 184503. [Google Scholar] [CrossRef]
  530. Li, J.; Zhou, X.; Zheng, C.; Lai, L.; Li, L. Comparison of mechanisms and efficacies of five formulas for improving blood circulation and removing blood stasis. Digit. Chin. Med. 2021, 4, 144–158. [Google Scholar]
  531. Lee, J.J.; Hsu, W.H.; Yen, T.L.; Chang, N.C.; Luo, Y.J.; Hsiao, G.; Sheu, J.R. Traditional Chinese medicine, Xue-Fu-Zhu-Yu decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. J. Ethnopharmacol. 2011, 134, 824–830. [Google Scholar] [CrossRef] [PubMed]
  532. Zhang, L.; Zhu, L.; Wang, Y.; Jiang, Z.; Chai, X.; Zhu, Y.; Gao, X.; Qi, A. Characterization and quantification of major constituents of Xue Fu Zhu Yu by UPLC-DAD-MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 203–209. [Google Scholar] [CrossRef] [PubMed]
  533. Fu, C.; Xia, Z.; Liu, Y.; Lu, H.; Zhang, Z.; Wang, Y.; Fan, X. Qualitative analysis of major constituents from Xue Fu Zhu Yu Decoction using ultra high performance liquid chromatography with hybrid ion trap time-of-flight mass spectrometry. J. Sep. Sci. 2016, 39, 3457–3468. [Google Scholar] [CrossRef]
  534. Sun, Y.; Guo, R.; Geng, Y.; Shang, H.; Guo, X.; Wu, Y.; Wang, Y.; Li, L.; Li, X.; Zhang, S.; et al. Longitudinal Distribution Map of the Active Components and Endophytic Fungi in Angelica sinensis (Oliv.) Diels Root and Their Potential Correlations. Metabolites 2024, 14, 48. [Google Scholar] [CrossRef]
  535. Yang, C.; Li, X.; Rong, J. Amygdalin isolated from Semen Persicae (Tao Ren) extracts induces the expression of follistatin in HepG2 and C2C12 cell lines. Chin. Med. 2014, 9, 23. [Google Scholar] [CrossRef]
  536. Yang, C.; Zhao, J.; Cheng, Y.; Li, X.; Rong, J. Bioactivity-guided fractionation identifies amygdalin as a potent neurotrophic agent from herbal medicine Semen Persicae extract. Biomed. Res. Int. 2014, 2014, 306857. [Google Scholar] [CrossRef]
  537. Zhou, X.; Tang, L.; Xu, Y.; Zhou, G.; Wang, Z. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2014, 151, 27–43. [Google Scholar] [CrossRef] [PubMed]
  538. Zhang, Y.; Song, L.; Pan, R.; Gao, J.; Zang, B.X.; Jin, M. Hydroxysafflor Yellow A Alleviates Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Mice. Biol. Pharm. Bull. 2017, 40, 135–144. [Google Scholar] [CrossRef] [PubMed]
  539. Bai, X.; Wang, W.X.; Fu, R.J.; Yue, S.J.; Gao, H.; Chen, Y.Y.; Tang, Y.P. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front. Pharmacol. 2020, 11, 01265. [Google Scholar] [CrossRef]
  540. Yu, L.; Jin, Z.; Li, M.; Liu, H.; Tao, J.; Xu, C.; Wang, L.; Zhang, Q. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies. Front. Pharmacol. 2022, 13, 1063035. [Google Scholar] [CrossRef] [PubMed]
  541. Xue, X.; Deng, Y.; Wang, J.; Zhou, M.; Liao, L.; Wang, C.; Peng, C.; Li, Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L. with good effect of alleviating atherosclerosis. Phytomedicine 2021, 91, 153694. [Google Scholar] [CrossRef]
  542. Zhang, X.; Shen, D.; Feng, Y.; Li, Y.; Liao, H. Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J. Immunol. Res. 2021, 2021, 4560012. [Google Scholar] [CrossRef]
  543. Asgarpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 2013, 19, 153–159. [Google Scholar] [CrossRef]
  544. Yu, G.; Luo, Z.; Zhou, Y.; Zhang, L.; Wu, Y.; Ding, L.; Shi, Y. Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed. Pharmacother. 2019, 117, 109094. [Google Scholar] [CrossRef]
  545. Liang, Y.; Wang, L. Carthamus tinctorius L.: A natural neuroprotective source for anti-Alzheimer’s disease drugs. J. Ethnopharmacol. 2022, 298, 115656. [Google Scholar] [CrossRef] [PubMed]
  546. Ao, H.; Feng, W.; Peng, C. Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. Evid. Based Complement. Altern. Med. 2018, 2018, 8259280. [Google Scholar] [CrossRef] [PubMed]
  547. Ge, C.; Meng, D.; Peng, Y.; Huang, P.; Wang, N.; Zhou, X.; Chang, D. The activation of the HIF-1alpha-VEGFA-Notch1 signaling pathway by Hydroxysafflor yellow A promotes angiogenesis and reduces myocardial ischemia-reperfusion injury. Int. Immunopharmacol. 2024, 142, 113097. [Google Scholar] [CrossRef] [PubMed]
  548. Ruan, J.; Wang, L.; Wang, N.; Huang, P.; Chang, D.; Zhou, X.; Seto, S.; Li, D.; Hou, J. Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro. J. Stroke Cerebrovasc. Dis. 2025, 34, 108107. [Google Scholar] [CrossRef]
  549. Tan, Y.Q.; Chen, H.W.; Li, J.; Wu, Q.J. Efficacy, Chemical Constituents, and Pharmacological Actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front. Pharmacol. 2020, 11, 1054. [Google Scholar] [CrossRef]
  550. Xiao, L.; Wang, Y.Z.; Liu, J.; Luo, X.T.; Ye, Y.; Zhu, X.Z. Effects of paeoniflorin on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of transient middle cerebral artery occlusion in rats. Life Sci. 2005, 78, 413–420. [Google Scholar] [CrossRef] [PubMed]
  551. Wang, A.; Zhao, W.; Yan, K.; Huang, P.; Zhang, H.; Ma, X. Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 827770. [Google Scholar] [CrossRef] [PubMed]
  552. Ye, J.; Duan, H.; Yang, X.; Yan, W.; Zheng, X. Anti-thrombosis effect of paeoniflorin: Evaluated in a photochemical reaction thrombosis model in vivo. Planta Med. 2001, 67, 766–767. [Google Scholar] [CrossRef] [PubMed]
  553. Ngo, T.; Kim, K.; Bian, Y.; Noh, H.; Lim, K.M.; Chung, J.H.; Bae, O.N. Antithrombotic Effects of Paeoniflorin from Paeonia suffruticosa by Selective Inhibition on Shear Stress-Induced Platelet Aggregation. Int. J. Mol. Sci. 2019, 20, 5040. [Google Scholar] [CrossRef]
  554. Nam, K.N.; Yae, C.G.; Hong, J.W.; Cho, D.H.; Lee, J.H.; Lee, E.H. Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnol. Lett. 2013, 35, 1183–1189. [Google Scholar] [CrossRef]
  555. Xin, Q.; Yuan, R.; Shi, W.; Zhu, Z.; Wang, Y.; Cong, W. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci. 2019, 237, 116925. [Google Scholar] [CrossRef]
  556. Zhou, Y.X.; Gong, X.H.; Zhang, H.; Peng, C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. Pharmacother. 2020, 130, 110505. [Google Scholar] [CrossRef]
  557. Wu, X.X.; Huang, X.L.; Chen, R.R.; Li, T.; Ye, H.J.; Xie, W.; Huang, Z.M.; Cao, G.Z. Paeoniflorin Prevents Intestinal Barrier Disruption and Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in Caco-2 Cell Monolayers. Inflammation 2019, 42, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
  558. Tu, J.; Guo, Y.; Hong, W.; Fang, Y.; Han, D.; Zhang, P.; Wang, X.; Korner, H.; Wei, W. The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6’-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases. Front. Pharmacol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed]
  559. Lu, Y.; Yin, L.; Yang, W.; Wu, Z.; Niu, J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed. Pharmacother. 2024, 176, 116772. [Google Scholar] [CrossRef]
  560. Ma, X.; Zhang, W.; Jiang, Y.; Wen, J.; Wei, S.; Zhao, Y. Paeoniflorin, a Natural Product With Multiple Targets in Liver Diseases-A Mini Review. Front. Pharmacol. 2020, 11, 531. [Google Scholar] [CrossRef] [PubMed]
  561. Zhang, X.E.; Pang, Y.B.; Bo, Q.; Hu, S.Y.; Xiang, J.Y.; Yang, Z.R.; Zhang, X.M.; Chen, A.J.; Zeng, J.H.; Ma, X.; et al. Protective effect of paeoniflorin in diabetic nephropathy: A preclinical systematic review revealing the mechanism of action. PLoS ONE 2023, 18, e0282275. [Google Scholar] [CrossRef] [PubMed]
  562. Yang, J.; Ren, Y.; Lou, Z.G.; Wan, X.; Weng, G.B.; Cen, D. Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3. Acta Pharm. 2018, 68, 211–222. [Google Scholar] [CrossRef]
  563. Ye, S.; Mao, B.; Yang, L.; Fu, W.; Hou, J. Thrombosis recanalization by paeoniflorin through the upregulation of urokinase-type plasminogen activator via the MAPK signaling pathway. Mol. Med. Rep. 2016, 13, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
  564. Yang, Y.; Yuan, L.; Du, Y.; Ye, M.; Lu, D.; Huang, S.; Zhao, J.; Tibenda, J.J.; Meng, F.; Nan, Y. Network pharmacology and in vitro experiments to investigate the anti-gastric cancer effects of paeoniflorin through the RAS/MAPK signaling pathway. Discov. Oncol. 2024, 15, 659. [Google Scholar] [CrossRef]
  565. Cheng, L.; Xiang, S.; Yu, Q.; Yu, T.; Sun, P.; Ye, C.; Xue, H. Paeoniflorin inhibits PRAS40 interaction with Raptor to activate mTORC1 to reverse excessive autophagy in airway epithelial cells for asthma. Phytomedicine 2024, 134, 155946. [Google Scholar] [CrossRef]
  566. Ruan, Y.; Ling, J.; Ye, F.; Cheng, N.; Wu, F.; Tang, Z.; Cheng, X.; Liu, H. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1alpha/NLPR3 pathway. Int. Immunopharmacol. 2021, 101, 108364. [Google Scholar] [CrossRef] [PubMed]
  567. Song, S.; Xiao, X.; Guo, D.; Mo, L.; Bu, C.; Ye, W.; Den, Q.; Liu, S.; Yang, X. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1alpha/VEGF pathway. Phytomedicine 2017, 34, 115–126. [Google Scholar] [CrossRef] [PubMed]
  568. Liu, D.Z.; Xie, K.Q.; Ji, X.Q.; Ye, Y.; Jiang, C.L.; Zhu, X.Z. Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br. J. Pharmacol. 2005, 146, 604–611. [Google Scholar] [CrossRef] [PubMed]
  569. Liu, H.Q.; Zhang, W.Y.; Luo, X.T.; Ye, Y.; Zhu, X.Z. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br. J. Pharmacol. 2006, 148, 314–325. [Google Scholar] [CrossRef]
  570. Li, M.; Zhu, X.; Zhang, M.; Yu, J.; Jin, S.; Hu, X.; Piao, H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci. 2024, 19, 20220905. [Google Scholar] [CrossRef] [PubMed]
