In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates
Abstract
1. Introduction
2. Results
2.1. In Vitro Activity of Drugs and Phages Alone
2.2. In Vitro Activity of Antibiotic–Phage Combination
2.3. Clinical Relevance of Interactions
3. Discussion
4. Material and Methods
4.1. Bacterial Strains
4.2. Bacteriophages
4.3. Antibacterial Drugs and Media
4.4. In Vitro Susceptibility of Drugs and Phages Alone
4.5. Combination of Antibacterial Drugs with Phages
4.6. Fractional Inhibitory Concentration Index (FICi)
4.7. Clinical Relevance
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santamaría-Corral, G.; Senhaji-Kacha, A.; Broncano-Lavado, A.; Esteban, J.; García-Quintanilla, M. Bacteriophage–Antibiotic Combination Therapy against Pseudomonas aeruginosa. Antibiotics 2023, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-Negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global Prevalence of Cefiderocol Non-Susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2024, 30, 178–188. [Google Scholar] [CrossRef]
- Siopi, M.; Skliros, D.; Paranos, P.; Koumasi, N.; Flemetakis, E.; Pournaras, S.; Meletiadis, J. Pharmacokinetics and Pharmacodynamics of Bacteriophage Therapy: A Review with a Focus on Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Microbiol. Rev. 2024, 37, e00044-24. [Google Scholar] [CrossRef]
- Summers, W.C. Bacteriophage Therapy. Annu. Rev. Microbiol. 2003, 55, 437–451. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Międzybrodzki, R.; Drulis-Kawa, Z.; Cater, K.; Knežević, P.; Winogradow, C.; Amaro, K.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Rękas, J.; et al. Bacteriophages and Antibiotic Interactions in Clinical Practice: What We Have Learned so Far. J. Biomed. Sci. 2022, 29, 23. [Google Scholar] [CrossRef]
- Kovacs, C.J.; Rapp, E.M.; Rankin, W.R.; McKenzie, S.M.; Brasko, B.K.; Hebert, K.E.; Bachert, B.A.; Kick, A.R.; Burpo, F.J.; Barnhill, J.C. Combinations of Bacteriophage Are Efficacious against Multidrug-Resistant Pseudomonas aeruginosa and Enhance Sensitivity to Carbapenem Antibiotics. Viruses 2024, 16, 1000. [Google Scholar] [CrossRef]
- Holger, D.J.; El Ghali, A.; Bhutani, N.; Lev, K.L.; Stamper, K.; Kebriaei, R.; Kunz Coyne, A.J.; Morrisette, T.; Shah, R.; Alexander, J.; et al. Phage-Antibiotic Combinations against Multidrug-Resistant Pseudomonas aeruginosa in in Vitro Static and Dynamic Biofilm Models. Antimicrob. Agents Chemother. 2023, 67, e00578-23. [Google Scholar] [CrossRef]
- Manohar, P.; Loh, B.; Nachimuthu, R.; Leptihn, S. Phage-Antibiotic Combinations to Control Pseudomonas aeruginosa–Candida Two-Species Biofilms. Sci. Rep. 2024, 14, 9354. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, P.; Clark, J.R.; Liu, C.G.; Terwilliger, A.; Maresso, A.W. Class-Driven Synergy and Antagonism between a Pseudomonas Phage and Antibiotics. Infect. Immun. 2023, 91, e00065-23. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 25 November 2024).
