High Concentrations of the Antidepressant Amitriptyline Activate and Desensitize the Capsaicin Receptor TRPV1
Abstract
:1. Introduction
2. Results
2.1. Amitriptyline Activates TRPV1
2.2. Amitriptyline Potentiates Capsaicin-, Heat- and Proton-Induced Currents on TRPV1
2.3. Amitriptyline Blocks and Desensitizes TRPV1
2.4. Amitriptyline-Induced Desensitization of TRPV1 Is Calcium-Dependent
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. cDNA and Cell Culture
4.3. Mutant Design and Generation
4.4. Animals
4.5. Patch Clamp
4.6. Ratiometric Imaging
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAPTA | (N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]-1,1′-bis[(acetyloxy)methyl] ester-glycine) |
BCTC | 4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl] 1piperazinecarboxamide |
DMEM | Dulbecco’s modified Eagle medium |
DMSO | Dimethylsulfoxide |
DRG | Dorsal Root Ganglion |
Fura-2-AM | Fura-2-pentakis-(acetoxymethyl)-ester |
HEK293T | Human Embryonic Kidney 293T |
NeuPSIG | Neuropathic Pain Special Interest Group of the International Association for the Study of Pain |
NMDA | N-Methyl-D-Aspartate |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
References
- Patel, A.S.; Farquharson, R.; Carroll, D.; Moore, A.; Phillips, C.J.; Taylor, R.S.; Barden, J. The impact and burden of chronic pain in the workplace: A qualitative systematic review. Pain Pract. 2012, 12, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Sprangers, M.A.; de Regt, E.B.; Andries, F.; van Agt, H.M.; Bijl, R.V.; de Boer, J.B.; Foets, M.; Hoeymans, N.; Jacobs, A.E.; Kempen, G.I.; et al. Which chronic conditions are associated with better or poorer quality of life? J. Clin. Epidemiol. 2000, 53, 895–907. [Google Scholar] [CrossRef] [PubMed]
- van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 2014, 155, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- American Geriatrics Society Beers Criteria Update Expert Panel. American geriatrics society updated beers criteria for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2012, 60, 616–631. [Google Scholar] [CrossRef]
- Ray, W.A.; Meredith, S.; Thapa, P.B.; Hall, K.; Murray, K.T. Cyclic antidepressants and the risk of sudden cardiac death. Clin. Pharmacol. Ther. 2004, 75, 234–241. [Google Scholar] [CrossRef]
- Leffler, A.; Reiprich, A.; Mohapatra, D.P.; Nau, C. Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (ttx)-resistant nav1.8 than in ttx-sensitive na+ channels. J. Pharmacol. Exp. Ther. 2007, 320, 354–364. [Google Scholar] [CrossRef]
- Pancrazio, J.J.; Kamatchi, G.L.; Roscoe, A.K.; Lynch, C., 3rd. Inhibition of neuronal na+ channels by antidepressant drugs. J. Pharmacol. Exp. Ther. 1998, 284, 208–214. [Google Scholar] [CrossRef]
- Sudoh, Y.; Desai, S.P.; Haderer, A.E.; Sudoh, S.; Gerner, P.; Anthony, D.C.; De Girolami, U.; Wang, G.K. Neurologic and histopathologic evaluation after high-volume intrathecal amitriptyline. Reg. Anesth. Pain Med. 2004, 29, 434–440. [Google Scholar] [CrossRef]
- Genevois, A.L.; Ruel, J.; Penalba, V.; Hatton, S.; Petitfils, C.; Ducrocq, M.; Principe, P.; Dietrich, G.; Greco, C.; Delmas, P. Analgesic effects of topical amitriptyline in patients with chemotherapy-induced peripheral neuropathy: Mechanistic insights from studies in mice. J. Pain 2021, 22, 440–453. [Google Scholar] [CrossRef]
- Gerner, P.; Kao, G.; Srinivasa, V.; Narang, S.; Wang, G.K. Topical amitriptyline in healthy volunteers. Reg. Anesth. Pain Med. 2003, 28, 289–293. [Google Scholar] [PubMed]