  571. Hong, H.; Lu, X.; Wu, C.; Chen, J.; Chen, C.; Zhang, J.; Huang, C.; Cui, Z. A review for the pharmacological effects of paeoniflorin in the nervous system. Front. Pharmacol. 2022, 13, 898955. [Google Scholar] [CrossRef]
  572. Li, X.; Sun, C.; Zhang, J.; Hu, L.; Yu, Z.; Zhang, X.; Wang, Z.; Chen, J.; Wu, M.; Liu, L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front. Pharmacol. 2023, 14, 1122969. [Google Scholar] [CrossRef] [PubMed]
  573. Jiao, F.; Varghese, K.; Wang, S.; Liu, Y.; Yu, H.; Booz, G.W.; Roman, R.J.; Liu, R.; Fan, F. Recent Insights into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J. Cardiovasc. Pharmacol. 2021, 77, 728–734. [Google Scholar] [CrossRef]
  574. Vellasamy, S.; Murugan, D.; Abas, R.; Alias, A.; Seng, W.Y.; Woon, C.K. Biological Activities of Paeonol in Cardiovascular Diseases: A Review. Molecules 2021, 26, 4976. [Google Scholar] [CrossRef]
  575. Yu, W.; Ilyas, I.; Aktar, N.; Xu, S. A review on therapeutical potential of paeonol in atherosclerosis. Front. Pharmacol. 2022, 13, 950337. [Google Scholar] [CrossRef] [PubMed]
  576. Yang, C.; Cheng, J.; Zhu, Q.; Pan, Q.; Ji, K.; Li, J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des. Devel. Ther. 2023, 17, 2193–2208. [Google Scholar] [CrossRef]
  577. Chen, Z.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef] [PubMed]
  578. Qin, Y.; Chen, F.; Tang, Z.; Ren, H.; Wang, Q.; Shen, N.; Lin, W.; Xiao, Y.; Yuan, M.; Chen, H.; et al. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Front. Pharmacol. 2022, 13, 1049890. [Google Scholar] [CrossRef]
  579. Hu, Y.; Wang, A.; Chen, J.; Chen, H. Ligustrazine: A Review of Its Role and Mechanism in the Treatment of Obstetrical and Gynecological Diseases. Clin. Exp. Obs. 2023, 50, 164. [Google Scholar] [CrossRef]
  580. Huang, S.; Chen, J.; Liu, X.; Xing, C.; Zhao, L.; Chan, K.; Lu, G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals 2024, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
  581. Yuan, X.; Han, B.; Feng, Z.M.; Jiang, J.S.; Yang, Y.N.; Zhang, P.C. Chemical constituents of Ligusticum chuanxiong and their anti-inflammation and hepatoprotective activities. Bioorg. Chem. 2020, 101, 104016. [Google Scholar] [CrossRef] [PubMed]
  582. Li, J.-S.; Wang, H.-F.; Bai, Y.-P.; Li, S.-Y.; Yu, X.-Q.; Li, Y. Ligustrazine injection for chronic pulmonary heart disease: A systematic review and meta-analysis. Evid. Based Complement. Altern. Med. 2012, 2012, 792726. [Google Scholar] [CrossRef]
  583. Shao, H.; Zhao, L.; Chen, F.; Zeng, S.; Liu, S.; Li, J. Efficacy of Ligustrazine Injection as Adjunctive Therapy for Angina Pectoris: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2015, 21, 3704–3715. [Google Scholar] [CrossRef]
  584. Zhuang, Z.; Wang, Z.H.; Huang, Y.Y.; Zheng, Q.; Pan, X.D. Protective effect and possible mechanisms of ligustrazine isolated from Ligusticum wallichii on nephropathy in rats with diabetes: A preclinical systematic review and meta-analysis. J. Ethnopharmacol. 2020, 252, 112568. [Google Scholar] [CrossRef] [PubMed]
  585. Xie, Q.; Zhang, L.; Xie, L.; Zheng, Y.; Liu, K.; Tang, H.; Liao, Y.; Li, X. Z-ligustilide: A review of its pharmacokinetics and pharmacology. Phytother. Res. 2020, 34, 1966–1991. [Google Scholar] [CrossRef] [PubMed]
  586. Shen, L.; Tian, Q.; Ran, Q.; Gan, Q.; Hu, Y.; Du, D.; Qin, Z.; Duan, X.; Zhu, X.; Huang, W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024, 14, 1623. [Google Scholar] [CrossRef]
  587. Takaya, K.; Kishi, K. Ligustilide, A Novel Senolytic Compound Isolated from the Roots of Angelica Acutiloba. Adv. Biol. 2024, 8, e2300434. [Google Scholar] [CrossRef]
  588. Liu, S.J.; Fu, J.J.; Liao, Z.Y.; Liu, Y.X.; He, J.; He, L.Y.; Bai, J.; Yang, J.Y.; Niu, S.Q.; Guo, J.L. Z-ligustilide alleviates atherosclerosis by reconstructing gut microbiota and sustaining gut barrier integrity through activation of cannabinoid receptor 2. Phytomedicine 2024, 135, 156117. [Google Scholar] [CrossRef] [PubMed]
  589. Qi, H.; Siu, S.O.; Chen, Y.; Han, Y.; Chu, I.K.; Tong, Y.; Lau, A.S.; Rong, J. Senkyunolides reduce hydrogen peroxide-induced oxidative damage in human liver HepG2 cells via induction of heme oxygenase-1. Chem. Biol. Interact. 2010, 183, 380–389. [Google Scholar] [CrossRef]
  590. Wang, M.; Hayashi, H.; Horinokita, I.; Asada, M.; Iwatani, Y.; Liu, J.X.; Takagi, N. Neuroprotective effects of Senkyunolide I against glutamate-induced cells death by attenuating JNK/caspase-3 activation and apoptosis. Biomed. Pharmacother. 2021, 140, 111696. [Google Scholar] [CrossRef] [PubMed]
  591. Huang, Y.; Wu, Y.; Yin, H.; Du, L.; Chen, C. Senkyunolide I: A Review of Its Phytochemistry, Pharmacology, Pharmacokinetics, and Drug-Likeness. Molecules 2023, 28, 3636. [Google Scholar] [CrossRef] [PubMed]
  592. Li, P.; Tang, W.; Wen, H.; Zhou, S.; Cao, H. Senkyunolide I prevent chondrocytes from oxidative stress through Nrf2/HO-1 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2025. [Google Scholar] [CrossRef] [PubMed]
  593. Li, Q.; Sheng, J.; Baruscotti, M.; Liu, Z.; Wang, Y.; Zhao, L. Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARalpha signaling in zebrafish and hamster models. J. Ethnopharmacol. 2025, 336, 118743. [Google Scholar] [CrossRef]
  594. Wei, Q.; He, F.; Rao, J.; Xiang, X.; Li, L.; Qi, H. Targeting non-classical autophagy-dependent ferroptosis and the subsequent HMGB1/TfR1 feedback loop accounts for alleviating solar dermatitis by senkyunolide I. Free Radic. Biol. Med. 2024, 223, 263–280. [Google Scholar] [CrossRef]
  595. Zha, Y.F.; Xie, J.; Ding, P.; Zhu, C.L.; Li, P.; Zhao, Z.Z.; Li, Y.H.; Wang, J.F. Senkyunolide I protect against lung injury via inhibiting formation of neutrophil extracellular trap in a murine model of cecal ligation and puncture. Int. Immunopharmacol. 2021, 99, 107922. [Google Scholar] [CrossRef] [PubMed]
  596. Hu, Y.; Duan, M.; Liang, S.; Wang, Y.; Feng, Y. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Res. 2015, 1605, 39–48. [Google Scholar] [CrossRef] [PubMed]
  597. Hu, Y.Y.; Wang, Y.; Liang, S.; Yu, X.L.; Zhang, L.; Feng, L.Y.; Feng, Y. Senkyunolide I attenuates oxygen-glucose deprivation/reoxygenation-induced inflammation in microglial cells. Brain Res. 2016, 1649, 123–131. [Google Scholar] [CrossRef]
  598. Zhu, Y.L.; Huang, J.; Chen, X.Y.; Xie, J.; Yang, Q.; Wang, J.F.; Deng, X.M. Senkyunolide I alleviates renal Ischemia-Reperfusion injury by inhibiting oxidative stress, endoplasmic reticulum stress and apoptosis. Int. Immunopharmacol. 2022, 102, 108393. [Google Scholar] [CrossRef]
  599. Yang, Q.; Zhao, Z.Z.; Xie, J.; Wang, Y.P.; Yang, K.; Guo, Y.; Wang, J.F.; Deng, X.M. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways. Int. Immunopharmacol. 2021, 97, 107717. [Google Scholar] [CrossRef]
  600. Yi, T.; Fang, J.Y.; Zhu, L.; Tang, Y.N.; Ji, H.; Zhang, Y.Z.; Yu, J.C.; Zhang, X.J.; Yu, Z.L.; Zhao, Z.Z.; et al. The variation in the major constituents of the dried rhizome of Ligusticum chuanxiong (Chuanxiong) after herbal processing. Chin. Med. 2016, 11, 26. [Google Scholar] [CrossRef] [PubMed]
  601. Li, J.Q.; Wang, J.F.; Li, J.; Zhang, S.H.; He, D.; Tong, R.S.; She, S.Y. A validated LC-MS/MS method for the determination of senkyunolide I in dog plasma and its application to a pharmacokinetic and bioavailability studies. Biomed. Chromatogr. 2018, 32, e4182. [Google Scholar] [CrossRef]
  602. Chen, X.P.; Li, W.; Xiao, X.F.; Zhang, L.L.; Liu, C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med. 2013, 11, 577–587. [Google Scholar] [CrossRef]
  603. Huang, C.; Zhao, Y.; Huang, S.; Li, L.; Yuan, Z.; Xu, G. Screening of anti-thrombin active components from Ligusticum chuanxiong by affinity-ultrafiltration coupled with HPLC-Q-Orbitrap-MS(n). Phytochem. Anal. 2023, 34, 443–452. [Google Scholar] [CrossRef] [PubMed]
  604. Tang, S.Q.; Chen, Y.H.; Chen, X.P.; Zhang, X.D.; Huang, W. In Vivo Effect of Guiding-Herb Radix Platycodonis and Radix Cyathulae on Paeoniflorin Pharmacokinetics of Xuefu Zhuyu Tang in Rats. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 289–296. [Google Scholar] [CrossRef]
  605. Huang, Y.; Wang, S.; Liu, L.; Peng, W.; Wang, J.; Song, Y.; Yuan, Q.; Yuan, X.; Wu, C. Review of traditional uses, botany, chemistry, pharmacology, pharmacokinetics, and toxicology of Radix Cyathulae. Chin. Med. 2019, 14, 17. [Google Scholar] [CrossRef]
  606. Zhang, X.; Sun, Z.; Sun, W.; Li, Y.; Gao, F.; Teng, F.; Han, Z.; Lu, Y.; Zhang, S.; Li, L. Bioinformatics Analysis and Experimental Findings Reveal the Therapeutic Actions and Targets of Cyathulae Radix Against Type 2 Diabetes Mellitus. J. Diabetes Res. 2024, 2024, 5521114. [Google Scholar] [CrossRef] [PubMed]
  607. Kim, S.H.; Yook, T.H.; Kim, J.U. Rehmanniae Radix, an Effective Treatment for Patients with Various Inflammatory and Metabolic Diseases: Results from a Review of Korean Publications. J. Pharmacopunct. 2017, 20, 81–88. [Google Scholar] [CrossRef]
  608. Liu, C.; Ma, R.; Wang, L.; Zhu, R.; Liu, H.; Guo, Y.; Zhao, B.; Zhao, S.; Tang, J.; Li, Y.; et al. Rehmanniae Radix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J. Ethnopharmacol. 2017, 198, 351–362. [Google Scholar] [CrossRef]
  609. Jia, J.; Chen, J.; Wang, G.; Li, M.; Zheng, Q.; Li, D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed. Pharmacother. 2023, 168, 115809. [Google Scholar] [CrossRef]
  610. Matsumoto, Y.; Sekimizu, K. A hyperglycemic silkworm model for evaluating hypoglycemic activity of Rehmanniae Radix, an herbal medicine. Drug Discov. Ther. 2016, 10, 14–18. [Google Scholar] [CrossRef] [PubMed]