- Can, K.; Aksu, U.; Yenen, O.Ş. Investigation of PhiKZ Phage Therapy against Pseudomonas aeruginosa in Mouse pneumonia Model. Turk. J. Med. Sci. 2018, 48, 670–678. [Google Scholar] [CrossRef]
- Latz, S.; Krüttgen, A.; Häfner, H.; Buhl, E.M.; Ritter, K.; Horz, H.P. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, PhiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses 2017, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Krylov, V.N. Bacteriophages of Pseudomonas aeruginosa: Long-Term Prospects for Use in Phage Therapy. Adv. Virus Res. 2014, 88, 227–278. [Google Scholar] [CrossRef] [PubMed]
- Krylov, V.; Shaburova, O.; Pleteneva, E.; Krylov, S.; Kaplan, A.; Burkaltseva, M.; Polygach, O.; Chesnokova, E. Selection of Phages and Conditions for the Safe Phage Therapy against Pseudomonas aeruginosa Infections. Virol. Sin. 2015, 30, 33–44. [Google Scholar] [CrossRef]
- Akturk, E.; Pinto, G.; Ostyn, L.; Crabbé, A.; Melo, L.D.R.; Azeredo, J.; Coenye, T. Combination of Phages and Antibiotics with Enhanced Killing Efficacy against Dual-Species Bacterial Communities in a Three-Dimensional Lung Epithelial Model. Biofilm 2025, 9, 100245. [Google Scholar] [CrossRef]
- Vashisth, M.; Yashveer, S.; Anand, T.; Virmani, N.; Bera, B.C.; Vaid, R.K. Antibiotics Targeting Bacterial Protein Synthesis Reduce the Lytic Activity of Bacteriophages. Virus Res. 2022, 321, 198909. [Google Scholar] [CrossRef]
- Chang, R.Y.K.; Das, T.; Manos, J.; Kutter, E.; Morales, S.; Chan, H.K. Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients. AAPS J. 2019, 21, 49. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, R.Y.K.; Britton, W.J.; Morales, S.; Kutter, E.; Chan, H.K. Synergy of Nebulized Phage PEV20 and Ciprofloxacin Combination against Pseudomonas aeruginosa. Int. J. Pharm. 2018, 551, 158. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, R.Y.K.; Britton, W.J.; Morales, S.; Kutter, E.; Li, J.; Chan, H.K. Inhalable Combination Powder Formulations of Phage and Ciprofloxacin for P. aeruginosa Respiratory Infections. Eur. J. Pharm. Biopharm. 2019, 142, 543. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espín, D.; Serrano-Heras, G.; Salas, M. Role of Host Factors in Bacteriophage Φ29 DNA Replication. Adv. Virus Res. 2012, 82, 351–383. [Google Scholar] [CrossRef] [PubMed]
- Holger, D.J.; Lev, K.L.; Kebriaei, R.; Morrisette, T.; Shah, R.; Alexander, J.; Lehman, S.M.; Rybak, M.J. Bacteriophage-Antibiotic Combination Therapy for Multidrug-Resistant Pseudomonas aeruginosa: In Vitro Synergy Testing. J. Appl. Microbiol. 2022, 133, 1636–1649. [Google Scholar] [CrossRef]
- Davis, C.M.; McCutcheon, J.G.; Dennis, J.J. Aztreonam Lysine Increases the Activity of Phages E79 and PhiKZ against Pseudomonas aeruginosa PA01. Microorganisms 2021, 9, 152. [Google Scholar] [CrossRef]
- Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and Simplified Method for Drug Combination Studies by Checkerboard Assay. MethodsX 2021, 8, 101543. [Google Scholar] [CrossRef]
- Molina, F.; Menor-Flores, M.; Fernández, L.; Vega-Rodríguez, M.A.; García, P. Systematic Analysis of Putative Phage-Phage Interactions on Minimum-Sized Phage Cocktails. Sci. Rep. 2022, 12, 2458. [Google Scholar] [CrossRef]
- Abedon, S.T. Bacteriophage Secondary Infection. Virol. Sin. 2015, 30, 3–10. [Google Scholar] [CrossRef]