- Gerner, P.; Mujtaba, M.; Sinnott, C.J.; Wang, G.K. Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 2001, 94, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Haderer, A.; Gerner, P.; Kao, G.; Srinivasa, V.; Wang, G.K. Cutaneous analgesia after transdermal application of amitriptyline versus lidocaine in rats. Anesth. Analg. 2003, 96, 1707–1710. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Gerner, P.; Kuo Wang, G. Amitriptyline for prolonged cutaneous analgesia in the rat. Anesthesiology 2002, 96, 109–116. [Google Scholar] [CrossRef]
- Kopsky, D.J.; Hesselink, J.M. High doses of topical amitriptyline in neuropathic pain: Two cases and literature review. Pain Pract. 2012, 12, 148–153. [Google Scholar] [CrossRef]
- Thompson, D.F.; Brooks, K.G. Systematic review of topical amitriptyline for the treatment of neuropathic pain. J. Clin. Pharm. Ther. 2015, 40, 496–503. [Google Scholar] [CrossRef]
- Colvin, A.C.; Wang, C.F.; Soens, M.A.; Mitani, A.A.; Strichartz, G.; Gerner, P. Prolonged cutaneous analgesia with transdermal application of amitriptyline and capsaicin. Reg. Anesth. Pain Med. 2011, 36, 236–240. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Derry, S.; Rice, A.S.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD007393. [Google Scholar]
- Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490–502. [Google Scholar] [CrossRef]
- Leffler, A.; Fischer, M.J.; Rehner, D.; Kienel, S.; Kistner, K.; Sauer, S.K.; Gavva, N.R.; Reeh, P.W.; Nau, C. The vanilloid receptor trpv1 is activated and sensitized by local anesthetics in rodent sensory neurons. J. Clin. Investig. 2008, 118, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Wehrfritz, A.; Namer, B.; Ihmsen, H.; Mueller, C.; Filitz, J.; Koppert, W.; Leffler, A. Differential effects on sensory functions and measures of epidermal nerve fiber density after application of a lidocaine patch (5%) on healthy human skin. Eur. J. Pain 2011, 15, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Olah, Z.; Josvay, K.; Pecze, L.; Letoha, T.; Babai, N.; Budai, D.; Otvos, F.; Szalma, S.; Vizler, C. Anti-calmodulins and tricyclic adjuvants in pain therapy block the trpv1 channel. PLoS ONE 2007, 2, e545. [Google Scholar] [CrossRef] [PubMed]
- Stueber, T.; Eberhardt, M.J.; Caspi, Y.; Lev, S.; Binshtok, A.; Leffler, A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels trpv1 and trpa1. Cell Calcium 2017, 68, 34–44. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Nau, C. Desensitization of capsaicin-activated currents in the vanilloid receptor trpv1 is decreased by the cyclic amp-dependent protein kinase pathway. J. Biol. Chem. 2003, 278, 50080–50090. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Wang, S.Y.; Wang, G.K.; Nau, C. A tyrosine residue in tm6 of the vanilloid receptor trpv1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol. Cell. Neurosci. 2003, 23, 314–324. [Google Scholar] [CrossRef]
- Sousa-Valente, J.; Andreou, A.P.; Urban, L.; Nagy, I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br. J. Pharmacol. 2014, 171, 2508–2527. [Google Scholar] [CrossRef]
- Garami, A.; Shimansky, Y.P.; Rumbus, Z.; Vizin, R.C.L.; Farkas, N.; Hegyi, J.; Szakacs, Z.; Solymar, M.; Csenkey, A.; Chiche, D.A.; et al. Hyperthermia induced by transient receptor potential vanilloid-1 (trpv1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 2020, 208, 107474. [Google Scholar] [CrossRef]
- Shafer, S.L.; Teichman, S.L.; Gottlieb, I.J.; Singla, N.; Minkowitz, H.S.; Leiman, D.; Vaughn, B.; Donovan, J.F. Safety and efficacy of vocacapsaicin for management of postsurgical pain: A randomized clinical trial. Anesthesiology 2024, 141, 250–261. [Google Scholar] [CrossRef]