  611. Li, Y.; Chen, Q.; Sun, H.J.; Zhang, J.H.; Liu, X. The Active Ingredient Catalpol in Rehmannia glutinosa Reduces Blood Glucose in Diabetic Rats via the AMPK Pathway. Diabetes Metab. Syndr. Obes. 2024, 17, 1761–1767. [Google Scholar] [CrossRef]
  612. Zhang, M.F.; Wang, J.H.; Sun, S.; Xu, Y.T.; Wan, D.; Feng, S.; Tian, Z.; Zhu, H.F. Catalpol attenuates ischemic stroke by promoting neurogenesis and angiogenesis via the SDF-1alpha/CXCR4 pathway. Phytomedicine 2024, 128, 155362. [Google Scholar] [CrossRef]
  613. Wu, C.; Shi, Z.; Ge, Q.; Xu, H.; Wu, Z.; Tong, P.; Jin, H. Catalpol promotes articular cartilage repair by enhancing the recruitment of endogenous mesenchymal stem cells. J. Cell. Mol. Med. 2024, 28, e18242. [Google Scholar] [CrossRef]
  614. Lang, X.; Xu, L.; Li, L.; Feng, X. The Mechanism of Catalpol to Improve Oxidative Damage of Dermal Fibroblasts Based on Nrf2/HO-1 Signaling Pathway. Drug Des. Devel. Ther. 2024, 18, 2287–2297. [Google Scholar] [CrossRef] [PubMed]
  615. Liu, Z.H.; Xu, Q.Y.; Wang, Y.; Gao, H.X.; Min, Y.H.; Jiang, X.W.; Yu, W.H. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-kappaB Signaling Pathway to Improve Renal Anemia and Fibrosis. Am. J. Chin. Med. 2024, 52, 1451–1485. [Google Scholar] [CrossRef] [PubMed]
  616. Zhang, Z.; Dai, Y.; Xiao, Y.; Liu, Q. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review. J. Pharm. Anal. 2023, 13, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
  617. Fu, Z.; Su, X.; Zhou, Q.; Feng, H.; Ding, R.; Ye, H. Protective effects and possible mechanisms of catalpol against diabetic nephropathy in animal models: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1192694. [Google Scholar] [CrossRef]
  618. Bai, Y.; Zhu, R.; Tian, Y.; Li, R.; Chen, B.; Zhang, H.; Xia, B.; Zhao, D.; Mo, F.; Zhang, D.; et al. Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019, 24, 3302. [Google Scholar] [CrossRef]
  619. Mei, C.; Wang, X.; Meng, F.; Zhang, X.; Chen, L.; Yan, S.; Xue, J.; Sun, X.; Wang, Y. Aucuboside Inhibits the Generation of Th17 Cells in Mice Colitis. Front. Pharmacol. 2021, 12, 696599. [Google Scholar] [CrossRef]
  620. Gao, L.; Wang, D.; Ren, J.; Tan, X.; Chen, J.; Kong, Z.; Nie, Y.; Yan, M. Acteoside ameliorates learning and memory impairment in APP/PS1 transgenic mice by increasing Abeta degradation and inhibiting tau hyperphosphorylation. Phytother. Res. 2024, 38, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
  621. Jia, K.; Zhang, Y.; Luo, R.; Liu, R.; Li, Y.; Wu, J.; Xie, K.; Liu, J.; Li, S.; Zhou, F.; et al. Acteoside ameliorates hepatic ischemia-reperfusion injury via reversing the senescent fate of liver sinusoidal endothelial cells and restoring compromised sinusoidal networks. Int. J. Biol. Sci. 2023, 19, 4967–4988. [Google Scholar] [CrossRef] [PubMed]
  622. Xiao, Y.; Ren, Q.; Wu, L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed. Pharmacother. 2022, 153, 113296. [Google Scholar] [CrossRef] [PubMed]
  623. Khan, R.A.; Hossain, R.; Roy, P.; Jain, D.; Mohammad Saikat, A.S.; Roy Shuvo, A.P.; Akram, M.; Elbossaty, W.F.; Khan, I.N.; Painuli, S.; et al. Anticancer effects of acteoside: Mechanistic insights and therapeutic status. Eur. J. Pharmacol. 2022, 916, 174699. [Google Scholar] [CrossRef] [PubMed]
  624. Wu, H.; Huang, Q.; Chao, S.; Yu, J.; Xu, S.; Wang, F.; Shang, X.; Zhu, Y. Determination of Ferulic Acid in Angelica sinensis by Temperature-Controlled Hydrophobic Ionic Liquids-Based Ultrasound/Heating-Assisted Extraction Coupled with High Performance Liquid Chromatography. Molecules 2020, 25, 3356. [Google Scholar] [CrossRef] [PubMed]
  625. Bunel, V.; Antoine, M.H.; Nortier, J.; Duez, P.; Stévigny, C. Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro. Toxicol. Vitr. 2015, 29, 458–467. [Google Scholar] [CrossRef] [PubMed]
  626. Lu, J.; Wang, C. Ferulic acid from Angelica sinensis (Oliv.) Diels ameliorates lipid metabolism in alcoholic liver disease via AMPK/ACC and PI3K/AKT pathways. J. Ethnopharmacol. 2025, 338, 119118. [Google Scholar] [CrossRef]
  627. Zhang, L.L.; Huang, M.Y.; Yang, Y.; Huang, M.Q.; Shi, J.J.; Zou, L.; Lu, J.J. Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem. 2020, 327, 127029. [Google Scholar] [CrossRef]
  628. Zhang, L.; Wang, X.; Zhang, J.; Liu, D.; Bai, G. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. Chin. Herb. Med. 2024, 16, 327–343. [Google Scholar] [CrossRef] [PubMed]
  629. Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing cancer with platycodin D through multiple mechanisms. J. Cell. Mol. Med. 2016, 20, 389–402. [Google Scholar] [CrossRef]
  630. Xie, L.; Zhao, Y.X.; Zheng, Y.; Li, X.F. The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front. Pharmacol. 2023, 14, 1148853. [Google Scholar] [CrossRef]
  631. Li, Q.; Yang, T.; Zhao, S.; Zheng, Q.; Li, Y.; Zhang, Z.; Sun, X.; Liu, Y.; Zhang, Y.; Xie, J. Distribution, Biotransformation, Pharmacological Effects, Metabolic Mechanism and Safety Evaluation of Platycodin D: A Comprehensive Review. Curr. Drug Metab. 2022, 23, 21–29. [Google Scholar] [CrossRef] [PubMed]
  632. Ji, R.; Wang, S.; Chen, X.; Yang, Z.; Zhang, Z.; Bao, S.; Xiao, Z.; Zhang, Y.; Yin, T.; Yang, J. Platycodin D ameliorates polycystic ovary syndrome-induced ovarian damage by upregulating CD44 to attenuate ferroptosis. Free Radic. Biol. Med. 2024, 224, 707–722. [Google Scholar] [CrossRef] [PubMed]
  633. Kwon, O.G.; Ku, S.K.; An, H.D.; Lee, Y.J. The Effects of Platycodin D, a Saponin Purified from Platycodi Radix, on Collagen-Induced DBA/1J Mouse Rheumatoid Arthritis. Evid. Based Complement. Altern. Med. 2014, 2014, 954508. [Google Scholar] [CrossRef]
  634. Kato, H.; Suzuki, S.; Nakao, K.; Lee, E.B.; Takagi, K. Vasodilating effect of crude platycodin in anesthetized dogs. Jpn. J. Pharmacol. 1973, 23, 709–716. [Google Scholar] [CrossRef] [PubMed]
  635. Kim, T.Y.; Jeon, S.; Jang, Y.; Gotina, L.; Won, J.; Ju, Y.H.; Kim, S.; Jang, M.W.; Won, W.; Park, M.G.; et al. Platycodin D, a natural component of Platycodon. grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp. Mol. Med. 2021, 53, 956–972. [Google Scholar] [CrossRef]
  636. Luo, Q.; Wei, G.; Wu, X.; Tang, K.; Xu, M.; Wu, Y.; Liu, Y.; Li, X.; Sun, Z.; Ju, W.; et al. Platycodin D inhibits platelet function and thrombus formation through inducing internalization of platelet glycoprotein receptors. J. Transl. Med. 2018, 16, 311. [Google Scholar] [CrossRef] [PubMed]
  637. Li, Y.; Lin, H.; Sun, Y.; Zhao, R.; Liu, Y.; Han, J.; Zhu, Y.; Jin, N.; Li, X.; Zhu, G.; et al. Platycodin D2 Mediates Incomplete Autophagy and Ferroptosis in Breast Cancer Cells by Regulating Mitochondrial ROS. Phytother. Res. 2025, 39, 581–592. [Google Scholar] [CrossRef]
  638. Liu, P.; Zhao, M.; Lin, Y.; Jiang, X.; Xia, T.; Li, Y.; Lu, Y.; Jiang, L. Platycodin D induces proliferation inhibition and mitochondrial apoptosis in diffuse large B-cell lymphoma. Exp. Hematol. 2023, 123, 46–55.e41. [Google Scholar] [CrossRef] [PubMed]
  639. Sun, L.; Li, Y.; Zhao, R.; Fan, Q.; Liu, F.; Zhu, Y.; Han, J.; Liu, Y.; Jin, N.; Li, X.; et al. Platycodin D2 enhances P21/CyclinA2-mediated senescence of HCC cells by regulating NIX-induced mitophagy. Cancer Cell. Int. 2024, 24, 79. [Google Scholar] [CrossRef] [PubMed]
  640. Wu, J.; Huang, G.; Li, Y.; Li, X. Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: Promising phytomedicines for the treatment of liver diseases. Chin. Med. 2020, 15, 89. [Google Scholar] [CrossRef] [PubMed]
  641. Zhu, J.; Luo, Y.; Tong, H.; Zhong, L.; Gong, Q.; Wang, Y.; Yang, M.; Song, Q. “Drying effect” of fructus aurantii components and the mechanism of action based on network pharmacology and in vitro pharmacodynamic validation. Front. Pharmacol. 2023, 14, 1114010. [Google Scholar] [CrossRef] [PubMed]
  642. Suolinna, E.M.; Lang, D.R.; Racker, E. Quercetin, an artificial regulator of the high aerobic glycolysis of tumor cells. J. Natl. Cancer Inst. 1974, 53, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
  643. Racker, E. Effect of quercetin on ATP-driven pumps and glycolysis. Prog. Clin. Biol. Res. 1986, 213, 257–271. [Google Scholar] [PubMed]
  644. Cheng, Y.; Liu, G.; Li, Z.; Zhou, Y.; Gao, N. Screening saikosaponin d (SSd)-producing endophytic fungi from Bupleurum scorzonerifolium Willd. World J. Microbiol. Biotechnol. 2022, 38, 242. [Google Scholar] [CrossRef]
  645. Cheng, Y.; Liu, Y.; Li, X.; Liu, G.; Li, Z.; Liu, B.; Gao, N. Transcriptome analysis of the mechanism of endophytic fungus CHS3 promoting saikosaponin d synthesis in Bupleurum scorzonerifolium Willd. suspension cells. Fitoterapia 2024, 173, 105778. [Google Scholar] [CrossRef]
  646. Liu, G.; Liu, Y.; Li, Z.; Ren, Y.; Liu, B.; Gao, N.; Cheng, Y. Transcriptome analysis revealing the effect of Bupleurum scorzonerifolium Willd association with endophytic fungi CHS3 on the production of saikosaponin D. Heliyon 2024, 10, e33453. [Google Scholar] [CrossRef]
  647. Goyal, A.; Kumari, A.; Solanki, K.; Verma, A.; Agrawal, N. Exploring the healing powers of Saikosaponin A: A review of current perspectives. Mod. Chin. Med. 2024, 12, 100500. [Google Scholar] [CrossRef]
  648. Chen, S.; Wang, K.; Wang, H.; Gao, Y.; Nie, K.; Jiang, X.; Su, H.; Tang, Y.; Lu, F.; Dong, H.; et al. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol. Res. 2024, 201, 107090. [Google Scholar] [CrossRef]