- Ma, D.; Li, L.; Han, K.; Wang, L.; Cao, Y.; Zhou, Y.; Chen, H.; Wang, X. The Antagonistic Interactions between a Polyvalent Phage SaP7 and β-Lactam Antibiotics on Combined Therapies. Vet. Microbiol. 2022, 266, 109332. [Google Scholar] [CrossRef]
- Meletiadis, J.; Paranos, P.; Georgiou, P.C.; Vourli, S.; Antonopoulou, S.; Michelaki, A.; Vagiakou, E.; Pournaras, S. In Vitro Comparative Activity of the New Beta-Lactamase Inhibitor Taniborbactam with Cefepime or Meropenem against Klebsiella Pneumoniae and Cefepime against Pseudomonas aeruginosa Metallo-Beta-Lactamase-Producing Clinical Isolates. Int. J. Antimicrob. Agents 2021, 58, 106440. [Google Scholar] [CrossRef]
- van Duin, D.; Arias, C.A.; Komarow, L.; Chen, L.; Hanson, B.M.; Weston, G.; Cober, E.; Garner, O.B.; Jacob, J.T.; Satlin, M.J.; et al. Molecular and Clinical Epidemiology of Carbapenem-Resistant Enterobacterales in the USA (CRACKLE-2): A Prospective Cohort Study. Lancet Infect. Dis. 2020, 20, 731–741. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Franklin, C.; Liolios, L.; Peleg, A.Y. Phenotypic Detection of Carbapenem-Susceptible Metallo-β-Lactamase-Producing Gram-Negative Bacilli in the Clinical Laboratory. J. Clin. Microbiol. 2006, 44, 3139–3144. [Google Scholar] [CrossRef] [PubMed]
- Doyle, D.; Peirano, G.; Lascols, C.; Lloyd, T.; Church, D.L.; Pitouta, J.D.D. Laboratory Detection of Enterobacteriaceae That Produce Carbapenemases. J. Clin. Microbiol. 2012, 50, 3877–3880. [Google Scholar] [CrossRef] [PubMed]
- Paranos, P.; Skliros, D.; Zrelovs, N.; Svanberga, K.; Kazaks, A.; Flemetakis, E.; Meletiadis, J. Isolation and Characterization of Lytic Bacteriophages against High Prevalent Greek Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates. In Proceedings of the 33rd Congress of the European Society of Clinical Microbiology and Infectious Diseases, Copenhagen, Denmark, 15–18 April 2023; p. 2118. [Google Scholar]
- Paranos, P.; Pournaras, S.; Meletiadis, J. Detection of Phage’s Lytic Activity Against Carbapenemase-Producing Klebsiella pneumoniae Isolates Using a High-Throughput Microbroth Growth Inhibition Assay. Infect. Dis. Ther. 2024, 14, 217–228. [Google Scholar] [CrossRef]
- Paranos, P.; Pournaras, S.; Meletiadis, J. A Single-Layer Spot Assay for Easy, Fast, and High-Throughput Quantitation of Phages against Multidrug-Resistant Gram-Negative Pathogens. J. Clin. Microbiol. 2024, 62, e00743-24. [Google Scholar] [CrossRef]
- CLSI-M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, Nineth Editions. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2012; Volume 32, ISBN 1562387839.
- Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein Binding: Do We Ever Learn? Antimicrob. Agents Chemother. 2011, 55, 3067–3074. [Google Scholar] [CrossRef]
- Kim, E.J.; Oh, J.; Lee, K.; Yu, K.S.; Chung, J.Y.; Hwang, J.H.; Nam, E.Y.; Kim, H.S.; Kim, M.; Park, J.S.; et al. Pharmacokinetic Characteristics and Limited Sampling Strategies for Therapeutic Drug Monitoring of Colistin in Patients With Multidrug-Resistant Gram-Negative Bacterial Infections. Ther. Drug Monit. 2019, 41, 102–106. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Amikacin: Rationale for the Clinical Breakpoints, Version 3.0. 2024. Available online: http://www.eucast.org (accessed on 25 November 2024).
- European Committee on Antimicrobial Susceptibility Testing. Meropenem: Rationale for the Clinical Breakpoints, Version 3.0. 2024. Available online: http://www.eucast.org (accessed on 25 November 2024).