- Mobasheri, A.; Rannou, F.; Ivanavicius, S.; Conaghan, P.G. Targeting the trpv1 pain pathway in osteoarthritis of the knee. Expert Opin. Ther. Targets 2024, 28, 843–856. [Google Scholar] [CrossRef]
- Lynch, M.E.; Clark, A.J.; Sawynok, J. A pilot study examining topical amitriptyline, ketamine, and a combination of both in the treatment of neuropathic pain. Clin. J. Pain 2003, 19, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.E.; Clark, A.J.; Sawynok, J.; Sullivan, M.J. Topical 2% amitriptyline and 1% ketamine in neuropathic pain syndromes: A randomized, double-blind, placebo-controlled trial. Anesthesiology 2005, 103, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, Y.D.; Boikov, S.I.; Sibarov, D.A.; Abushik, P.A.; Vanchakova, N.P.; Belinskaia, D.; Shestakova, N.N.; Antonov, S.M. Dual action of amitriptyline on nmda receptors: Enhancement of ca-dependent desensitization and trapping channel block. Sci. Rep. 2019, 9, 19454. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Mendez, M.E.; Castro-Sanchez, L.A.; Dagnino-Acosta, A.; Aguilar-Martinez, I.; Perez-Burgos, A.; Vazquez-Jimenez, C.; Moreno-Galindo, E.G.; Alvarez-Cervera, F.J.; Gongora-Alfaro, J.L.; Navarro-Polanco, R.A.; et al. Capsaicin produces antidepressant-like effects in the forced swimming test and enhances the response of a sub-effective dose of amitriptyline in rats. Physiol. Behav. 2018, 195, 158–166. [Google Scholar] [CrossRef]
- Gillman, P.K. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol. 2007, 151, 737–748. [Google Scholar] [CrossRef]
- Shimizu, M.; Nishida, A.; Hayakawa, H.; Yamawaki, S. Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ store by antidepressant drugs in cultured neurons of rat frontal cortex. J. Neurochem. 1993, 60, 595–601. [Google Scholar] [CrossRef]
- Joshi, P.G.; Singh, A.; Ravichandra, B. High concentrations of tricyclic antidepressants increase intracellular Ca2+ in cultured neural cells. Neurochem. Res. 1999, 24, 391–398. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 2020, 177, 3617–3624. [Google Scholar] [CrossRef]
- Lilley, E.; Stanford, S.C.; Kendall, D.E.; Alexander, S.P.H.; Cirino, G.; Docherty, J.R.; George, C.H.; Insel, P.A.; Izzo, A.A.; Ji, Y.; et al. Arrive 2.0 and the british journal of pharmacology: Updated guidance for 2020. Br. J. Pharmacol. 2020, 177, 3611–3616. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantke, S.; Steinberg, J.H.; Weber, L.K.H.; Fricke, T.C.; Carvalheira Arnaut Pombeiro Stein, I.; Oprita, G.; Herzog, C.; Leffler, A. High Concentrations of the Antidepressant Amitriptyline Activate and Desensitize the Capsaicin Receptor TRPV1. Pharmaceuticals 2025, 18, 560. https://doi.org/10.3390/ph18040560
Pantke S, Steinberg JH, Weber LKH, Fricke TC, Carvalheira Arnaut Pombeiro Stein I, Oprita G, Herzog C, Leffler A. High Concentrations of the Antidepressant Amitriptyline Activate and Desensitize the Capsaicin Receptor TRPV1. Pharmaceuticals. 2025; 18(4):560. https://doi.org/10.3390/ph18040560
Chicago/Turabian StylePantke, Sebastian, Johanna H. Steinberg, Lucas K. H. Weber, Tabea C. Fricke, Inês Carvalheira Arnaut Pombeiro Stein, George Oprita, Christine Herzog, and Andreas Leffler. 2025. "High Concentrations of the Antidepressant Amitriptyline Activate and Desensitize the Capsaicin Receptor TRPV1" Pharmaceuticals 18, no. 4: 560. https://doi.org/10.3390/ph18040560
APA StylePantke, S., Steinberg, J. H., Weber, L. K. H., Fricke, T. C., Carvalheira Arnaut Pombeiro Stein, I., Oprita, G., Herzog, C., & Leffler, A. (2025). High Concentrations of the Antidepressant Amitriptyline Activate and Desensitize the Capsaicin Receptor TRPV1. Pharmaceuticals, 18(4), 560. https://doi.org/10.3390/ph18040560