  649. Gu, S.; Zheng, Y.; Chen, C.; Liu, J.; Wang, Y.; Wang, J.; Li, Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int. J. Mol. Med. 2025, 55, 37. [Google Scholar] [CrossRef]
  650. Jia, R.; Meng, D.; Geng, W. Advances in the anti-tumor mechanisms of saikosaponin D. Pharmacol. Rep. 2024, 76, 780–792. [Google Scholar] [CrossRef]
  651. Jiang, J.; Meng, Y.; Hu, S.; Botchway, B.O.A.; Zhang, Y.; Liu, X. Saikosaponin D: A potential therapeutic drug for osteoarthritis. J. Tissue Eng. Regen. Med. 2020, 14, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
  652. Kim, B.M. The Role of Saikosaponins in Therapeutic Strategies for Age-Related Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 8275256. [Google Scholar] [CrossRef] [PubMed]
  653. Kimata, H.; Sumida, N.; Matsufuji, N.; Morita, T.; Ito, K.; Yata, N.; Tanaka, O. Interaction of saponin of bupleuri radix with ginseng saponin: Solubilization of saikosaponin-a with chikusetsusaponin V (=ginsenoside-Ro). Chem. Pharm. Bull. 1985, 33, 2849–2853. [Google Scholar] [CrossRef] [PubMed]
  654. Li, X.; Li, X.; Huang, N.; Liu, R.; Sun, R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine 2018, 50, 73–87. [Google Scholar] [CrossRef] [PubMed]
  655. Li, X.Q.; Song, Y.N.; Wang, S.J.; Rahman, K.; Zhu, J.Y.; Zhang, H. Saikosaponins: A review of pharmacological effects. J. Asian Nat. Prod. Res. 2018, 20, 399–411. [Google Scholar] [CrossRef]
  656. Manoharan, S.; Deivendran, B.; Perumal, E. Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J. Xenobiot. 2022, 12, 378–405. [Google Scholar] [CrossRef]
  657. Sun, X.H.; Chai, Y.H.; Bai, X.T.; Li, H.X.; Xi, Y.M. Pharmacology, medical uses, and clinical translational challenges of Saikosaponin A: A review. Heliyon 2024, 10, e40427. [Google Scholar] [CrossRef]
  658. Wang, X.; Li, S.; Yu, J.; Wang, W.; Du, Z.; Gao, S.; Ma, Y.; Tang, R.; Liu, T.; Ma, S.; et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress. J. Ethnopharmacol. 2023, 316, 116729. [Google Scholar] [CrossRef] [PubMed]
  659. Wu, G.C.; Wu, H.; Fan, L.Y.; Pan, H.F. Saikosaponins: A potential treatment option for systemic lupus erythematosus. Ir. J. Med. Sci. 2011, 180, 259–261. [Google Scholar] [CrossRef] [PubMed]
  660. Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm. Biol. 2017, 55, 620–635. [Google Scholar] [CrossRef] [PubMed]
  661. Zhou, P.; Shi, W.; He, X.Y.; Du, Q.Y.; Wang, F.; Guo, J. Saikosaponin D: Review on the antitumour effects, toxicity and pharmacokinetics. Pharm. Biol. 2021, 59, 1480–1489. [Google Scholar] [CrossRef]
  662. Zhu, Y.; Lai, Y. Pharmacological properties and derivatives of saikosaponins-a review of recent studies. J. Pharm. Pharmacol. 2023, 75, 898–909. [Google Scholar] [CrossRef]
  663. Zhu, J.; Luo, C.; Wang, P.; He, Q.; Zhou, J.; Peng, H. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-kappaB pathways in LPS-stimulated RAW 264.7 cells. Exp. Ther. Med. 2013, 5, 1345–1350. [Google Scholar] [CrossRef]
  664. Jia, A.; Yang, X.; Zou, B.; Li, J.; Wang, Y.; Ma, R.; Li, J.; Yao, Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat. Prod. Commun. 2022, 17, 1–24. [Google Scholar] [CrossRef]
  665. Li, J.; Zou, B.; Cheng, X.Y.; Yang, X.H.; Li, J.; Zhao, C.H.; Ma, R.X.; Tian, J.X.; Yao, Y. Therapeutic effects of total saikosaponins from Radix bupleuri against Alzheimer’s disease. Front. Pharmacol. 2022, 13, 940999. [Google Scholar] [CrossRef] [PubMed]
  666. Li, Y.; Wang, J.; Li, L.; Song, W.; Li, M.; Hua, X.; Wang, Y.; Yuan, J.; Xue, Z. Natural products of pentacyclic triterpenoids: From discovery to heterologous biosynthesis. Nat. Prod. Rep. 2023, 40, 1303–1353. [Google Scholar] [CrossRef] [PubMed]
  667. Chen, Y.; Que, R.; Zhang, N.; Lin, L.; Zhou, M.; Li, Y. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling. Mol. Biol. Rep. 2021, 48, 7853–7863. [Google Scholar] [CrossRef]
  668. Cui, L.H.; Li, C.X.; Zhuo, Y.Z.; Yang, L.; Cui, N.Q.; Zhang, S.K. Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chem. Biol. Interact. 2019, 300, 18–26. [Google Scholar] [CrossRef] [PubMed]
  669. Fan, J.; Li, X.; Li, P.; Li, N.; Wang, T.; Shen, H.; Siow, Y.; Choy, P.; Gong, Y. Saikosaponin-d attenuates the development of liver fibrosis by preventing hepatocyte injury. Biochem. Cell Biol. 2007, 85, 189–195. [Google Scholar] [CrossRef]
  670. Lin, L.; Zhou, M.; Que, R.; Chen, Y.; Liu, X.; Zhang, K.; Shi, Z.; Li, Y. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor-beta/NLRP3 inflammasome pathway. Biochem. Cell Biol. 2021, 99, 666–674. [Google Scholar] [CrossRef] [PubMed]
  671. Liu, Y.; Gao, L.; Zhao, X.; Guo, S.; Liu, Y.; Li, R.; Liang, C.; Li, L.; Dong, J.; Li, L.; et al. Saikosaponin A Protects From Pressure Overload-Induced Cardiac Fibrosis via Inhibiting Fibroblast Activation or Endothelial Cell EndMT. Int. J. Biol. Sci. 2018, 14, 1923–1934. [Google Scholar] [CrossRef]
  672. Liu, R.; Pei, M.; Su, Q.; Lei, Y.; Chen, J.; Lin, W.; Gao, C.; Liu, X.; Yang, K.; Yang, H. Saikosaponin D Inhibits Peritoneal Fibrosis in Rats with Renal Failure by Regulation of TGFbeta1/BMP7/Gremlin1/Smad Pathway. Front. Pharmacol. 2021, 12, 628671. [Google Scholar] [CrossRef]
  673. Ren, D.; Luo, J.; Li, Y.; Zhang, J.; Yang, J.; Liu, J.; Zhang, X.; Cheng, N.; Xin, H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. Phytomedicine 2020, 67, 153163. [Google Scholar] [CrossRef]
  674. Zhang, K.; Lin, L.; Zhu, Y.; Zhang, N.; Zhou, M.; Li, Y. Saikosaponin d Alleviates Liver Fibrosis by Negatively Regulating the ROS/NLRP3 Inflammasome Through Activating the ERbeta Pathway. Front. Pharmacol. 2022, 13, 894981. [Google Scholar] [CrossRef]
  675. Shiu, L.Y.; Huang, H.H.; Chen, C.Y.; Cheng, H.Y.; Chen, C.I.; Kuo, S.M. Reparative and toxicity-reducing effects of liposome-encapsulated saikosaponin in mice with liver fibrosis. Biosci. Rep. 2020, 40, BSR20201219. [Google Scholar] [CrossRef]
  676. Wang, B.F.; Wang, X.J.; Kang, H.F.; Bai, M.H.; Guan, H.T.; Wang, Z.W.; Zan, Y.; Song, L.Q.; Min, W.L.; Lin, S.; et al. Saikosaponin-D enhances radiosensitivity of hepatoma cells under hypoxic conditions by inhibiting hypoxia-inducible factor-1alpha. Cell. Physiol. Biochem. 2014, 33, 37–51. [Google Scholar] [CrossRef] [PubMed]
  677. Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef]
  678. Song, L.; Lu, G.; Tao, Y. Saikosaponin D attenuates inflammatory response and cell apoptosis of lipopolysaccharide-induced lung epithelial cells. Clin. Respir. J. 2023, 17, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
  679. Wei, Z.; Wang, J.; Shi, M.; Liu, W.; Yang, Z.; Fu, Y. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages. Oncotarget 2016, 7, 48995–49007. [Google Scholar] [CrossRef]
  680. Yao, T.; Zhang, L.; Fu, Y.; Yao, L.; Zhou, C.; Chen, G. Saikosaponin-d Alleviates Renal Inflammation and Cell Apoptosis in a Mouse Model of Sepsis via TCF7/FOSL1/Matrix Metalloproteinase 9 Inhibition. Mol. Cell. Biol. 2021, 41, e0033221. [Google Scholar] [CrossRef] [PubMed]
  681. Zhao, H.; Li, S.; Zhang, H.; Wang, G.; Xu, G.; Zhang, H. Saikosaponin A protects against experimental sepsis via inhibition of NOD2-mediated NF-kappaB activation. Exp. Ther. Med. 2015, 10, 823–827. [Google Scholar] [CrossRef]
  682. Hong Liang, O.; Ee Meng, C.; Mohamad, C.; Mohd Nasir, N.F.; Xiao Jian, T.; Chong You, B.; Ziezie Mohd Tarmizi, E.; Kim Yee, L.; Kok Yeow, Y.; Shing Fhan, K.; et al. Frequency-dependent dielectric spectroscopic analysis on phytochemical and antioxidant activities in Radix Glycyrrhizae extract. Heliyon 2024, 10, e37077. [Google Scholar] [CrossRef]
  683. Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.I. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front. Aging Neurosci. 2018, 10, 348. [Google Scholar] [CrossRef]
  684. Zhang, Y.; Lu, J.; Chang, T.; Tang, X.; Wang, Q.; Pan, D.; Wang, J.; Nan, H.; Zhang, W.; Liu, L.; et al. A bibliometric review of Glycyrrhizae Radix et Rhizoma (licorice) research: Insights and future directions. J. Ethnopharmacol. 2024, 321, 117409. [Google Scholar] [CrossRef]
  685. Li, F.; Liu, B.; Li, T.; Wu, Q.; Xu, Z.; Gu, Y.; Li, W.; Wang, P.; Ma, T.; Lei, H. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules 2020, 25, 3904. [Google Scholar] [CrossRef]
  686. Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008, 22, 709–724. [Google Scholar] [CrossRef] [PubMed]
  687. Bailly, C.; Vergoten, G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020, 214, 107618. [Google Scholar] [CrossRef] [PubMed]
  688. Chrzanowski, J.; Chrzanowska, A.; Grabon, W. Glycyrrhizin: An old weapon against a novel coronavirus. Phytother. Res. 2021, 35, 629–636. [Google Scholar] [CrossRef]
  689. Banerjee, S.; Baidya, S.K.; Adhikari, N.; Ghosh, B.; Jha, T. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. J. Mol. Struct. 2023, 1275, 134642. [Google Scholar] [CrossRef]
  690. Yi, Y.; Li, W.; Liu, K.; Xue, H.; Yu, R.; Zhang, M.; Bao, Y.O.; Lai, X.; Fan, J.; Huang, Y.; et al. Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation. J. Pharm. Anal. 2023, 14, 115–127. [Google Scholar] [CrossRef]
  691. Fatima, S.W.; Alam, S.; Khare, S.K. Molecular and structural insights of beta-boswellic acid and glycyrrhizic acid as potent SARS-CoV-2 Envelope protein inhibitors. Phytomed. Plus 2022, 2, 100241. [Google Scholar] [CrossRef]
  692. Zuo, J.; Meng, T.; Wang, Y.; Tang, W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals 2023, 16, 641. [Google Scholar] [CrossRef]