- Ramsey, C.; MacGowan, A.P. A Review of the Pharmacokinetics and Pharmacodynamics of Aztreonam. J. Antimicrob. Chemother. 2016, 71, 2704–2712. [Google Scholar] [CrossRef]
- Kline, E.G.; Nguyen, M.H.T.; McCreary, E.K.; Wildfeuer, B.; Kohl, J.; Hughes, K.L.; Jones, C.E.; Doi, Y.; Doi, Y.; Shields, R.K. 1298. Population Pharmacokinetics of Ceftazidime-Avibactam among Critically-Ill Patients with and without Receipt of Continuous Renal Replacement Therapy. Open Forum Infect. Dis. 2020, 7, S663–S664. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef]
- Mavridou, E.; Meletiadis, J.; Rijs, A.; Mouton, J.W.; Verweij, P.E. The Strength of Synergistic Interaction between Posaconazole and Caspofungin Depends on the Underlying Azole Resistance Mechanism of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2015, 59, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
Isolates | Resistance Mechanism a | MLST | Phages | Taxonomy | MICP (PFU/mL) | MICA (mg/L) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Colistin | Meropenem | Ciprofloxacin | Amikacin | Aztreonam | ||||||
AUHB215 | NDM | ST773 | vB_PaerM_AttikonH5 | Pakpunavirus | 5 × 106 (5 × 105–5 × 107) | 4 (1–4) | >256 (>256–>256) | 256 (128–256) | >256 (>256–>256) | 8 (8–8) |
AUHB217 | NDM | ST308 | vB_PaerM_AttikonH7 | Pbunavirus | 5 × 106 (5 × 105–5 × 106) | 4 (2–4) | >256 (>256–>256) | 256 (256–>256) | >256 (>256–>256) | 32 (32–32) |
AUHB219 | NDM | ST773 | vB_PaerM_AttikonH10 | Phikzvirus | 5 × 107 (5 × 107–5 × 108) | 2 (1–2) | >256 (>256–>256) | 128 (128–256) | >256 (>256–>256) | 16 (8–16) |
AUHB220 | NDM | ST773 | vB_PaerM_AttikonH7 | Pbunavirus | 5 × 106 (5 × 104–5 × 106) | 8 (4–8) | 8 (8–8) | 256 (256–>256) | 8 (8–8) | 8 (4–8) |
AUHB222 | NDM | ST308 | vB_PaerM_AttikonH7 | Pbunavirus | 5 × 106 (5 × 105–5 × 107) | 2 (2–2) | >256 (>256–>256) | 128 (128–256) | >256 (>256–>256) | 32 (32–32) |
AUHB174 | VIM | ST235 | vB_PaerM_AttikonH2 | Pakpunavirus | 5 × 106 (5 × 106–5 × 107) | 4 (2–4) | 16 (16–16) | 32 (16–32) | 32 (16–32) | 32 (32–32) |
AUHB175 | VIM | ST235 | vB_PaerM_AttikonH2 | Pakpunavirus | 5 × 107 (5 × 106–5 × 107) | 4 (2–4) | 8 (8–16) | 16 (16–32) | 32 (16–32) | 32 (32–64) |
AUHB183 | VIM | ST395 | vB_PaerM_AttikonH7 | Pbunavirus | 5 × 107 (5 × 106–5 × 108) | 4 (2–4) | 64 (64–64) | 16 (16–32) | 64 (64–128) | 16 (8–16) |
AUHB186 | VIM | ST235 | vB_PaerM_AttikonH2 | Pakpunavirus | 5 × 109 (5 × 109–5 × 109) | 4 (4–4) | 32 (16–32) | 128 (64–128) | 128 (128–128) | 32 (32–32) |
AUHB187 | VIM | ST235 | vB_PaerP_AttikonH4 | Phikmvvirus | 5 × 108 (5 × 107–5 × 108) | 4 (2–4) | 128 (128–256) | 256 (256–256) | 64 (64–64) | 16 (16–16) |
Antibiotic (No. of Strains) | Interactions | FICi a | Monotherapy | Combination b | ||
---|---|---|---|---|---|---|
(No. of Strains) phage | MICA (mg/L) | MICP (PFU/mL) | MICA (mg/L) | MICP (PFU/mL) | ||
Colistin (10) | Synergistic (4) 1,3 | 0.23 (0.13–0.23) ** | 4 (2–8) | 5 × 107 (5 × 105–5 × 107) | 0.25 (0.125–2) ** | 5 × 106 (5 × 101–5 × 106) * |
Additive (4) 2,3,4,5 | 1.5 (1.5–4) | 4 (1–4) | 5 × 107 (5 × 105–5 × 109) | 2 (0.5–8) | 5 × 107 (5 × 102–5 × 109) | |
Antagonistic (2) 1 | 10.5 (10–11) | 4 (1–4) | 5 × 107 (5 × 106–5 × 108) | 2 (0.5–4) | 5 × 108 (5 × 103–5 × 108) | |
Ciprofloxacin (10) | Synergistic (5) 1,2,3,4 | 0.25 (0.04–0.35) * | 32 (16–256) | 5 × 107 (5 × 106–>5 × 109) | 4 (4–64) * | 5 × 106 (5 × 101–5 × 109) *** |
Additive (1) 5 | 1.5 (1.5–2) | 256 (128–256) | 5 × 105 (5 × 105–5 × 106) | 128 (128–128) | 5 × 105 (5 × 105–5 × 106) | |
Antagonistic (4) 1,3 | 1000 (11–1001) * | 256 (128–256) | 5 × 106 (5 × 104–5 × 109) | 256 (128–256) | 5 × 109 (5 × 106–>5 × 109) * | |
Meropenem (10) | Synergistic (4) 1,2,5 | 0.12 (0.10–0.35) ** | >256 (64–>256) | 5 × 106 (5 × 105–5 × 108) | 8 (4–16) ** | 5 × 105 (5 × 103–5 × 107) *** |
Additive (4) 1,3,4 | 1.25 (1–2) | 16 (8–256) | 5 × 108 (5 × 105–5 × 109) | 8 (8–128) | 5 × 108 (5 × 101–5 × 109) | |
Antagonistic (2) 1 | 10.5 (10–100) | 128 (8–>256) | 5 × 106 (5 × 106–5 × 107) | 32 (4–256) | 5 × 108 (5 × 107–5 × 108) | |
Aztreonam (10) | Synergistic (0) | NA | NA | NA | NA | NA |
Additive (7) 1,2,3,4,5 | 1.25 (1–4) | 16 (4–32) | 5 × 107 (5 × 104–5 × 109) | 16 (4–32) | 5 × 105 (5 × 100–5 × 109) * | |
Antagonistic (3) 1,3 | 100.5 (10.5–1000) | 32 (16–64) | 5 × 106 (5 × 105–5 × 106) | 16 (8–16) | 5 × 108 (5 × 107–>5 × 109) * | |
Amikacin (10) | Synergistic (6) 1,2,3,5 | 0.23 (0.11–0.35) ** | 128 (16–>256) | 5 × 108 (5 × 105–5 × 109) | 8 (4–64) ** | 5 × 107 (5 × 103–5 × 108) **** |
Additive (2) 1,4 | 2 (2–2.1) | 32 (8–64) | 5 × 106 (5 × 105–5 × 108) | 64 (16–128) | 5 × 102 (5 × 101–5 × 104) | |
Antagonistic (2) 1,5 | 55 (10.06–100) | >256 (>256–>256) | 5 × 105 (5 × 105–5 × 105) | 32 (4–32) | 5 × 107 (5 × 106–5 × 107) * |
Antibiotic (No. of Strains) | Synergy (%) | Additivity (%) | Antagonism (%) |
---|---|---|---|
Colistin (10) | 40 | 40 | 20 |
Ciprofloxacin (10) | 50 | 10 | 40 |
Meropenem (10) | 40 | 40 | 20 |
Aztreonam (10) | 0 | 70 | 30 |
Amikacin (10) | 60 | 20 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paranos, P.; Vourli, S.; Pournaras, S.; Meletiadis, J. In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates. Pharmaceuticals 2025, 18, 343. https://doi.org/10.3390/ph18030343
Paranos P, Vourli S, Pournaras S, Meletiadis J. In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates. Pharmaceuticals. 2025; 18(3):343. https://doi.org/10.3390/ph18030343
Chicago/Turabian StyleParanos, Paschalis, Sophia Vourli, Spyros Pournaras, and Joseph Meletiadis. 2025. "In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates" Pharmaceuticals 18, no. 3: 343. https://doi.org/10.3390/ph18030343
APA StyleParanos, P., Vourli, S., Pournaras, S., & Meletiadis, J. (2025). In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates. Pharmaceuticals, 18(3), 343. https://doi.org/10.3390/ph18030343