  693. Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother. Res. 2015, 29, 1868–1886. [Google Scholar] [CrossRef] [PubMed]
  694. Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef]
  695. Huan, C.; Xu, Y.; Zhang, W.; Guo, T.; Pan, H.; Gao, S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front. Pharmacol. 2021, 12, 680674. [Google Scholar] [CrossRef]
  696. Liu, Y.; Yang, L.; Wang, H.; Xiong, Y. Recent Advances in Antiviral Activities of Triterpenoids. Pharmaceuticals 2022, 15, 1169. [Google Scholar] [CrossRef] [PubMed]
  697. Lei, S.; Chen, X.; Wu, J.; Duan, X.; Men, K. Small molecules in the treatment of COVID-19. Signal Transduct. Target. Ther. 2022, 7, 387. [Google Scholar] [CrossRef] [PubMed]
  698. Gu, J.; Ran, X.; Deng, J.; Zhang, A.; Peng, G.; Du, J.; Wen, D.; Jiang, B.; Xia, F. Glycyrrhizin alleviates sepsis-induced acute respiratory distress syndrome via suppressing of HMGB1/TLR9 pathways and neutrophils extracellular traps formation. Int. Immunopharmacol. 2022, 108, 108730. [Google Scholar] [CrossRef]
  699. Ito, I.; Loucas, B.D.; Suzuki, S.; Kobayashi, M.; Suzuki, F. Glycyrrhizin Protects gamma-Irradiated Mice from Gut Bacteria-Associated Infectious Complications by Improving miR-222-Associated Gas5 RNA Reduction in Macrophages of the Bacterial Translocation Site. J. Immunol. 2020, 204, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
  700. Kim, Y.M.; Kim, H.J.; Chang, K.C. Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1. Int. Immunopharmacol. 2015, 26, 112–118. [Google Scholar] [CrossRef]
  701. Mollica, L.; De Marchis, F.; Spitaleri, A.; Dallacosta, C.; Pennacchini, D.; Zamai, M.; Agresti, A.; Trisciuoglio, L.; Musco, G.; Bianchi, M.E. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol. 2007, 14, 431–441. [Google Scholar] [CrossRef]
  702. Qiang, X.; Peng, Y.; Wang, Z.; Fu, W.; Li, W.; Zhao, Q.; He, D. Synthesis of glycyrrhizin analogues as HMGB1 inhibitors and their activity against sepsis in acute kidney injury. Eur. J. Med. Chem. 2023, 259, 115696. [Google Scholar] [CrossRef]
  703. Seo, E.H.; Song, G.Y.; Kwak, B.O.; Oh, C.S.; Lee, S.H.; Kim, S.H. Effects of Glycyrrhizin on the Differentiation of Myeloid Cells of the Heart and Lungs in Lipopolysaccharide-Induced Septic Mice. Shock 2017, 48, 371–376. [Google Scholar] [CrossRef]
  704. Shen, Z.; Gu, J.; Jiang, B.; Long, H.; Li, Z.; Chen, C.; Pei, Z.; Xia, F. Glycyrrhizin inhibits LPS-induced neutrophil-like release of NETs. Am. J. Transl. Res. 2024, 16, 5507–5515. [Google Scholar] [CrossRef]
  705. Wang, Z.; Yang, X.; Wang, X.; Liang, F.; Tang, Y. Glycyrrhizin attenuates caspase-11-dependent immune responses and coagulopathy by targeting high mobility group box 1. Int. Immunopharmacol. 2022, 107, 108713. [Google Scholar] [CrossRef]
  706. Wu, C.X.; He, L.X.; Guo, H.; Tian, X.X.; Liu, Q.; Sun, H. Inhibition effect of glycyrrhizin in lipopolysaccharide-induced high-mobility group box 1 releasing and expression from RAW264.7 cells. Shock 2015, 43, 412–421. [Google Scholar] [CrossRef] [PubMed]
  707. Xie, S.; Dai, J.; Zhang, Y.; Zhu, Y.; Wang, T.; Yang, J. Effects of glycyrrhizin on the expression of HMGB1 and inflammatory factors in macrophages and blood of neonatal rats with sepsis. Panminerva Med. 2020. [Google Scholar] [CrossRef]
  708. Yoshida, S.; Lee, J.O.; Nakamura, K.; Suzuki, S.; Hendon, D.N.; Kobayashi, M.; Suzuki, F. Effect of glycyrrhizin on pseudomonal skin infections in human-mouse chimeras. PLoS ONE 2014, 9, e83747. [Google Scholar] [CrossRef]
  709. Yu, Z.; Ohtaki, Y.; Kai, K.; Sasano, T.; Shimauchi, H.; Yokochi, T.; Takada, H.; Sugawara, S.; Kumagai, K.; Endo, Y. Critical roles of platelets in lipopolysaccharide-induced lethality: Effects of glycyrrhizin and possible strategy for acute respiratory distress syndrome. Int. Immunopharmacol. 2005, 5, 571–580. [Google Scholar] [CrossRef]
  710. Zhao, F.; Fang, Y.; Deng, S.; Li, X.; Zhou, Y.; Gong, Y.; Zhu, H.; Wang, W. Glycyrrhizin Protects Rats from Sepsis by Blocking HMGB1 Signaling. Biomed. Res. Int. 2017, 2017, 9719647. [Google Scholar] [CrossRef]
  711. Markina, Y.V.; Kirichenko, T.V.; Markin, A.M.; Yudina, I.Y.; Starodubova, A.V.; Sobenin, I.A.; Orekhov, A.N. Atheroprotective Effects of Glycyrrhiza glabra L. Molecules 2022, 27, 4697. [Google Scholar] [CrossRef] [PubMed]
  712. Kirichenko, T.V.; Sukhorukov, V.N.; Markin, A.M.; Nikiforov, N.G.; Liu, P.Y.; Sobenin, I.A.; Tarasov, V.V.; Orekhov, A.N.; Aliev, G. Medicinal Plants as a Potential and Successful Treatment Option in the Context of Atherosclerosis. Front. Pharmacol. 2020, 11, 403. [Google Scholar] [CrossRef]
  713. Kell, D.B. Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments? Bioessays 2012, 34, 236–244. [Google Scholar] [CrossRef] [PubMed]
  714. Breinbauer, R.; Vetter, I.R.; Waldmann, H. From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries. Angew. Chem. Int. Ed. Engl. 2002, 41, 2879–2890. [Google Scholar] [CrossRef]
  715. Young, R.J.; Flitsch, S.L.; Grigalunas, M.; Leeson, P.D.; Quinn, R.J.; Turner, N.J.; Waldmann, H. The Time and Place for Nature in Drug Discovery. JACS Au 2022, 2, 2400–2416. [Google Scholar] [CrossRef]
  716. Domingo-Fernández, D.; Gadiya, Y.; Preto, A.J.; Krettler, C.A.; Mubeen, S.; Allen, A.; Healey, D.; Colluru, V. Natural Products Have Increased Rates of Clinical Trial Success throughout the Drug Development Process. J. Nat. Prod. 2024, 87, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
  717. Singh, K.; Gupta, J.K.; Chanchal, D.K.; Shinde, M.G.; Kumar, S.; Jain, D.; Almarhoon, Z.M.; Alshahrani, A.M.; Calina, D.; Sharifi-Rad, J.; et al. Natural products as drug leads: Exploring their potential in drug discovery and development. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 4673–4687. [Google Scholar] [CrossRef]
  718. Wang, Y.; Wang, F.; Liu, W.; Geng, Y.; Shi, Y.; Tian, Y.; Zhang, B.; Luo, Y.; Sun, X. New drug discovery and development from natural products: Advances and strategies. Pharmacol. Ther. 2024, 264, 108752. [Google Scholar] [CrossRef]
  719. Goddard, Z.R.; Searcey, M.; Osbourn, A. Advances in triterpene drug discovery. Trends Pharmacol. Sci. 2024, 45, 964–968. [Google Scholar] [CrossRef] [PubMed]
  720. Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar]
  721. Hamid, K.; Alqahtani, A.; Kim, M.S.; Cho, J.L.; Cui, P.H.; Li, C.G.; Groundwater, P.W.; Li, G.Q. Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications. Curr. Top. Med. Chem. 2015, 15, 2406–2430. [Google Scholar] [CrossRef] [PubMed]
  722. Akihisa, T.; Zhang, J.; Tokuda, H. Potentially Chemopreventive Triterpenoids and Other Secondary Metabolites From Plants and Fungi. Stud. Nat. Prod. Chem. 2016, 21, 1–50. [Google Scholar] [CrossRef]
  723. Gomaa, A.A.; Mohamed, H.S.; Abd-Ellatief, R.B.; Gomaa, M.A.; Hammam, D.S. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: A randomized clinical trial. Inflammopharmacology 2022, 30, 477–486. [Google Scholar] [CrossRef]
  724. Zhao, Z.X.; Zou, Q.Y.; Ma, Y.H.; Morris-Natschke, S.L.; Li, X.Y.; Shi, L.C.; Ma, G.X.; Xu, X.D.; Yang, M.H.; Zhao, Z.J.; et al. Recent progress on triterpenoid derivatives and their anticancer potential. Phytochemistry 2025, 229, 114257. [Google Scholar] [CrossRef]
  725. Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as Potential Geroprotectors. Antioxidants 2020, 9, 529. [Google Scholar] [CrossRef]
  726. Salvador, J.A.R.; Leal, A.S.; Valdeira, A.S.; Goncalves, B.M.F.; Alho, D.P.S.; Figueiredo, S.A.C.; Silvestre, S.M.; Mendes, V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017, 142, 95–130. [Google Scholar] [CrossRef] [PubMed]
  727. Sharma, H.; Kumar, P.; Deshmukh, R.R.; Bishayee, A.; Kumar, S. Pentacyclic triterpenes: New tools to fight metabolic syndrome. Phytomedicine 2018, 50, 166–177. [Google Scholar] [CrossRef]
  728. Shah, B.A.; Qazi, G.N.; Taneja, S.C. Boswellic acids: A group of medicinally important compounds. Nat. Prod. Rep. 2009, 26, 72–89. [Google Scholar] [CrossRef] [PubMed]
  729. Agra, L.C.; Ferro, J.N.; Barbosa, F.T.; Barreto, E. Triterpenes with healing activity: A systematic review. J. Dermatol. Treat. 2015, 26, 465–470. [Google Scholar] [CrossRef]
  730. Şoica, C.; Voicu, M.; Ghiulai, R.; Dehelean, C.; Racoviceanu, R.; Trandafirescu, C.; Roşca, O.J.; Nistor, G.; Mioc, M.; Mioc, A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front. Endocrinol. 2020, 11, 612396. [Google Scholar] [CrossRef] [PubMed]
  731. Ghiulai, R.; Roşca, O.J.; Antal, D.S.; Mioc, M.; Mioc, A.; Racoviceanu, R.; Macasoi, I.; Olariu, T.; Dehelean, C.; Creţu, O.M.; et al. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020, 25, 5557. [Google Scholar] [CrossRef] [PubMed]
  732. Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 2014, 65, 225–257. [Google Scholar] [CrossRef] [PubMed]
  733. Stephenson, M.J.; Field, R.A.; Osbourn, A. The protosteryl and dammarenyl cation dichotomy in polycyclic triterpene biosynthesis revisited: Has this ‘rule’ finally been broken? Nat. Prod. Rep. 2019, 36, 1044–1052. [Google Scholar] [CrossRef]
  734. Yan, X.J.; Gong, L.H.; Zheng, F.Y.; Cheng, K.J.; Chen, Z.S.; Shi, Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov. Today 2014, 19, 482–488. [Google Scholar] [CrossRef]
  735. Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022, 13, 24. [Google Scholar] [CrossRef]
  736. Rodriguez-Rodriguez, R. Oleanolic acid and related triterpenoids from olives on vascular function: Molecular mechanisms and therapeutic perspectives. Curr. Med. Chem. 2015, 22, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
  737. Hillier, S.G.; Lathe, R. Terpenes, hormones and life: Isoprene rule revisited. J. Endocrinol. 2019, 242, R9–R22. [Google Scholar] [CrossRef]
  738. Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; L, M.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef]
  739. Staicu, V.; Tomescu, J.A.; Calinescu, I. Bioavailability of ursolic/oleanolic acid, with therapeutic potential in chronic diseases and cancer. Adv. Clin. Exp. Med. 2024, 33, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
  740. Luo, Z.; Zhou, W.; Xie, T.; Xu, W.; Shi, C.; Xiao, Z.; Si, Y.; Ma, Y.; Ren, Q.; Di, L.; et al. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm. Sin. B 2024, 14, 3385–3415. [Google Scholar] [CrossRef]
  741. Won, T.H.; Arifuzzaman, M.; Parkhurst, C.N.; Miranda, I.C.; Zhang, B.; Hu, E.; Kashyap, S.; Letourneau, J.; Jin, W.B.; Fu, Y.; et al. Host metabolism balances microbial regulation of bile acid signalling. Nature 2025, 638, 216–224. [Google Scholar] [CrossRef] [PubMed]
  742. Claro da Silva, T.; Polli, J.E.; Swaan, P.W. The solute carrier family 10 (SLC10): Beyond bile acid transport. Mol. Asp. Med. 2013, 34, 252–269. [Google Scholar] [CrossRef] [PubMed]
  743. Chen, F.; Eckman, E.A.; Eckman, C.B. Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB J. 2006, 20, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
  744. Paris, D.; Ganey, N.J.; Laporte, V.; Patel, N.S.; Beaulieu-Abdelahad, D.; Bachmeier, C.; March, A.; Ait-Ghezala, G.; Mullan, M.J. Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J. Neuroinflamm. 2010, 7, 17. [Google Scholar] [CrossRef] [PubMed]
  745. Patil, S.P.; Maki, S.; Khedkar, S.A.; Rigby, A.C.; Chan, C. Withanolide A and asiatic acid modulate multiple targets associated with amyloid-beta precursor protein processing and amyloid-beta protein clearance. J. Nat. Prod. 2010, 73, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
  746. Ruszkowski, P.; Bobkiewicz-Kozlowska, T. Natural Triterpenoids and their Derivatives with Pharmacological Activity Against Neurodegenerative Disorders. Mini Rev. Org. Chem. 2014, 11, 307–315. [Google Scholar] [CrossRef]
  747. Chen, F.; Wang, Y.; Yang, M.; Yin, J.; Meng, Q.; Bu, F.; Sun, D.; Liu, J. Interaction of the ginsenosides with kappa-casein and their effects on amyloid fibril formation by the protein: Multi-spectroscopic approaches. J. Photochem. Photobiol. B 2016, 160, 306–317. [Google Scholar] [CrossRef]
  748. Fujihara, K.; Koike, S.; Ogasawara, Y.; Takahashi, K.; Koyama, K.; Kinoshita, K. Inhibition of amyloid beta aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg. Med. Chem. 2017, 25, 3377–3383. [Google Scholar] [CrossRef]
  749. Dubey, S.; Kallubai, M.; Subramanyam, R. Improving the inhibition of beta-amyloid aggregation by withanolide and withanoside derivatives. Int. J. Biol. Macromol. 2021, 173, 56–65. [Google Scholar] [CrossRef]
  750. Fujihara, K.; Shimoyama, T.; Kawazu, R.; Sasaki, H.; Koyama, K.; Takahashi, K.; Kinoshita, K. Amyloid beta aggregation inhibitory activity of triterpene saponins from the cactus Stenocereus pruinosus. J. Nat. Med. 2021, 75, 284–298. [Google Scholar] [CrossRef] [PubMed]
  751. Zheng, T.; Wang, Y.; Zhao, C.; Xu, J.; Huang, X.; Du, W. Triterpenoids impede the fibrillation and cytotoxicity of human islet amyloid polypeptide. Int. J. Biol. Macromol. 2022, 199, 189–200. [Google Scholar] [CrossRef] [PubMed]
  752. Bankar, A.A.; Nagulwar, V.P.; Kotagale, N.R.; Inamdar, N.N. Neuroprotective prospectives of triterpenoids. Expl. Neurosci. 2024, 3, 231–254. [Google Scholar] [CrossRef]
  753. Qiu, J.; Li, W.; Feng, S.H.; Wang, M.; He, Z.Y. Ginsenoside Rh2 promotes nonamyloidgenic cleavage of amyloid precursor protein via a cholesterol-dependent pathway. Genet. Mol. Res. 2014, 13, 3586–3598. [Google Scholar] [CrossRef]
  754. Kim, H.J.; Jung, S.W.; Kim, S.Y.; Cho, I.H.; Kim, H.C.; Rhim, H.; Kim, M.; Nah, S.Y. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J. Ginseng Res. 2018, 42, 401–411. [Google Scholar] [CrossRef] [PubMed]
  755. Razgonova, M.P.; Veselov, V.V.; Zakharenko, A.M.; Golokhvast, K.S.; Nosyrev, A.E.; Cravotto, G.; Tsatsakis, A.; Spandidos, D.A. Panax ginseng components and the pathogenesis of Alzheimer’s disease (Review). Mol. Med. Rep. 2019, 19, 2975–2998. [Google Scholar] [CrossRef] [PubMed]
  756. Wang, L.; Jin, G.; Yu, H.; Li, Q.; Yang, H. Protective effect of Tenuifolin against Alzheimer’s disease. Neurosci. Lett. 2019, 705, 195–201. [Google Scholar] [CrossRef] [PubMed]
  757. Planchard, M.S.; Samel, M.A.; Kumar, A.; Rangachari, V. The natural product betulinic acid rapidly promotes amyloid-beta fibril formation at the expense of soluble oligomers. ACS Chem. Neurosci. 2012, 3, 900–908. [Google Scholar] [CrossRef] [PubMed]
  758. Tyler, S.E.B.; Tyler, L.D.K. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer’s disease. Nat. Prod. Bioprospect. 2022, 12, 34. [Google Scholar] [CrossRef]
  759. Lima, E.; Medeiros, J. Terpenes as Potential Anti-Alzheimer’s Disease Agents. Appl. Sci. 2024, 14, 3898. [Google Scholar] [CrossRef]
  760. Wei, C.; Fan, J.; Sun, X.; Yao, J.; Guo, Y.; Zhou, B.; Shang, Y. Acetyl-11-keto-beta-boswellic acid ameliorates cognitive deficits and reduces amyloid-beta levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free. Radic. Biol. Med. 2020, 150, 96–108. [Google Scholar] [CrossRef] [PubMed]
  761. Bednarikova, Z.; Gancar, M.; Wang, R.; Zheng, L.; Tang, Y.; Luo, Y.; Huang, Y.; Spodniakova, B.; Ma, L.; Gazova, Z. Extracts from Chinese herbs with anti-amyloid and neuroprotective activities. Int. J. Biol. Macromol. 2021, 179, 475–484. [Google Scholar] [CrossRef] [PubMed]
  762. Mustafa, N.H.; Sekar, M.; Fuloria, S.; Begum, M.Y.; Gan, S.H.; Rani, N.; Ravi, S.; Chidambaram, K.; Subramaniyan, V.; Sathasivam, K.V.; et al. Chemistry, Biosynthesis and Pharmacology of Sarsasapogenin: A Potential Natural Steroid Molecule for New Drug Design, Development and Therapy. Molecules 2022, 27, 2032. [Google Scholar] [CrossRef]
  763. Du, Y.; Fu, M.; Wang, Y.T.; Dong, Z. Neuroprotective Effects of Ginsenoside Rf on Amyloid-beta-Induced Neurotoxicity in vitro and in vivo. J. Alzheimers Dis. 2018, 64, 309–322. [Google Scholar] [CrossRef] [PubMed]
  764. Wang, N.; Wang, E.; Wang, R.; Muhammad, F.; Li, T.; Yue, J.; Zhou, Y.; Zhi, D.; Li, H. Ursolic acid ameliorates amyloid beta-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome. Neurotoxicology 2022, 88, 231–240. [Google Scholar] [CrossRef]
  765. Iwasa, K.; Yagishita, S.; Yagishita-Kyo, N.; Yamagishi, A.; Yamamoto, S.; Yamashina, K.; Haruta, C.; Asai, M.; Maruyama, K.; Shimizu, K.; et al. Long term administration of loquat leaves and their major component, ursolic acid, attenuated endogenous amyloid-beta burden and memory impairment. Sci. Rep. 2023, 13, 16770. [Google Scholar] [CrossRef]
  766. Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid beta-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
  767. Zhao, J.; Yang, J.; Ding, L.; Wang, F.; Lin, L. A Review of the Pathogenesis and Chinese Medicine Intervention of Alzheimer’s Disease. J. Integr. Neurosci. 2022, 22, 2. [Google Scholar] [CrossRef]
  768. Nagoor Meeran, M.F.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front. Pharmacol. 2018, 9, 892. [Google Scholar] [CrossRef] [PubMed]
  769. Mook-Jung, I.; Shin, J.E.; Yun, S.H.; Huh, K.; Koh, J.Y.; Park, H.K.; Jew, S.S.; Jung, M.W. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J. Neurosci. Res. 1999, 58, 417–425. [Google Scholar] [CrossRef]
  770. Jew, S.S.; Yoo, C.H.; Lim, D.Y.; Kim, H.; Mook-Jung, I.; Jung, M.W.; Choi, H.; Jung, Y.H.; Kim, H.; Park, H.G. Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg. Med. Chem. Lett. 2000, 10, 119–121. [Google Scholar] [CrossRef]
  771. Hossain, S.; Hashimoto, M.; Katakura, M.; Al Mamun, A.; Shido, O. Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking. BMC Complement. Altern. Med. 2015, 15, 118. [Google Scholar] [CrossRef] [PubMed]
  772. Chen, C.L.; Tsai, W.H.; Chen, C.J.; Pan, T.M. Centella asiatica extract protects against amyloid beta(1-40)-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2016, 6, 362–369. [Google Scholar] [CrossRef] [PubMed]
  773. Gray, N.E.; Zweig, J.A.; Caruso, M.; Zhu, J.Y.; Wright, K.M.; Quinn, J.F.; Soumyanath, A. Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in beta-amyloid overexpressing mice. Mol. Cell. Neurosci. 2018, 93, 1–9. [Google Scholar] [CrossRef]
  774. Gray, N.E.; Alcazar Magana, A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica—Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018, 17, 161–194. [Google Scholar] [CrossRef]
  775. Mioc, M.; Milan, A.; Malita, D.; Mioc, A.; Prodea, A.; Racoviceanu, R.; Ghiulai, R.; Cristea, A.; Caruntu, F.; Soica, C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int. J. Mol. Sci. 2022, 23, 7740. [Google Scholar] [CrossRef]
  776. Chen, C.; Ai, Q.; Shi, A.; Wang, N.; Wang, L.; Wei, Y. Oleanolic acid and ursolic acid: Therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr. Neurosci. 2023, 26, 414–428. [Google Scholar] [CrossRef] [PubMed]
  777. Mendes-Silva, W.; Assafim, M.; Ruta, B.; Monteiro, R.Q.; Guimaraes, J.A.; Zingali, R.B. Antithrombotic effect of Glycyrrhizin, a plant-derived thrombin inhibitor. Thromb. Res. 2003, 112, 93–98. [Google Scholar] [CrossRef]
  778. Kaundal, M.; Akhtar, M.; Deshmukh, R. Lupeol Isolated from Betula alnoides Ameliorates Amyloid Beta Induced Neuronal Damage via Targeting Various Pathological Events and Alteration in Neurotransmitter Levels in Rat’s Brain. J. Neurol. Neurosci. 2017, 8, 3. [Google Scholar] [CrossRef]
  779. Siddiqui, A.; Shah, Z.; Jahan, R.N.; Othman, I.; Kumari, Y. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomed. Pharmacother. 2021, 144, 112250. [Google Scholar] [CrossRef]
  780. Campos, M.F.; da Silva, C.S.; do Nascimento, T.P.; da Fonseca, T.S.; da Silva, A.S.; Ribeiro, F.D.; Leitao, F.; Leitao, G.G.; Lima, L.M.T.R.; Leitao, S.G. Brazilian Medicinal Plants with Antiamyloidogenic Activity. Rev. Bras. Farm. 2023, 33, 989–1000. [Google Scholar] [CrossRef]
  781. Yuan, M.H.; Zhong, W.X.; Wang, Y.L.; Liu, Y.S.; Song, J.W.; Guo, Y.R.; Zeng, B.; Guo, Y.P.; Guo, L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother. Res. 2024, 38, 2128–2153. [Google Scholar] [CrossRef]
  782. Chong, N.J.; Aziz, Z. A Systematic Review of the Efficacy of Centella asiatica for Improvement of the Signs and Symptoms of Chronic Venous Insufficiency. Evid. Based Complement. Altern. Med. 2013, 2013, 627182. [Google Scholar] [CrossRef] [PubMed]
  783. Wang, M.; Chen, M.; Ding, Y.; Zhu, Z.; Zhang, Y.; Wei, P.; Wang, J.; Qiao, Y.; Li, L.; Li, Y.; et al. Pretreatment with beta-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation. Sci. Rep. 2015, 5, 15357. [Google Scholar] [CrossRef]
  784. Huang, L.; Xu, R.; Huang, X.; Wang, Y.; Wang, J.; Liu, Y.; Liu, Z. Traditional Chinese medicine injection for promoting blood circulation and removing blood stasis in treating angina pectoris of coronary heart disease: A protocol for systematic review and network meta-analysis. Medicine 2021, 100, e25608. [Google Scholar] [CrossRef]
  785. Chen, J.; Cao, D.; Jiang, S.; Liu, X.; Pan, W.; Cui, H.; Yang, W.; Liu, Z.; Jin, J.; Zhao, Z. Triterpenoid saponins from Ilex pubescens promote blood circulation in blood stasis syndrome by regulating sphingolipid metabolism and the PI3K/AKT/eNOS signaling pathway. Phytomedicine 2022, 104, 154242. [Google Scholar] [CrossRef] [PubMed]
  786. Wei, B.; Sun, C.; Wan, H.; Shou, Q.; Han, B.; Sheng, M.; Li, L.; Kai, G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. J. Ethnopharmacol. 2023, 317, 116697. [Google Scholar] [CrossRef]
  787. Oku, H.; Iwaoka, E.; Shinga, M.; Yamamoto, E.; Iinuma, M.; Ishigur, K. Effect of the Dried Flowers of Campsis grandiflora on Stagnant Blood Syndrome. Nat. Prod. Commun. 2019, 14, 9. [Google Scholar] [CrossRef]
  788. Dobson, P.D.; Patel, Y.; Kell, D.B. “Metabolite-likeness” as a criterion in the design and selection of pharmaceutical drug libraries. Drug Disc. Today 2009, 14, 31–40. [Google Scholar] [CrossRef] [PubMed]
  789. O’Hagan, S.; Kell, D.B. Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol. J. 2018, 13, 1700503. [Google Scholar] [CrossRef]
  790. O’Hagan, S.; Kell, D.B. Generation of a small library of natural products designed to cover chemical space inexpensively. Pharm. Front. 2019, 1, e190005. [Google Scholar] [CrossRef] [PubMed]
  791. O’Hagan, S.; Kell, D.B. Structural similarities between some common fluorophores used in biology, marketed drugs, endogenous metabolites, and natural products. Mar. Drugs 2020, 18, 582. [Google Scholar] [CrossRef] [PubMed]
  792. Capecchi, A.; Reymond, J.L. Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning. J. Cheminform. 2021, 13, 82. [Google Scholar] [CrossRef]
  793. Ertl, P.; Schuffenhauer, A. Cheminformatics analysis of natural products: Lessons from nature inspiring the design of new drugs. Prog. Drug Res. 2008, 66, 217, 219–235. [Google Scholar]
  794. Medina-Franco, J.L.; Saldívar-González, F.I. Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules 2020, 10, 1566. [Google Scholar] [CrossRef] [PubMed]
  795. Prieto-Martínez, F.D.; Norinder, U.; Medina-Franco, J.L. Cheminformatics Explorations of Natural Products. Prog. Chem. Org. Nat. Prod. 2019, 110, 1–35. [Google Scholar] [CrossRef] [PubMed]
  796. Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 20. [Google Scholar] [CrossRef] [PubMed]
  797. Wetzel, S.; Schuffenhauer, A.; Roggo, S.; Ertl, P.; Waldmann, H. Cheminformatic analysis of natural products and their chemical space. Chimia 2007, 61, 355–360. [Google Scholar] [CrossRef]
  798. Kell, D.B. Reviews turn facts into understanding. Nature 2012, 490, 37. [Google Scholar] [CrossRef]
  799. He, X.; Duan, X.; Liu, J.; Sha, X.; Gong, Y.; Lu, W.; Li, Z.; Chen, X.; Li, Y.; Shen, Z. The antiinflammatory effects of Xuefu Zhuyu decoction on C3H/HeJ mice with alopecia areata. Phytomedicine 2021, 81, 153423. [Google Scholar] [CrossRef]
  800. Gao, L.; Zhong, L.; Feng, T.; Yue, J.; Lu, Q.; Li, L.; Wu, A.; Lin, G.; He, Q.; Liu, K.; et al. An AI-driven strategy for active compounds discovery and non-destructive quality control in traditional Chinese medicine: A case of Xuefu Zhuyu Oral Liquid. Talanta 2025, 287, 127627. [Google Scholar] [CrossRef] [PubMed]
  801. Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Côté, S.; et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012, 486, 361–367. [Google Scholar] [CrossRef] [PubMed]
Figure 2. Representative confocal images of human plasma with three amyloid markers (cyan: Amytracker™ 480; red: Amytracker™ 680; green: ThT). (AC) Naïve human plasma; (DF) plasma exposed to lipopolysaccharide (LPS); (GI) plasma exposed to iron; (JL) plasma exposed to lipoteichoic acid-1; (MO) plasma exposed to lipoteichoic acid-1. (Taken from a CC-BY Open Access publication [130]).
Figure 2. Representative confocal images of human plasma with three amyloid markers (cyan: Amytracker™ 480; red: Amytracker™ 680; green: ThT). (AC) Naïve human plasma; (DF) plasma exposed to lipopolysaccharide (LPS); (GI) plasma exposed to iron; (JL) plasma exposed to lipoteichoic acid-1; (MO) plasma exposed to lipoteichoic acid-1. (Taken from a CC-BY Open Access publication [130]).
Pharmaceuticals 18 00712 g002
Figure 3. Weak binding or sequestration. Different classes or types of protein co-aggregation: titration; sequestration; axial and lateral. (Figure adapted from open access papers [131,132], based on [299]). Generated with Biorender.com.
Figure 3. Weak binding or sequestration. Different classes or types of protein co-aggregation: titration; sequestration; axial and lateral. (Figure adapted from open access papers [131,132], based on [299]). Generated with Biorender.com.
Pharmaceuticals 18 00712 g003
Figure 4. Multipotential drug treatment strategies for traumatic brain injury. Redrawn from [403]. Generated with Biorender.com.
Figure 4. Multipotential drug treatment strategies for traumatic brain injury. Redrawn from [403]. Generated with Biorender.com.
Pharmaceuticals 18 00712 g004
Figure 5. Long COVID symptoms (taken from [213]). Generated with Biorender.com.
Figure 5. Long COVID symptoms (taken from [213]). Generated with Biorender.com.
Pharmaceuticals 18 00712 g005
Figure 6. ‘Blood stasis–expelling decoction’ (Xue Fu Zhu Yu tang) or ‘stasis in the mansion of blood’, showing (with the database owner’s permission) part of the page at https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 May 2025).
Figure 6. ‘Blood stasis–expelling decoction’ (Xue Fu Zhu Yu tang) or ‘stasis in the mansion of blood’, showing (with the database owner’s permission) part of the page at https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 May 2025).
Pharmaceuticals 18 00712 g006
Figure 7. A summary of Xue Fu Zhu Yu, based on the material at https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 May 2025).
Figure 7. A summary of Xue Fu Zhu Yu, based on the material at https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (accessed on 6 May 2025).
Pharmaceuticals 18 00712 g007
Table 2. Some diseases or syndromes in which fibrinaloid microclots have been observed and which are considered to involve blood stasis.
Table 2. Some diseases or syndromes in which fibrinaloid microclots have been observed and which are considered to involve blood stasis.
Disease or SyndromeSelected References Showing Microclot FormationSelected References Relating the Disease to Blood Stasis
Alzheimer’s disease[185,186,187,188][80,189,190,191]
(Acute) COVID-19 infection[192,193,194,195,196][197,198,199,200,201,202,203,204]
Diabetes type 2[119,186,196,205,206][73,77,80,207,208,209,210]
Long COVID[133,134,147,150,211,212,213,214,215][200,216,217]
Migraines[218][80,219]
Myalgic encephalopathy/ chronic fatigue syndrome[220,221][217,222,223,224,225] (see also [226])
Parkinson’s disease[121,186,227,228][68,229,230,231]
Rheumatoid arthritis[211,232,233][80,210,234,235]
Sepsis[236][237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263]
Septic shock[236][264,265,266,267,268,269,270,271,272,273,274,275,276]
Stroke[277][83,87,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298]
Table 3. Diseases involving blood stasis where fibrinaloid microclots are yet to be measured directly. These diseases are mostly vascular or thrombotic. We here ignore classical amyloidoses and cancer.
Table 3. Diseases involving blood stasis where fibrinaloid microclots are yet to be measured directly. These diseases are mostly vascular or thrombotic. We here ignore classical amyloidoses and cancer.
Disease or SyndromeSelected References Relating the Disease to Blood StasisComments
Angina pectoris[80,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316]A very obvious example, as vasodilators are the main treatment. The tightening of the chest and shortness of breath are easily explained by microclots blocking capillaries.
Atherosclerosis[317,318,319,320,321,322,323]Another very obvious example of fibrinaloid microclots resisting fibrinolysis contributing to atherosclerotic plaques (and later to stroke [277]). The pairing Danshen–Chuanxiong is often used [320,324].
Atrial fibrillation (AF)[15]At one level, atrial blood stasis is seen as synonymous as an effect of AF [325,326]. Evidence that fibrinaloid microclots are more a cause than an effect of AF was summarized in [327].
Attention deficit hyperactivity disorder (ADHD)[328,329,330,331]Plausibly due to decreased blood flow caused by microclots.
Chronic kidney disease[79,332,333]Less likelihood of kidneys excreting microclots if diseased.
Chronic obstructive pulmonary disease (COPD)[334,335,336,337,338]Strong hint in the term ‘obstructive’.
Coronary heart disease[91,92,310,313,339,340,341,342,343,344,345,346,347,348,349,350]Xue Fu Zhu Yu (a formula to overcome blood stasis) helps [341,343,351,352,353].
Deep vein thrombosis (DVT)[354,355,356]TCM classifies DVT as blood stasis in the category of ‘pulse closed’ and ‘femoral swelling’. Xue Fu Zhu Yu helps, and there is evidence [132] that the thromboses are likely to be amyloid in nature.
Dysmenorrhea[357,358,359,360,361,362]Note that 17-β-estradiol was one of the first small molecules discovered to induce anomalous clotting [106].
Fibromyalgia syndrome (FMS)[222,363]We consider it likely that FMS (and fibrosis [336]) is caused by deposition of fibrin caused by fibrinaloid microclots [141]. There is little actual work on BSS here.
Heart failure and ischemic heart disease[364,365,366,367]Various formulas used for this kind of blood stasis.
Metabolic syndrome (MS)[80,88,368,369]MS covers a variety of different syndromes; at this stage we do not seek to deconvolve it.
Non-alcoholic fatty liver disease (NAFLD) (since mid-2023 it is called metabolic dysfunction-associated steatotic liver disease (MASLD) [370])[210,371,372]
Postural orthostatic tachycardia syndrome (POTS)[373]Capillary blocking by fibrinaloid microclots provides a ready explanation for POTS [374] (see also [375]).
Pre-eclampsia (PE)[376,377,378,379]PE has a microbial origin [380,381] and is significantly prothrombotic [382].
Pulmonary embolism[99,383]
Sub-arachnoid hemorrhage[384,385]The only predictor of a later stroke in [386] was ESR (erythrocyte sedimentation rate), a measure of blood stasis.
Thrombotic diseases generally[387,388,389]High likelihood of the clots involved being amyloid in nature [132].
Tinnitus[73,390]A common accompaniment to diseases (such as long COVID) where microclots are involved and where both can be induced by spike protein (cf. [192] and [391,392,393]).
Transient ischemic attack (TIA)[289,394,395]TIA is of course a common precursor to ischemic stroke [396], where amyloid clotting has been demonstrated [277].
Traumatic brain injury (TBI)[397,398,399,400,401,402,403]Blood stasis is seen as a core component of (the sequelae of) TBI, which include coagulopathy [404]. Most significantly, Xue Fu Zhu Yu ameliorated neurological deficiencies without impairing blood coagulation in a rat model [401].
Traumatic injury generally[72,405]
Table 4. Constituent herbs of Xue Fu Zhu Yu, some known bioactive elements it contains, and some known activities.
Table 4. Constituent herbs of Xue Fu Zhu Yu, some known bioactive elements it contains, and some known activities.
HerbSome Known Bioactive Molecules ThereinSome Known Targets or General Properties
Tao Ren; Semen persicae; peach kernel (Emperor)Amygdalin [535,536]Follistatin induction [535]; ERK1/2 activation [536]
Hong Hua; Flos carthami; Carthamus tinctorius L.; safflower (Emperor)(Hydroxy)safflor yellow A [537,538,539,540,541,542]Antithrombotic, angiogenic, anticoagulant, antiplatelet. Reviews: [543,544,545,546,547,548]
Kaempferol, quercetinAntioxidants/ anti-inflammatory [537]
Endothelial cell protectionEnhances HIF1-α [537]
Chi Shao; Radix paeoniae rubra; Paeonia lactiflora Pall; red peony root (Minister)OxypaeoniflorinAnti-thrombin [388]
Paeoniflorin [549]Anti-stroke [550,551], anti-thrombotic [552,553], anti-inflammatory [554,555,556,557,558], and antioxidant [559]; blocks TGF1β signaling, ERK1/2, JNK1/2, NF-κB, etc. [549,560,561]; deactivation of STAT3 [562]; Akt/Nrf2/GPX4 [231], MAPK [563,564], Raptor [565], TRPV1 [566], HIF-1 α [567], adenosine A1 receptor [568,569]. Analgesic [570]. Reviews of nervous system [571] and cardioprotective [572] effects [573]
PaeonolAnti-inflammatory, antioxidant, protects endothelium [574]; endothelium-protecting and antiplatelet [575]; antioxidant and anti-inflammatory [576]
Rhizoma chuanxiong (Ligusticum chuanxiong); Szechaun lovage roots (Minister)Reviews [577,578,579,580]
LigustrazineAnti-inflammatory [581,582]. Dilates blood vessels, inhibits platelet aggregation, and prevents thrombopoiesis [582]. Anti-anginal [583]. Multiple roles [584]
Ligustilide (also in Dang Gui and Niu Xi)Anti-inflammatory and anti-oxidant [585]. Improves lipid metabolism,
antioxidant and anti-inflammatory, protects vascular endothelium, inhibits vascular endothelial fibrosis [586]. Senolytic [587]. Cannabinoid receptor 2 activation [588]
Sekyunolide I (SEI)Reviews on antioxidant and anti-inflammatory properties [589,590,591]. Other targets of SEI include Nrf2 [592], activity vs NAFLD [593], UVB damage [594], NET formation [595], ischemia-reperfusion injury [596,597,598,599]. It occurs in appreciable concentrations in both ChuanXiong [600,601] and Angelica sinensis (Danggui) [602]
Ferulic acidAnti-thrombin activity [603]
Radix achyranthis bidentata (Niu Xi), also Cyathulae radix (Minister; may also be a Courier [604])Achyranthine, but no real stand-outsSeemingly not well understood [605,606]
Radix rehmanniae (Di Huang or Sheng Di) (Assistant)Reviews: [607,608,609]Multiple effects, including
anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation [609]. Hypoglycemic [610]
Iridoid glycosides (such as catalpol and aucuboside)Catalpol blocks AMPK signaling [611] and promotes angiogenesis [612] and cell migration [613]. Antioxidant via Nrf2/HO-1 [614] and NF-κB [615], Many other references, reviewed in [616,617,618]. Aucuboside is an immunomodulator [619]
Phenylpropanoid glycosides (such as acteoside)Acteoside, e.g., stimulates amyloid degradation [620], ameliorates ischemia-reperfusion injury [621], and has many other effects [622], including anticancer effects [623]
Radix angelicae sinensis (Chinese angelica) (Dang Gui) (Assistant)
Z-lingustilide (see above)
Ferulic acidAntioxidant and anti-inflammatory [624]. Nephroprotective [625]. Ameliorates lipid metabolism
via the AMPK/ACC and PI3K/AKT pathways [626]
Sekyunolide I (see above)
Radix platycodonis (Balloonflower root) (Jie Geng) (Assistant; may also be a Courier [604])Platycodins [627,628] (triterpenoid saponins)Many activities [629,630,631], including anti-inflammatory and antioxidant [627,632,633], vasodilatory [634], antiviral [635], antithrombotic [636], autophagy-modulating [637], mitophagy-regulating [638,639]
Fructus aurantia (Citrus aurantium L.) Bitter orange (Zhi Qiao) (Assistant)Flavones and flavonoids, including sinensetin, tangeretin, 5-demethylnobiletin, and chrysinAntioxidant, anti-inflammatory [640], and other activities via JAK-STAT3 and PI3K-AKT signaling [641]
Radix bupleuri (Chinese Thorawax Root) (Chai Hu) (Assistant)Quercetin [310]Antioxidant and other properties (some not at all newly discovered [642,643])
Saikosaponins (triterpenoid saponins) (may involve stimulation by endophytic fungi [644,645,646])Many activities [647], including antioxidant and anti-inflammatory [471,472,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666], as well as anti-fibrotic [667,668,669,670,671,672,673,674,675], anti-HIF-1α [676], antiviral [664,677], anti-sepsis [678,679,680,681]
Radix glycyrrhizae (Glycyrrhiza uralensis Fisch; Chinese licorice) (Gan Cao) (Courier)Flavanones liquiritigenin and isoliquiritigeninAnti-oxidant [682], also anti-amyloid [683] and transporter inducers. Reviews [684,685]
Triterpene saponins including glycyrrhizin, glycyrrhet(in)ic acidAntiviral and other [666,686,687,688,689,690,691,692,693,694,695,696,697]. Anti-sepsis [698,699,700,701,702,703,704,705,706,707,708,709,710]. Atheroprotective [711,712]
Table 5. Chemical structures of some of the constituents in Xue Fu Zhu Yu, as mentioned in Table 4. Most were checked at PubChem in February 2025.
Table 5. Chemical structures of some of the constituents in Xue Fu Zhu Yu, as mentioned in Table 4. Most were checked at PubChem in February 2025.
MoleculeStructure
ActeosidePharmaceuticals 18 00712 i001
AmygdalinPharmaceuticals 18 00712 i002
AucubosidePharmaceuticals 18 00712 i003
CatalpolPharmaceuticals 18 00712 i004
GlycyrrhizinPharmaceuticals 18 00712 i005
Hydroxysafflor yellow APharmaceuticals 18 00712 i006
Isoliquiritigenin
(2′,4,4′-trihydroxychalcone)
Pharmaceuticals 18 00712 i007
(Z-)LigustilidePharmaceuticals 18 00712 i008
Ligustrazine (2,3,5,6-tetramethylpyrazine)Pharmaceuticals 18 00712 i009
Liquiritigenin 4′, 7-dihydroxyflavanonePharmaceuticals 18 00712 i010
OxypaeoniflorinPharmaceuticals 18 00712 i011
PaeniflorinPharmaceuticals 18 00712 i012
PaeonolPharmaceuticals 18 00712 i013
Platycodins: variants of structure at right. One example is below, in which R1 is glucose and R2 is arabinose-rhamnose-xylose-apifuranosylPharmaceuticals 18 00712 i014
Platycodin DPharmaceuticals 18 00712 i015
QuercetinPharmaceuticals 18 00712 i016
Safflor yellow APharmaceuticals 18 00712 i017
Saikosaponin nucleusPharmaceuticals 18 00712 i018
Saikosaponin AAs above, R1 = β-OH, R2 = CH2OH
Sekyunolide IPharmaceuticals 18 00712 i019
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kell, D.B.; Pretorius, E.; Zhao, H. A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals 2025, 18, 712. https://doi.org/10.3390/ph18050712

AMA Style

Kell DB, Pretorius E, Zhao H. A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals. 2025; 18(5):712. https://doi.org/10.3390/ph18050712

Chicago/Turabian Style

Kell, Douglas B., Etheresia Pretorius, and Huihui Zhao. 2025. "A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment" Pharmaceuticals 18, no. 5: 712. https://doi.org/10.3390/ph18050712

APA Style

Kell, D. B., Pretorius, E., & Zhao, H. (2025). A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals, 18(5), 712. https://doi.org/10.3390/ph18050712

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop